
v03.0514

Typical Applications

The HMC577LC4B is suitable for:

- Clock Generation Applications: SONET OC-192 & SDH STM-64
- Point-to-Point & VSAT Radios
- Test Instrumentation
- Military & Space

Functional Diagram

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 27 - 31 GHz OUTPUT

Features

Very High Output Power: +20 dBm Low Input Power Drive: -2 to +6 dBm Very High Fo, 3Fo Isolation: >55 dBc @ Fout= 29 GHz 100 KHz SSB Phase Noise: -128 dBc/Hz Single Supply: +5V @ 213 mA 24 Lead 4x4mm QFN Package: 16mm²

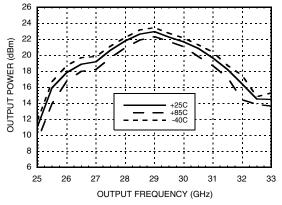
General Description

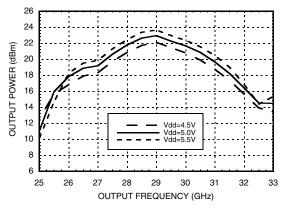
The HMC577LC4B is a x2 active broadband frequency multiplier utilizing GaAs PHEMT technology in a leadless RoHS compliant SMT package. When driven by a +5 dBm signal, the multiplier provides +20 dBm typical output power from 27 to 31 GHz. The Fo and 3Fo isolations are >55 dBc at 29 GHz. The HMC577LC4B is ideal for use in LO multiplier chains for Pt-to-Pt & VSAT Radios yielding reduced parts count vs. traditional approaches. The low additive SSB Phase Noise of -128 dBc/Hz at 100 kHz offset helps maintain good system noise performance. The RoHS packaged HMC577LC4B eliminates the need for wire bonding, and allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +5V, 5 dBm Drive Level

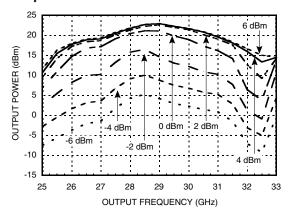
Parameter		Тур.	Max.	Units
Frequency Range, Input	13.5 - 15.5 GHz			GHz
Frequency Range, Output	27 - 31			GHz
Output Power	15 20 d		dBm	
Fo Isolation (with respect to output level)		60		dBc
3Fo Isolation (with respect to output level)	55		dBc	
Input Return Loss		20		dB
Output Return Loss		7		dB
SSB Phase Noise (100 kHz Offset)		-128		dBc/Hz
Supply Current (Idd)		213		mA

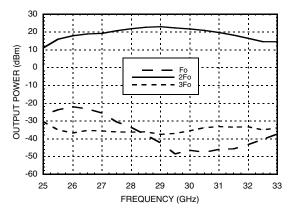
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

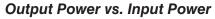


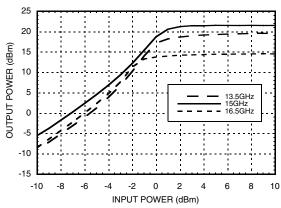

v03.0514

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 27 - 31 GHz OUTPUT


Output Power vs. Temperature @ 5 dBm Drive Level

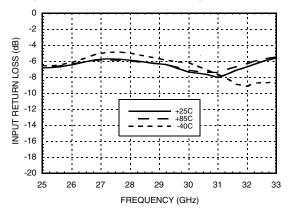

Output Power vs. Supply Voltage @ 5 dBm Drive Level




Output Power vs. Drive Level

Isolation @ 5 dBm Drive Level

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 27 - 31 GHz OUTPUT

Input Return Loss vs. Temperature -5 OUTPUT POWER (dBm) +25C +85C -40C 10 _ _ ____ -15 -20 -25 12.5 13 13.5 14 14.5 15 15.5 16 16.5 FREQUENCY (GHz)

v03.0514

Output Return Loss vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0514

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 27 - 31 GHz OUTPUT

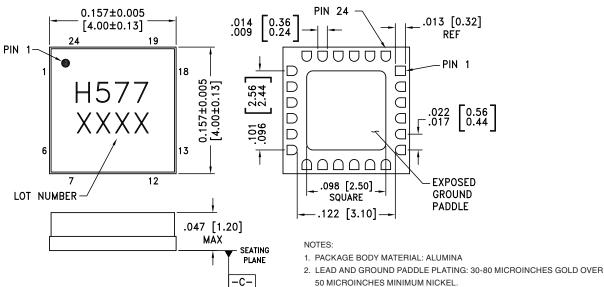
Absolute Maximum Ratings

RF Input (Vdd = +5V)	+13 dBm
Supply Voltage (Vdd)	+6.0 V
Channel Temperature	175 °C
Continuous Pdiss (T= 85 °C) (derate 13.8 mW/°C above 85 °C)	1.24 W
Thermal Resistance (channel to ground paddle)	73 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vdd

Vdd (Vdc)	ldd (mA)
4.5	212
5.0	213
5.5	214

Note:


Multiplier will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

BOTTOM VIEW

- **50 MICROINCHES MINIMUM NICKEL.**
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

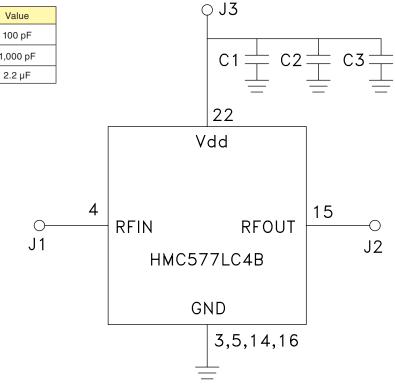
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC577LC4B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H577 XXXX
[1] Max peak reflow te	mperature of 260 °C			

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0514

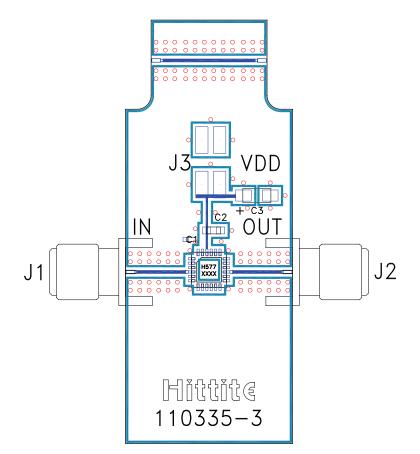

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 27 - 31 GHz OUTPUT

Pin Description

Pin Number	Function	Description	Interface Schematic
1, 2, 6 - 13, 17 - 21, 23, 24	N/C	These pins are internally not connected; however, this product was specified with these pins connected to RF/ DC ground.	
3, 5, 14, 16	GND	Package bottom must also be connected to RF/DC ground.	
4	RFIN	Pin is AC coupled and matched to 50 Ohms.	
15	RFOUT	Pin is AC coupled and matched to 50 Ohms.	
22	Vdd	Supply voltage 5V ± 0.5V. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	↓ ↓ ↓ ↓ ↓

Application Circuit

Component	Value
C1	100 pF
C2	1,000 pF
C3	2.2 µF


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 27 - 31 GHz OUTPUT

Evaluation PCB

v03.0514

List of Materials for Evaluation PCB 115223 [1]

Item	Description
J1, J2	PCB Mount SRI K Connector
J3	Molex Header, 2mm
C1	100 pF Capacitor, 0402 Pkg.
C2	1,000 pF Capacitor, 0603 Pkg.
СЗ	2.2 µF Tantalum Capacitor
U1	HMC577LC4B x2 Active Multiplier
PCB [2]	110335 Eval Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.