# G3VM-401BY/EY MOS FET Relays

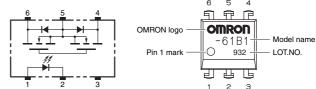
### Analog-switching MOS FET Relays with a Dielectric Strength of 5 kVAC between I/O Using Optical Isolation.

• Switches minute analog signals.

 $\bullet$  Leakage current of 1  $\mu\text{A}$  max. when output relay is open.

#### **RoHS compliant**

### ■ Application Examples


- Communication equipment
- Test & Measurement equipment
- Industrial equipment



*B1* 

Note: The actual product is marked differently from the image shown here.

### Terminal Arrangement/Internal Connections



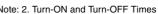
Note: The actual product is marked differently from the image shown here.

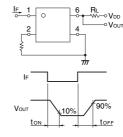
### ■ List of Models

| Package type | Contact form  | Terminals                  | Load voltage   | Model           | Minimum package quantity |                          |
|--------------|---------------|----------------------------|----------------|-----------------|--------------------------|--------------------------|
| rackage type | Contact Ionni |                            | (peak value) * | Model           | Number per tube          | Number per tape and reel |
|              | 1a 400 V G    | PCB Terminals              |                | G3VM-401BY      | 50                       |                          |
| DIP6         |               | G3VM-401EY                 | 50             | -               |                          |                          |
|              |               | Surface-mounting Terminals |                | G3VM-401EY (TR) | -                        | 1,500                    |

\* The AC peak and DC value are given for the load voltage.

### ■ Absolute Maximum Ratings (Ta = 25°C)


| Item                                          |                                     |                   | Symbol | Rating      | Unit  | Measurement conditions                             |  |
|-----------------------------------------------|-------------------------------------|-------------------|--------|-------------|-------|----------------------------------------------------|--|
|                                               | LED forward current                 |                   | lF     | 50          | mA    |                                                    |  |
| т I                                           | Repetitive peak LED forward current |                   | IFP    | 1           | А     | 100 μs pulses, 100 pps                             |  |
| Input                                         | LED forward current reduction rate  |                   | ∆IF/°C | -0.5        | mA/°C | Ta≥25°C                                            |  |
| -                                             | LED reverse voltage                 |                   | VR     | 5           | V     |                                                    |  |
|                                               | Connection te                       | ction temperature |        | 125         | °C    |                                                    |  |
| I                                             | Load voltage (AC peak/DC)           |                   | Voff   | 400         | V     |                                                    |  |
|                                               | Continuous<br>load current          | Connection A      |        | 120         | mA    | Connection A: AC neek/DC                           |  |
|                                               |                                     | Connection B      | lo     | 120         |       | Connection A: AC peak/DC<br>Connection B and C: DC |  |
| bri                                           |                                     | Connection C      |        | 240         |       | Connection B and C. DC                             |  |
| Output                                        | ON current                          | Connection A      |        | -1.2        | mA/°C |                                                    |  |
|                                               | reduction                           | Connection B      | ∆lo/°C | -1.2        |       | $Ta \ge 25^{\circ}C$                               |  |
|                                               | rate                                | Connection C      |        | -2.4        |       |                                                    |  |
|                                               | Connection temperature              |                   | TJ     | 125         | °C    |                                                    |  |
| Dielectric strength between I/O (See note 1.) |                                     |                   | VI-0   | 5000        | Vrms  | AC for 1 min                                       |  |
| Ambient operating temperature                 |                                     |                   | Та     | -40 to +85  | °C    | With no icing or condensation                      |  |
| Ambient storage temperature                   |                                     |                   | Tstg   | -55 to +125 | °C    | With no icing or condensation                      |  |
| Soldering temperature                         |                                     |                   | -      | 260         | °C    | 10 s                                               |  |


te: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side. Connection Diagram

| Connection A | $\begin{bmatrix} 1 & 6 \\ - & Load \\ - & 2 & 5 \\ - & 0 & AC \\ 0 & - & DC \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & - & 0 \\ 0 & -$ |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection B | $\begin{bmatrix} 1 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} Load \\ 2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} DC \\ -1 \\ -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Connection C | $\begin{bmatrix} 1 & 6 \end{bmatrix} + \begin{bmatrix} Load \\ 2 & 5 \end{bmatrix} = DC = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

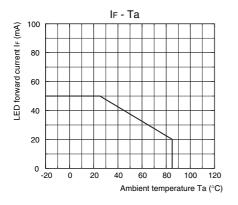
### Electrical Characteristics (Ta = 25°C)

| Item                                        |                      | Symbol                                | Minimum | Typical | Maximum | Unit | Measurement conditions                         |                        |
|---------------------------------------------|----------------------|---------------------------------------|---------|---------|---------|------|------------------------------------------------|------------------------|
| LED forward voltage                         |                      | VF                                    | 1.0     | 1.15    | 1.3     | V    | IF = 10 mA                                     |                        |
|                                             |                      | IR                                    | -       | -       | 10      | μA   | VR = 5 V                                       |                        |
| lnp                                         | Capacity betwee      | y between terminals                   |         | -       | 30      | -    | pF                                             | V = 0, f = 1 MHz       |
| Trigger LED forward current                 |                      | IFT                                   | -       | -       | 3       | mA   | lo = 120 mA                                    |                        |
| Maxim                                       | Maximum              | Connection A                          |         | -       | 17      | 35   | Ω                                              | IF = 5 mA, lo = 120 mA |
| 님 resistance                                |                      | Connection B                          | Ron     | -       | 11      | 20   | Ω                                              | IF = 5 mA, lo = 120 mA |
| the resistance<br>with output ON            | with output ON       | Connection C                          |         | -       | 6       | 10   | Ω                                              | IF = 5 mA, lo = 240 mA |
| õ Current                                   | Current leakage when | urrent leakage when the relay is open |         | -       | -       | 1.0  | μA                                             | Voff = 400 V           |
| Capacity betw                               |                      | en terminals                          | COFF    | -       | 40      | -    | pF                                             | V = 0, f = 1 MHz       |
| Capacity between I/O terminals              |                      | CI-O                                  | -       | 0.8     | -       | pF   | f = 1 MHz, Vs = 0 V                            |                        |
| Insulation resistance between I/O terminals |                      | Ri-o                                  | 1000    | -       | -       | MΩ   | VI-0 = 500 VDC, $RoH \le 60\%$                 |                        |
| Turn-ON time                                |                      | ton                                   | -       | 0.3     | 1.0     | ms   | $I_F = 5 \text{ mA}, \text{ RL} = 200 \Omega,$ |                        |
| Turn-OFF time                               |                      | toff                                  | -       | 0.1     | 1.0     | ms   | VDD = 20 V(See note 2.)                        |                        |

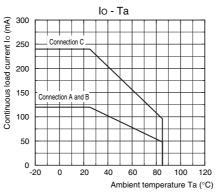




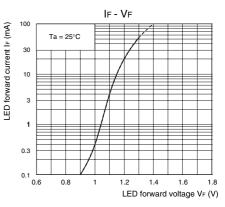
# G3VM-401BY/EY


### Recommended Operating Conditions

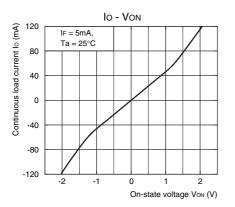
Use the G3VM under the following conditions so that the Relay will operate properly.


| Item                                 | Symbol | Minimum | Typical | Maximum | Unit |
|--------------------------------------|--------|---------|---------|---------|------|
| Load voltage (AC peak/DC)            | Vdd    | -       | -       | 320     | V    |
| Operating LED forward current        | lf     | 5       | 7.5     | 25      | mA   |
| Continuous load current (AC peak/DC) | lo     | -       | -       | 120     | mA   |
| Ambient operating temperature        | Та     | -20     | -       | 65      | °C   |

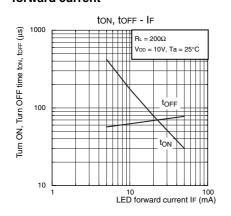
#### Engineering Data


### LED forward current vs. Ambient temperature

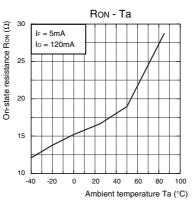



### Continuous load current vs. Ambient temperature

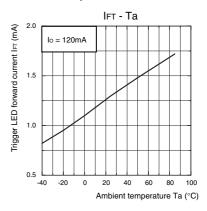



### LED forward current vs. LED forward voltage

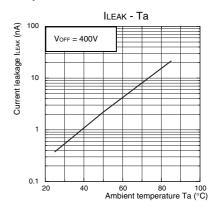



### Continuous load current vs. On-state voltage

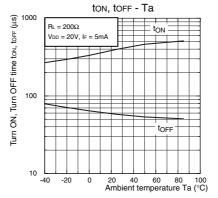



# Turn ON, Turn OFF time vs. LED forward current




## On-state resistance vs. Ambient temperature



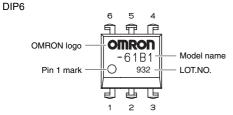

#### Trigger LED forward current vs. Ambient temperature



### Current leakage vs. Ambient temperature



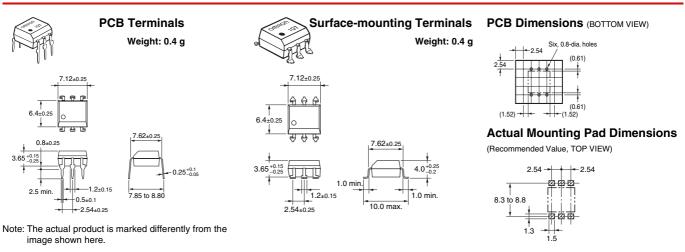
# Turn ON, Turn OFF time vs. Ambient temperature




### Safety Precautions

• Refer to "Common Precautions" for all G3VM models.

#### ■ Appearance


#### **DIP (Dual Inline Package)**



Note: The actual product is marked differently from the image shown here.

#### Dimensions

(Unit:mm)



Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.
Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperty. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.

Note: Do not use this document to operate the Unit.

#### OMRON Corporation ELECTRONIC AND MECHANICAL COMPONENTS COMPANY C

Contact: www.omron.com/ecb

Cat. No. K220-E1-01 0412(0412)(O)

### **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron:

G3VM-401BY G3VM-401EY G3VM-401EY(TR)