

TPS61086EVM-526

This user's guide describes the characteristics, operation, and use of the TPS61086 evaluation module (EVM). This EVM contains the Texas Instruments 1.2-MHz, 18.5-V, step-up DC-DC converter TPS61086 with a switch current of 2 A, minimum. The user's guide includes EVM specifications, recommended test setup, the schematic diagram, bill of materials, and the board layout.

Contents

1	Introd	luction	2
	1.1	Description	
	1.2	Applications	
	1.3	Features	
2	TPS6	1086EVM-526 Electrical and Performance Specifications	2
3		1086EVM-526 Schematic	
4		ector and Test Point Descriptions	
	4.1	Input Connectors	
	4.2	Output Connectors	
	4.3	Jumpers	
5	Test S	Setup	4
	5.1	EVM Operation	4
	5.2	Compensation – COMP	4
6	TPS6	1086EVM-526 Assembly Drawings and Layout	
7		f Materials	
		List of Figures	
1	TPS6	1086EVM-526 Schematic	3
2	TPS6	1086EVM-526 Component Placement; Viewed From Top	6
3	TPS6	1086EVM-526 Top Copper; Viewed From Top	7
4	TPS6	1086EVM-526 Bottom Copper; Viewed From Bottom	7
		List of Tables	
1	TPS6	1086EVM-526 Electrical and Performance Specifications	2
2	Recor	mmended Compensation Network Values for Different Output Voltages	5
3	TPS6	1086EVM-526 Bill of Materials	7

Introduction www.ti.com

1 Introduction

The TPS61086 is a high-frequency, high-efficiency, DC-to-DC converter with an integrated 2-A, $0.13-\Omega$ power switch capable of providing an output voltage up to 18.5 V. The frequency of 1.2 MHz allows the use of small external inductors and capacitors and provides a fast transient response. The external compensation allows optimizing the application for specific conditions. A capacitor connected to the soft-start pin minimizes inrush current at start-up.

1.1 Description

The TPS61086EVM-526 is designed to operate over the full input voltage range and produces an output voltage of 12 V. The output voltage can be adjusted by changing the feedback resistor divider network. The external compensation is optimized for maximum stability for different inductor and capacitor combinations. If the transient response is not fast enough, it can easily be optimized for the used inductor and capacitor combinations by referring to Section 5.2 in this user's guide.

1.2 Applications

- · Handheld devices
- · GPS receiver
- Digital still camera
- Portable applications
- DSL modem
- PCMCIA card
- TFT LCD bias supply

1.3 Features

- 2.3-V to 6-V input range
- 12-V, fixed-output voltage, adjustable with resistor change (may require compensation adjustment)
- Power Save mode selectable
- Soft-start adjustable with capacitor change
- Thermal shutdown with autorecovery
- 1.2-MHz switching frequency
- · Double-sided, two-active-layer PCB with all components on top side
- Active converter area of approximately 260 mm²

2 TPS61086EVM-526 Electrical and Performance Specifications

Table 1. TPS61086EVM-526 Electrical and Performance Specifications

	PARAMETER	NOTES AND CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CHA	RACTERISTICS					
V _{IN}	Input Voltage		2.3		6.0	V
I _{IN}	Input Current	V_{IN} = 3.3 V, I_{OUT} = 300 mA, PWM		1.65	1.8	Α
	No Load Input Current	$V_{IN} = 3.3 \text{ V}, I_{OUT} = 0 \text{ A}, PFM$		0.8	2	mA
OUTPUT CI	HARACTERISTICS					
Vs	Output Voltage	$V_{IN} = 3.3 \text{ V}, I_{OUT} = 100 \text{ mA}, PWM$	11.7	12	12.3	V
	Line Regulation	V_{IN} = 2.3 V to 6 V, I_{OUT} = 100 mA, PWM		15	25	mV
	Load Regulation	I_{OUT} = 100 mA to 300 mA, PWM; V_{IN} = 3.3 V, PWM		3	10	mV
V _{OUT(PP1)}	Output Voltage Ripple, PFM	$V_{IN} = 3.3 \text{ V}, I_{OUT} = 4 \text{ mA}, PFM$		60		mV_{PP}
V _{OUT(PP2)}	Output Voltage Ripple, PWM	V _{IN} = 3.3 V, I _{OUT} = 300 mA, PWM 20			mV_{PP}	

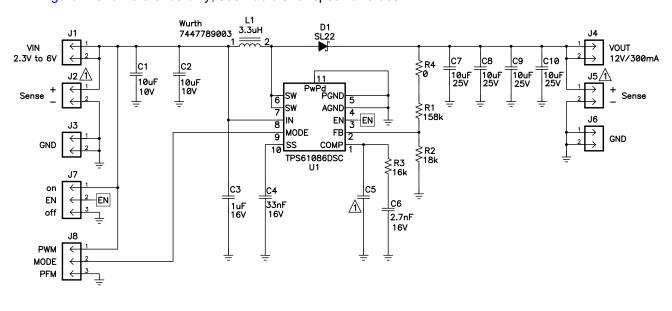


Table 1. TPS61086EVM-526 Electrical and Performance Specifications (continued

	PARAMETER	NOTES AND CONDITIONS	MIN	TYP	MAX	UNIT			
SYSTEMS CHARACTERISTICS									
f _{SW}	Switching Frequency			1.2	1.5	MHz			
η_{pk}	Peak Efficiency	V _{IN} = 3.3 V		86%					

3 TPS61086EVM-526 Schematic

Figure 1 is for reference only; see Table 3 for specific values.

1 Open

Figure 1. TPS61086EVM-526 Schematic

4 Connector and Test Point Descriptions

4.1 Input Connectors

4.1.1 J1 - VIN

This header is the positive connection to the input power supply. The power supply must be connected between J1 and J3 (GND). Twist the leads to the input supply and keep them as short as possible. The input voltage has to be between 2.3 V and 6 V.

4.1.2 J2 - Input Sense Connector

This header is unpopulated, but is reserved for future use to measure the input voltage directly on the input capacitor. Therefore, a 4-wire power and sense supply can be connected. Twist the leads to the sensing connector.

4.1.3 J3 - GND

This header is the return connection to the input power supply. Connect the power supply between these pins and J1 (VIN). Twist the leads to the input supply and keep them as short as possible. The input voltage must be between 2.3 V and 6 V.

Test Setup www.ti.com

4.2 Output Connectors

4.2.1 J4 – VOUT

This header is the positive connection of the output voltage. Connect the load between J4 and J6 (GND).

4.2.2 J5 – Output Sense Connector

This header is unpopulated, but is reserved for future use to measure the output voltage directly on the output capacitors.

4.2.3 J6 - GND

This header is the return connection of the output voltage. Connect the load between these pins and J4 (VOUT).

4.3 Jumpers

4.3.1 J7 – Enable Jumper

Placing a jumper across pins 1 and 2 ties the EN pin to VIN, thereby enabling the device. Placing a jumper across pins 2 and 3 ties the EN pin to GND, which disables the device.

4.3.2 J8 – MODE Jumper

The middle pin of this jumper connects to the MODE pin of the integrated circuit (IC). Placing a jumper across pins 1 and 2 ties the MODE pin to VIN, thereby forcing the IC into the PWM mode. In this mode, the IC operates with a fixed frequency for minimizing the output voltage ripple for the whole load range.

Placing a jumper across pins 2 and 3 ties the MODE pin to GND, which enables the Power Save mode for low-load currents. This mode maximizes the efficiency of the converter for low-output currents by turning off the switching action, if the output voltage is above the nominal value.

5 Test Setup

5.1 EVM Operation

The user must connect an input power supply set between 2.3 V and 6 V between headers J1 and J3 in order for the EVM to operate. The absolute maximum input voltage is 7 V.

The user can connect a load resistance between J4 and J6. Connect a jumper between pins 1 and 2 of J7 to enable the device and a jumper on J8 to set the used mode.

5.2 Compensation – COMP

The regulator loop can be compensated by adjusting the external components connected to the COMP pin. The COMP pin is the output of the internal transconductance error amplifier.

Standard values of $R_{COMP} = 16 \text{ k}\Omega$ and $C_{COMP} = 2.7 \text{ nF}$ work for the majority of the applications.

See Table 2 for dedicated compensation networks giving an improved load transient response. The following equations can be used to calculate R_{COMP} and C_{COMP} :

$$R_{\text{COMP}} = \frac{110 \times V_{\text{IN}} \times V_{\text{S}} \times C_{\text{OUT}}}{L \times I_{\text{OUT}}} \qquad C_{\text{COMP}} = \frac{V_{\text{S}} \times C_{\text{OUT}}}{7.5 \times I_{\text{OUT}} \times R_{\text{COMP}}}$$
(1)

with

 V_{IN} Minimum input voltage

V_S Output voltage

 C_{OUT} Output capacitance

L Inductor value, e.g. 3.3 μH

 I_{OUT} Maximum output current in the application

Make sure that $R_{COMP} < 120 \text{ k}\Omega$ and $C_{COMP} > 820 \text{ pF}$, independent of the results of the above formulas.

Table 2. Recommended Compensation Network Values for Different Output Voltages

L	V _s	V _{IN} ± 20%	R _{COMP}	C _{COMP}
	15 V	5 V	100 kΩ	820 pF
		3.3 V	91 kΩ	1.2 nF
3.3 µH	12 V 9 V	5 V	68 kΩ	820 pF
3.3 μπ		3.3 V	68 kΩ	1.2 nF
		5 V	39 kΩ	820 pF
		3.3 V	39 kΩ	1.2 nF

Table 2 gives conservative R_{COMP} and C_{COMP} values for certain inductors, input and output voltages providing a very stable system. For a faster response time, a higher R_{COMP} value can be used to enlarge the bandwidth, as well as a slightly lower value of C_{COMP} to keep enough phase margin. These adjustments must be performed in parallel with the load transient response monitoring of TPS61086.

6 TPS61086EVM-526 Assembly Drawings and Layout

Figure 2 through Figure 4 show the design of the TPS61086EVM-526 printed-circuit board (PCB). The EVM has been designed using a two-layer, 35- μ m (1 oz), copper-clad circuit board 6.1 cm × 4.2 cm. All components are on the top side, and all active traces on the top and bottom layers allow the user to easily view, probe, and evaluate the TPS61086 control IC in a practical, double-sided application. Moving components to both sides of the PCB or using additional internal layers can offer additional size reduction for space-constrained systems.

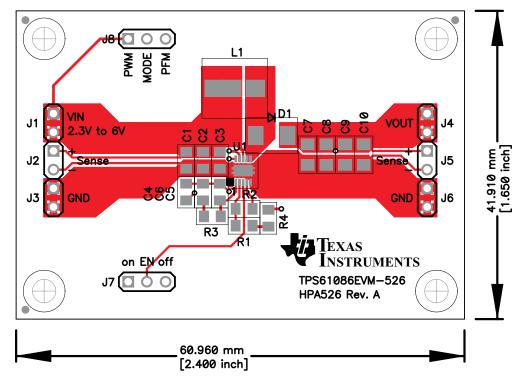


Figure 2. TPS61086EVM-526 Component Placement; Viewed From Top

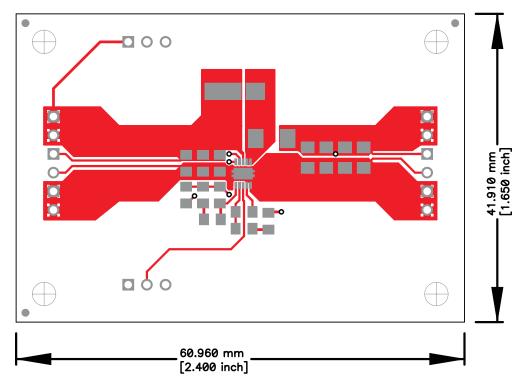


Figure 3. TPS61086EVM-526 Top Copper; Viewed From Top

www.ti.com List of Materials

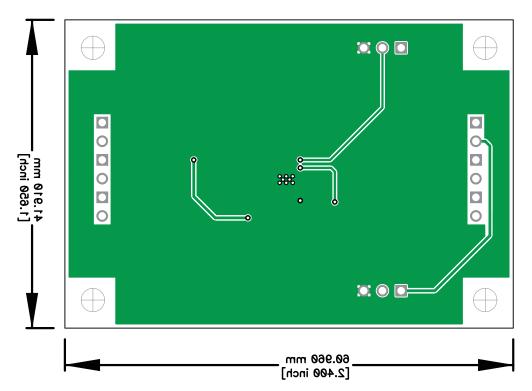


Figure 4. TPS61086EVM-526 Bottom Copper; Viewed From Bottom

7 List of Materials

Table 3 lists the EVM components as configured according to the schematic shown in Figure 1.

Table 3. TPS61086EVM-526 Bill of Materials

RefDes	Value	Description	Size	Part Number	MFR
C1, C2	10 μF	Capacitor, Ceramic, 10V, X7R, 10%	0805	GRM21BR71A106KE51 Alternate: LMK212BJ106KD	Murata Alternate: Taiyo Yuden
C3	1 μF	Capacitor, Ceramic, 16V, X7R, 10%	0805	GRM21BR71C105KA01	Murata
C4	33 nF	Capacitor, Ceramic,16V, X7R, 20%	0805	Std	Std
C5	open	Capacitor, Ceramic, X7R, 20%	0805	Std	Std
C6	2.7 nF	Capacitor, Ceramic,16V, X7R, 20%	0805	Std	Std
C7, C8, C9, C10	10 μF	Capacitor, Ceramic, 25V, X5R, 10%	1206	GRM31CR61E106KA12	Murata
D1	SL22	Diode, Schottky Rectifier, 2A, 20V	DO-214AA	SL22	Vishay
L1	3.3 µH	Inductor, SMT, 3.42A, 24 mΩ	0.288 × 0.288 inch	7447789003	Wurth Elektronik
R1	158k	Resistor, Chip, 1/10W, 1%	0805	Std	Std
R2	18k	Resistor, Chip, 1/10W, 1%	0805	Std	Std
R3	16k	Resistor, Chip, 1/10W, 1%	0805	Std	Std
R4	0	Resistor, Chip, 1/10W, 5%	0805	Std	Std
U1	TPS61086DSC	IC, 600kHz/1.2MHz Step-Up DC-DC Converter	SON-10	TPS61086DSC	TI

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 2.5 V to 6 V and a fixed-output voltage of 12 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 85°C. The EVM is designed to operate properly with certain components above 125°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated