1. General description

The 74LVC1G384 provides one single pole, single throw analog switch function. It has two input/output terminals (Y and Z) and an active LOW enable input pin (\overline{E}) . When pin \overline{E} is HIGH, the analog switch is turned off.

Schmitt trigger action at the enable input makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V.

2. Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- Very low ON resistance:
 - 7.5 Ω (typical) at V_{CC} = 2.7 V
 - 6.5 Ω (typical) at V_{CC} = 3.3 V
 - 6 Ω (typical) at V_{CC} = 5 V
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Switch current capability of 32 mA
- High noise immunity
- CMOS low power consumption
- TTL interface compatibility at 3.3 V
- Latch-up performance meets requirements of JESD 78 Class I
- Enable input accepts voltages up to 5.5 V
- Inputs accept voltages up to 5 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Ordering information

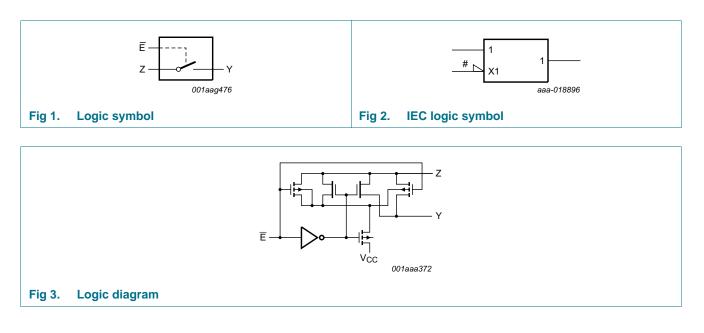
Table 1.Ordering information

Type number	Package									
	Temperature range	Name	Description	Version						
74LVC1G384GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1						
74LVC1G384GV	–40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753						
74LVC1G384GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886						

nexperia

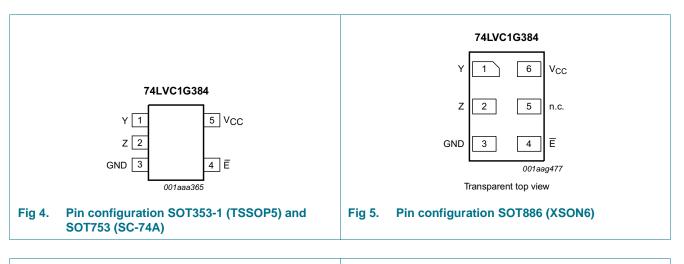
Bilateral switch

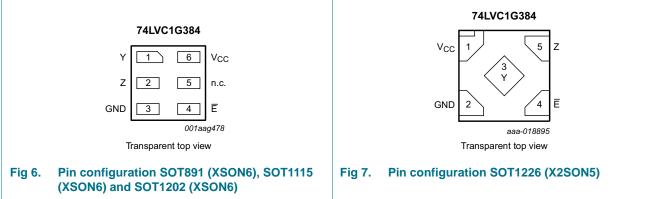
Type number	Package								
	Temperature range	Name	Description	Version					
74LVC1G384GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1 \times 0.5$ mm	SOT891					
74LVC1G384GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115					
74LVC1G384GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35$ mm	SOT1202					
74LVC1G384GX	–40 °C to +125 °C	X2SON5	X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body $0.8 \times 0.8 \times 0.35$ mm	SOT1226					


Table 1. Ordering information ...continued

4. Marking

Table 2. Marking	
Type number	Marking code ^[1]
74LVC1G384GW	YL
74LVC1G384GV	YL
74LVC1G384GM	YL
74LVC1G384GF	YL
74LVC1G384GN	YL
74LVC1G384GS	YL
74LVC1G384GX	YL


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Symbol	Pin	Pin			
	TSSOP5 and SC-74	XSON6	X2SON5		
Y	1	1	3	independent input or output	
Z	2	2	5	independent output or input	
GND	3	3	2	ground (0 V)	
E	4	4	4	enable input (active LOW)	
n.c.	-	5	-	not connected	
V _{CC}	5	6	1	supply voltage	

74LVC1G384 Product data sheet

7. Functional description

Table 4. F	Function	table ^[1]
------------	----------	----------------------

Input E	Switch
L	ON-state
Н	OFF-state

[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
VI	input voltage		<u>[1]</u>	-0.5	+6.5	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC} + 0.5$ V		-50	-	mA
I _{SK}	switch clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC} + 0.5$ V		-	±50	mA
V _{SW}	switch voltage	enable and disable mode	[2]	-0.5	V _{CC} + 0.5	V
I _{SW}	switch current	$V_{\rm SW}$ > –0.5 V or $V_{\rm SW}$ < V_{CC} + 0.5 V		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \circ C$ to +125 $\circ C$	[3]	-	250	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.

[3] For TSSOP5 and SC-74A packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 and X2SON5 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	supply voltage			1.65	-	5.5	V
VI	input voltage			0	-	5.5	V
V _{SW}	switch voltage		<u>[1]</u>	0	-	V _{CC}	V
T _{amb}	ambient temperature			-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and	V_{CC} = 1.65 V to 2.7 V		-	-	20	ns/V
	fall rate	V_{CC} = 2.7 V to 5.5 V		-	-	10	ns/V

Table 6. Recommended operating conditions

[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Y, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Y. In this case, there is no limit for the voltage drop across the switch.

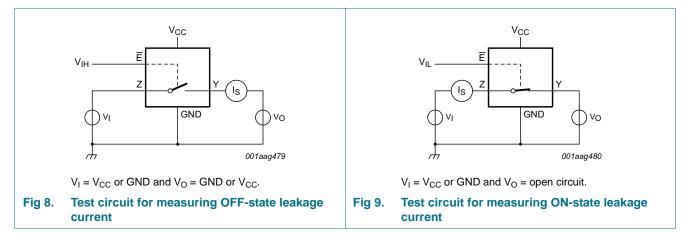
Product data sheet

Bilateral switch

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).


Symbol	Parameter	Conditions		-40 °	°C to +8	5 °C	–40 °C to	Unit	
				Min	Typ[1]	Max	Min	Max	-
VIH	HIGH-level	V _{CC} = 1.65 V to 1.95 V		$0.65V_{CC}$	-	-	0.65 V _{CC}	-	V
	input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.7	-	-	1.7	-	V
		V _{CC} = 2.7 V to 3.6 V		2.0	-	-	2.0	-	V
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		0.7V _{CC}	-	-	0.7V _{CC}	-	V
V _{IL}	LOW-level	V _{CC} = 1.65 V to 1.95 V		-	-	$0.35V_{CC}$	-	$0.35V_{CC}$	V
	input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	-	0.7	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V		-	-	0.8	-	0.8	V
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		-	-	$0.3V_{CC}$	-	0.3V _{CC}	V
l _l	input leakage current	pin \overline{E} ; V ₁ = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	[2]	-	±0.1	±1	-	±1	μA
I _{S(OFF)}	OFF-state leakage current	V _{CC} = 5.5 V; see <u>Figure 8</u>	[2]	-	±0.1	±0.2	-	±0.5	μΑ
I _{S(ON)}	ON-state leakage current	V _{CC} = 5.5 V; see <u>Figure 9</u>	[2]	-	±0.1	±1	-	±2	μΑ
I _{CC}	supply current	$V_{\rm I}$ = 5.5 V or GND; $V_{\rm SW}$ = GND or $V_{\rm CC};V_{\rm CC}$ = 1.65 V to 5.5 V	[2]	-	0.1	4	-	4	μΑ
ΔI_{CC}	additional supply current	pin \overline{E} ; V _I = V _{CC} – 0.6 V; V _{SW} = GND or V _{CC} ; V _{CC} = 5.5 V	[2]	-	5	500	-	500	μA
CI	input capacitance			-	2.0	-	-	-	pF
$C_{S(OFF)}$	OFF-state capacitance			-	5.0	-	-	-	pF
C _{S(ON)}	ON-state capacitance			-	9.5	-	-	-	pF

[1] All typical values are measured at T_{amb} = 25 °C.

[2] These typical values are measured at V_{CC} = 3.3 V.

Bilateral switch

10.1 Test circuits

10.2 ON resistance

Table 8.ON resistance

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 11 to Figure 16.

Symbol	Parameter	Conditions	-40	°C to +8	S5 ℃	–40 °C to	o +125 ℃	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	$V_I = GND$ to V_{CC} ; see <u>Figure 10</u>						
		I _{SW} = 4 mA; V _{CC} = 1.65 V to 1.95 V	-	34.0	130	-	195	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	12.0	30	-	45	Ω
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	10.4	25	-	38	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	7.8	20	-	30	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	6.2	15	-	23	Ω
R _{ON(rail)}	ON resistance (rail)	V _I = GND; see <u>Figure 10</u>						
		I _{SW} = 4 mA; V _{CC} = 1.65 V to 1.95 V	-	8.2	18	-	27	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	7.1	16	-	24	Ω
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	6.9	14	-	21	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	6.5	12	-	18	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	5.8	10	-	15	Ω
		$V_I = V_{CC}$; see <u>Figure 10</u>				-		
		I _{SW} = 4 mA; V _{CC} = 1.65 V to 1.95 V	-	10.4	30	-	45	Ω
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	7.6	20	-	30	Ω
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	7.0	18	-	27	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	6.1	15	-	23	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	4.9	10	-	15	Ω

Bilateral switch

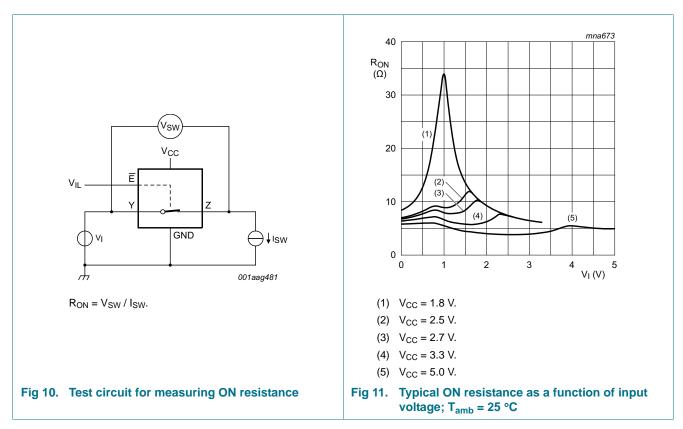
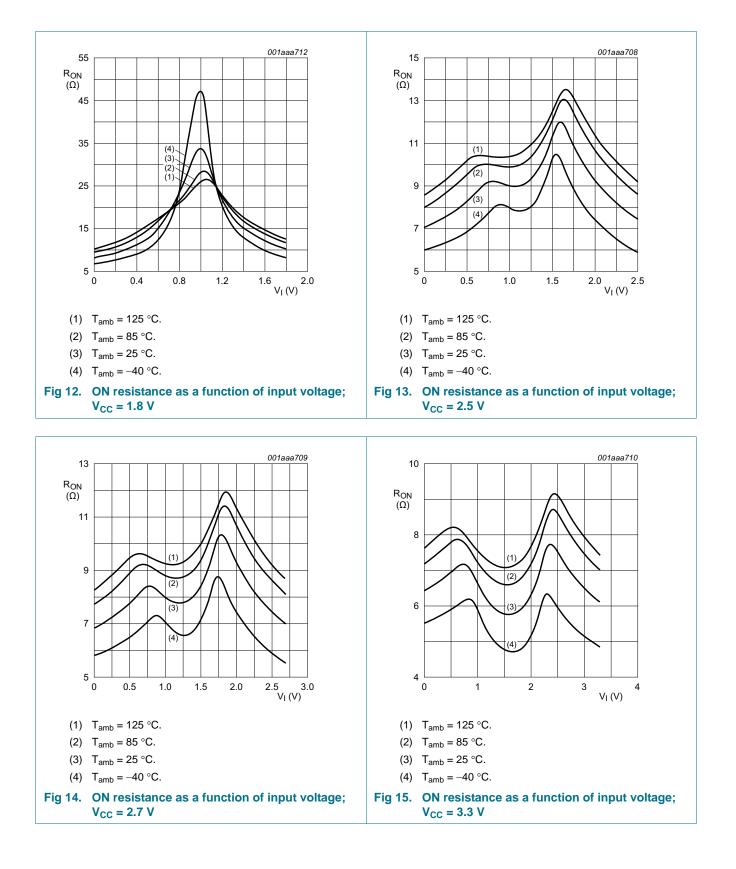

Symbol	Parameter	Conditions	–40 °C to +85 °C			–40 °C to	o +125 ℃	Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(flat)}	ON resistance	$V_{I} = GND \text{ to } V_{CC}$						
(flatness)	I _{SW} = 4 mA; V _{CC} = 1.65 V to 1.95 V	-	26.0	-	-	-	Ω	
		I_{SW} = 8 mA; V_{CC} = 2.3 V to 2.7 V	-	5.0	-	-	-	Ω
		I_{SW} = 12 mA; V_{CC} = 2.7 V	-	3.5	-	-	-	Ω
		I_{SW} = 24 mA; V_{CC} = 3 V to 3.6 V	-	2.0	-	-	-	Ω
		I_{SW} = 32 mA; V_{CC} = 4.5 V to 5.5 V	-	1.5	-	-	-	Ω

Table 8. **ON resistance** ... continued

ating conditions: voltages are referenced to GND (ground 0 V); for graphs see Figure 11 to Figure 16

[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC}.

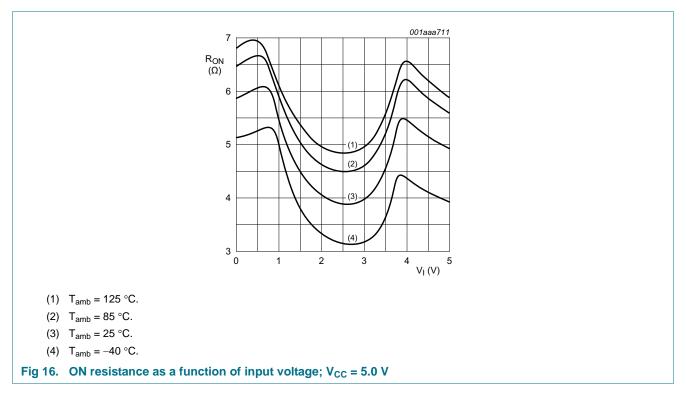
Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and [2] temperature.



10.3 ON resistance test circuit and graphs

Nexperia

74LVC1G384


Bilateral switch

Nexperia

74LVC1G384

Bilateral switch

11. Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 19.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	–40 °C to	• +125 °C	Unit
			Min	Typ[1]	Мах	Min	Max	
t _{pd}	propagation delay	Y to Z or Z to Y; see Figure 17 [2][3]						
		V _{CC} = 1.65 V to 1.95 V	-	0.8	2.0	-	3.0	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.4	1.2	-	2.0	ns
		V _{CC} = 2.7 V	-	0.4	1.0	-	1.5	ns
		V _{CC} = 3.0 V to 3.6 V	-	0.3	0.8	-	1.5	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	0.2	0.6	-	1.0	ns
t _{en}	enable time	E to Y or Z; see Figure 18[4]						
		V _{CC} = 1.65 V to 1.95 V	1.0	10.0	12.0	1.0	15.5	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.0	5.7	6.5	1.0	8.5	ns
		V _{CC} = 2.7 V	1.0	5.4	6.0	1.0	8.0	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	4.8	5.0	1.0	6.5	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	1.0	3.3	4.2	1.0	5.5	ns

Bilateral switch

Symbol	Parameter	Conditions		–40 °C to +85 °C			o +125 ℃	Unit
			Min	Typ[1]	Max	Min	Max	-
dis	disable time	E to Y or Z; see Figure 185						
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	1.0	7.4	10.0	1.0	13.0	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.0	4.1	6.9	1.0	9.0	ns
		$V_{CC} = 2.7 V$	1.0	4.9	7.5	1.0	9.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	5.4	6.5	1.0	8.5	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	1.0	3.6	5.0	1.0	6.5	ns
C _{PD}	power dissipation capacitance	$\begin{array}{ll} C_L = 50 \text{ pF}; \text{f}_i = 10 \text{ MHz}; \\ V_I = \text{GND to } V_{\text{CC}} \end{array} $,					
		$V_{CC} = 2.5 V$	-	13.7	-	-	-	pF
		V _{CC} = 3.3 V	-	15.2	-	-	-	pF
		V _{CC} = 5.0 V	-	18.3	-	-	-	pF

Table 9. Dynamic characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 19.

[1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC}.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).

- [4] t_{en} is the same as t_{PZH} and t_{PZL} .
- [5] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

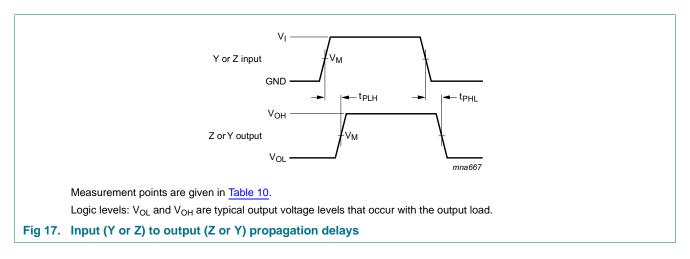
[6] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma\{(\mathsf{C}_{\mathsf{L}} + \mathsf{C}_{\mathsf{S}(\mathsf{ON})}) \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_o\} \text{ where:}$

 $f_i = input frequency in MHz;$

 $f_o = output frequency in MHz;$

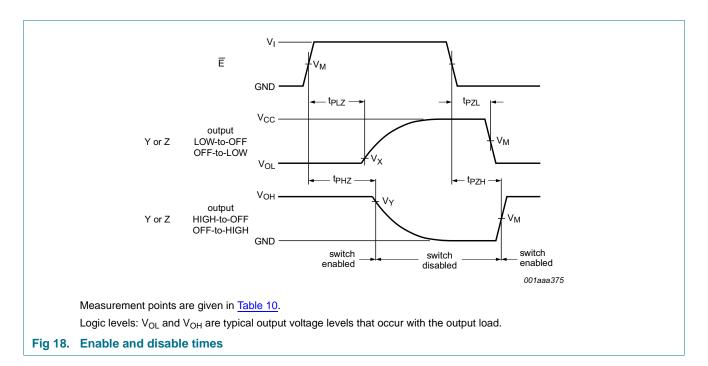
 C_L = output load capacitance in pF;


C_{S(ON)} = maximum ON-state switch capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 Σ {(C_L + C_{S(ON)}) × V_{CC}² × f_o} = sum of the outputs.


11.1 Waveforms and test circuit

Nexperia

74LVC1G384

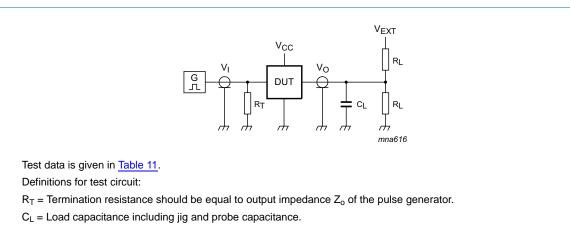

Bilateral switch

Table 10. Measurement points

Supply voltage Input		Output	Output				
V _{cc}	V _M	V _M	V _X	V _Y			
1.65 V to 1.95 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
2.3 V to 2.7 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V			
3.0 V to 3.6 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V			
4.5 V to 5.5 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V			

Bilateral switch

R_L = Load resistance.

V_{EXT} = External voltage for measuring switching times.

Fig 19. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Input	Input		Load		V _{EXT}		
V _{cc}	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open	GND	2V _{CC}	
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open	GND	2V _{CC}	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6 V	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND	6 V	
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open	GND	2V _{CC}	

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

At recommended operating conditions; typical values measured at $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD total harmonic distortion	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}; f_i = 1 \text{ kHz};$ see <u>Figure 20</u>					
	V _{CC} = 1.65 V	-	0.032	-	%	
	V _{CC} = 2.3 V	-	0.008	-	%	
	V _{CC} = 3.0 V	-	0.006	-	%	
	$V_{CC} = 4.5 V$	-	0.001	-	%	
	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}; f_i = 10 \text{ kHz};$ see Figure 20					
	V _{CC} = 1.65 V	-	0.068	-	%	
	V _{CC} = 2.3 V	-	0.009	-	%	
	V _{CC} = 3.0 V	-	0.008	-	%	
		$V_{CC} = 4.5 V$	-	0.006	-	%

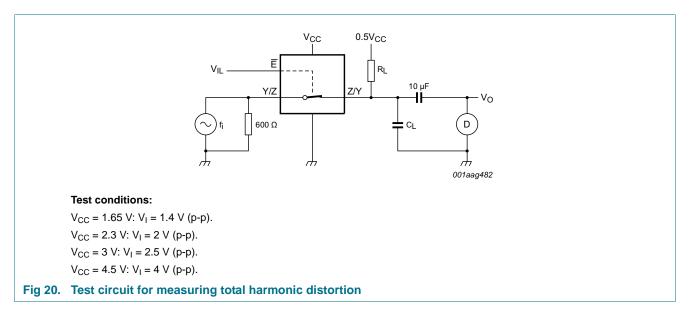
Bilateral switch

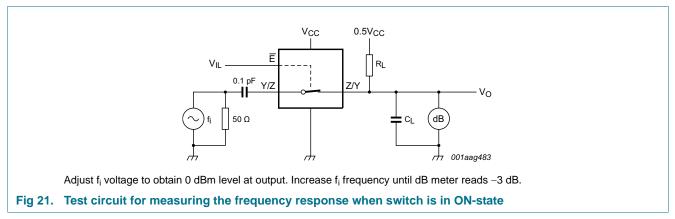
Table 12.	Additional	dynamic	characteristics	continued
-----------	------------	---------	-----------------	-----------

At recommended operating conditions; typical values measured at $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _(-3dB)	-3 dB frequency response	$R_L = 600 \Omega; C_L = 50 pF;$ see <u>Figure 21</u>				
		V _{CC} = 1.65 V	-	135	-	MHz
		$V_{CC} = 2.3 V$	-	145	-	MHz
		V _{CC} = 3.0 V	-	150	-	MHz
		$V_{CC} = 4.5 V$	-	155	-	MHz
		$R_L = 50 \Omega$; $C_L = 5 pF$; see Figure 21				
		V _{CC} = 1.65 V	-	> 500	-	MHz
		$V_{CC} = 2.3 V$	-	> 500	-	MHz
		V _{CC} = 3.0 V	-	> 500	-	MHz
		$V_{CC} = 4.5 V$	-	> 500	-	MHz
		$R_L = 50 \Omega$; $C_L = 10 pF$; see Figure 21				
		V _{CC} = 1.65 V	-	200	-	MHz
		V _{CC} = 2.3 V	-	350	-	MHz
		V _{CC} = 3.0 V	-	410	-	MHz
	$V_{CC} = 4.5 V$	-	440	-	MHz	
α_{iso} isolation (0	isolation (OFF-state)	$R_L = 600 \Omega$; $C_L = 50 pF$; $f_i = 1 MHz$; see <u>Figure 22</u>				
		V _{CC} = 1.65 V	-	-46	-	dB
		$V_{CC} = 2.3 V$	-	-46	-	dB
		V _{CC} = 3.0 V	-	-46	-	dB
		$V_{CC} = 4.5 V$	-	-46	-	dB
		$R_L = 50 \Omega; C_L = 5 pF; f_i = 1 MHz;$ see <u>Figure 22</u>				
		V _{CC} = 1.65 V	-	-37	-	dB
		$V_{CC} = 2.3 V$	-	-37	-	dB
		V _{CC} = 3.0 V	-	-37	-	dB
		$V_{CC} = 4.5 V$	-	-37	-	dB
V _{ct}	crosstalk voltage	between digital input and switch;				
		$ \begin{array}{l} R_{L} = 600 \; \Omega; \; C_{L} = 50 \; pF; \; f_{i} = 1 \; MHz; \\ t_{r} = t_{f} = 2 \; ns; \; see \; \underline{Figure \; 23} \end{array} $				
		V _{CC} = 1.65 V	-	69	-	mV
		V _{CC} = 2.3 V	-	87	-	mV
		V _{CC} = 3.0 V	-	156	-	mV
		V _{CC} = 4.5 V	-	302	-	mV

Rev. 7 — 7 December 2016

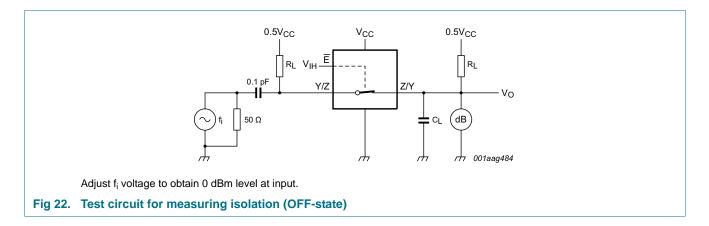

Bilateral switch

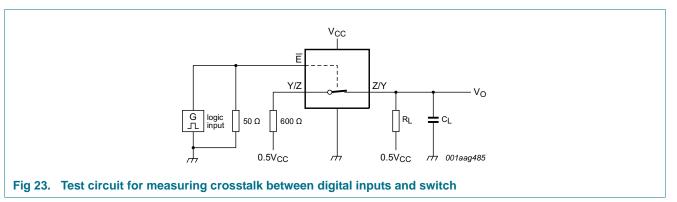

Table 12. Additional dynamic characteristics ...continued

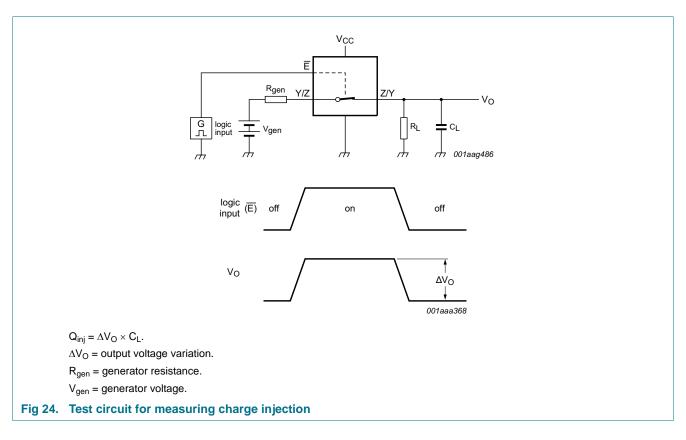
At recommended operating conditions; typical values measured at $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Q _{inj} charge injection	charge injection	$\begin{array}{l} C_L = 0.1 \text{ nF}; V_{gen} = 0 V; \text{R}_{gen} = 0 \Omega; \\ f_i = 1 \text{MHz}; \text{R}_L = 1 \text{M}\Omega; \text{ see} \\ \hline \\ \hline \begin{array}{c} \text{Section } 11 \end{array} \end{array}$				
	V _{CC} = 1.8 V	-	3.3	-	рС	
	V _{CC} = 2.5 V	-	4.1	-	рС	
		V _{CC} = 3.3 V	-	5.0	-	рС
		$V_{CC} = 4.5 V$	-	6.4	-	рС
	V _{CC} = 5.5 V	-	7.5	-	рС	

11.3 Test circuits

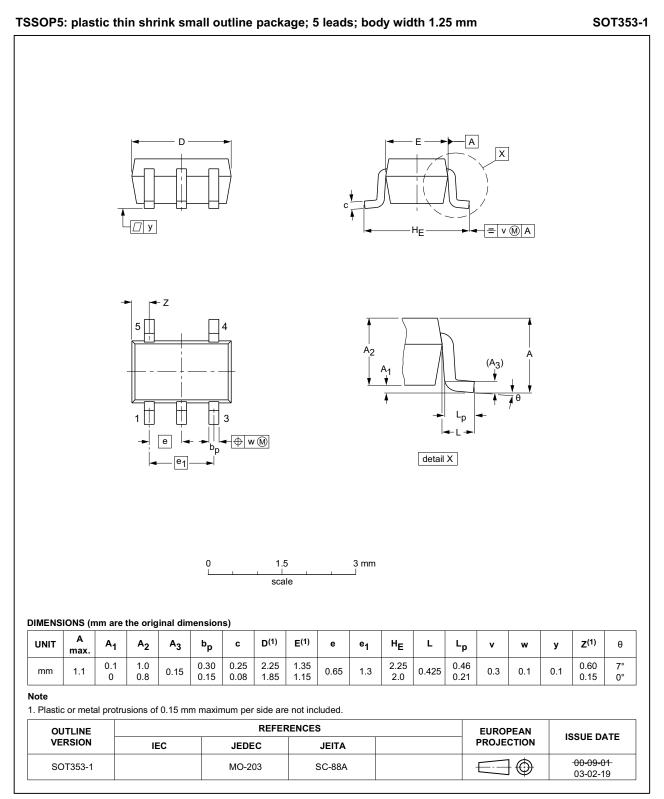



74LVC1G384 Product data sheet


Nexperia

74LVC1G384

Bilateral switch



Bilateral switch

12. Package outline

Fig 25. Package outline SOT353-1 (TSSOP5)

All information provided in this document is subject to legal disclaimers.

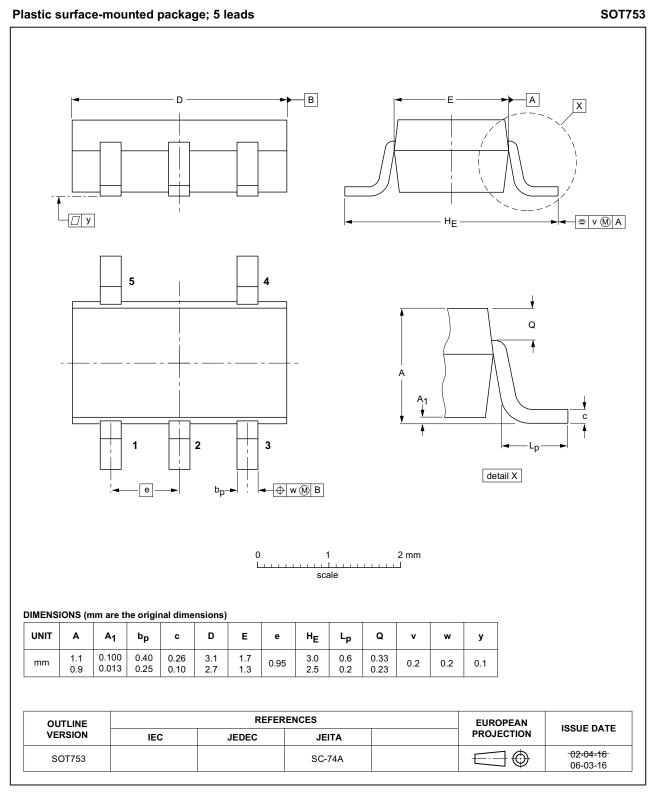
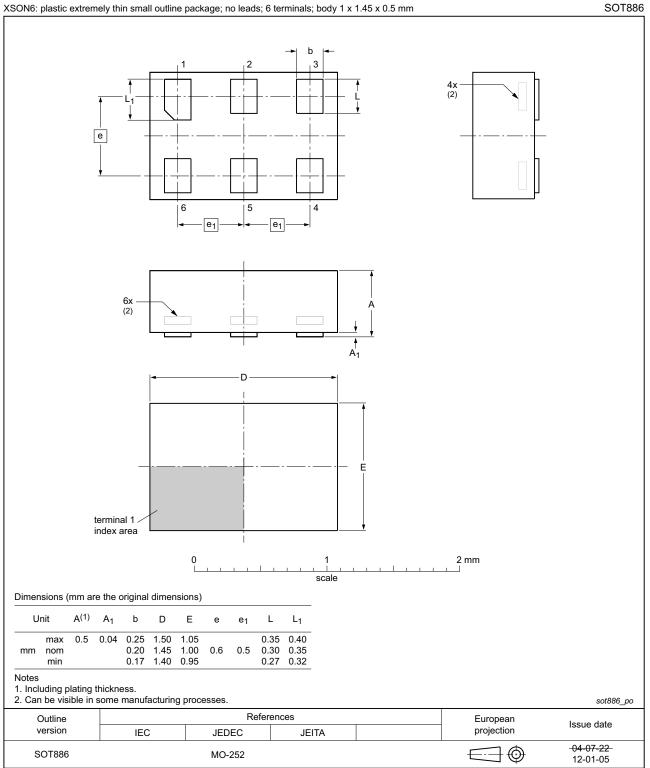



Fig 26. Package outline SOT753 (SC-74A)

XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm

Fig 27. Package outline SOT886 (XSON6)

All information provided in this document is subject to legal disclaimers.

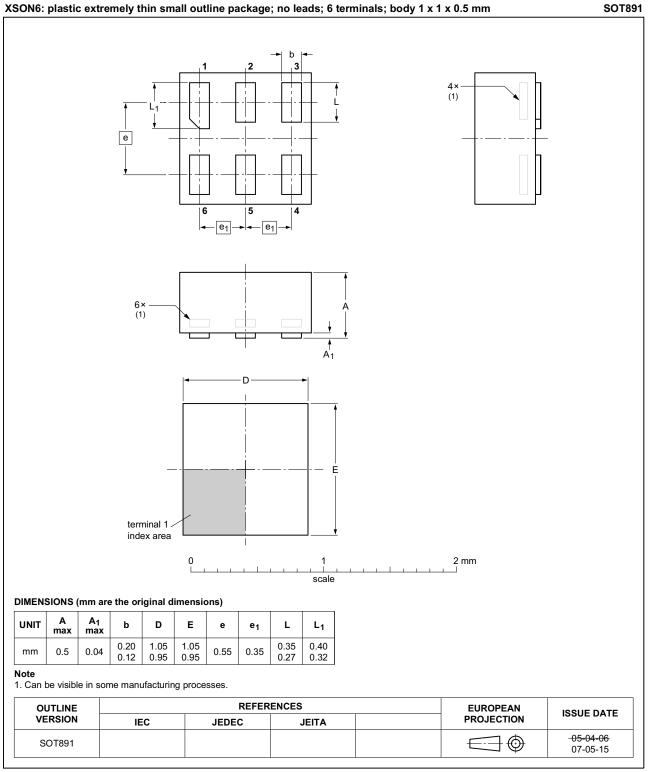
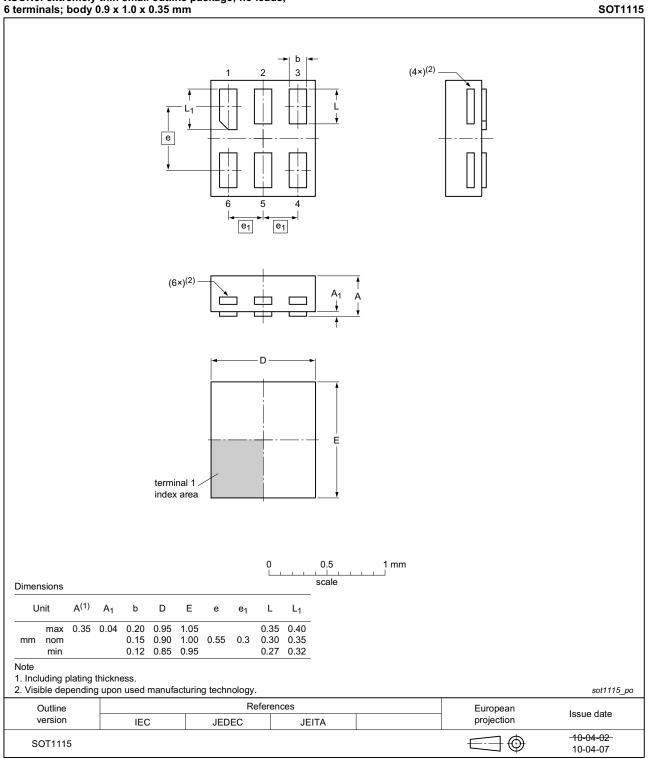
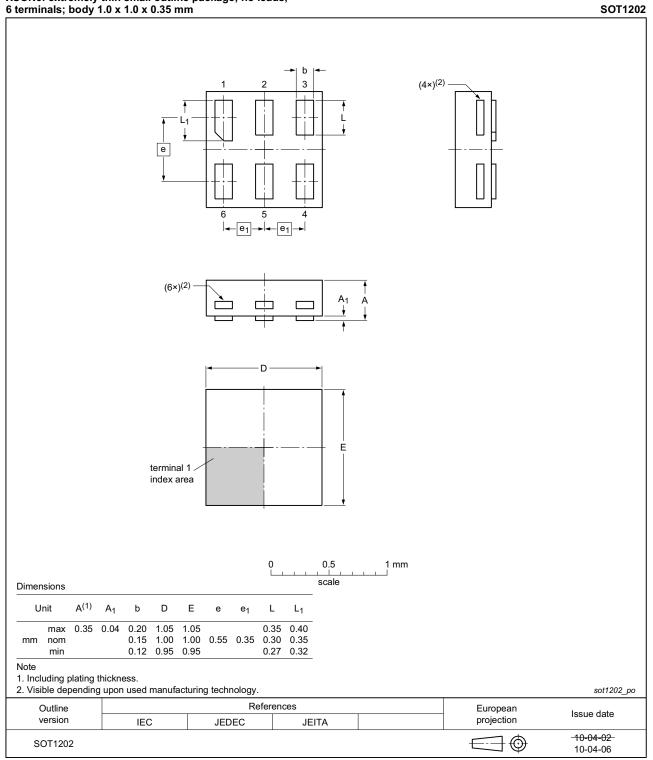



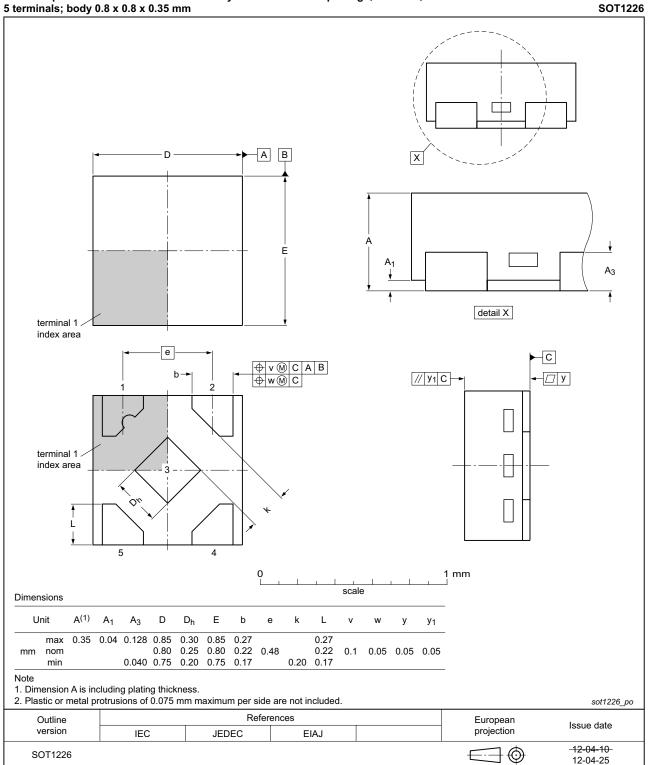
Fig 28. Package outline SOT891 (XSON6)


All information provided in this document is subject to legal disclaimers.

XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

Fig 29. Package outline SOT1115 (XSON6)

All information provided in this document is subject to legal disclaimers.



XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm

Fig 30. Package outline SOT1202 (XSON6)

All information provided in this document is subject to legal disclaimers.

74LVC1G384 Bilateral switch

X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 x 0.8 x 0.35 mm

Fig 31. Package outline SOT1226 (X2SON5)

All information provided in this document is subject to legal disclaimers.

13. Abbreviations

Table 13. Abbreviations				
Acronym	Description			
CMOS	Complementary Metal Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			
TTL	Transistor-Transistor Logic			

14. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74LVC1G384 v.7	20161207	Product data sheet	-	74LVC1G384 v.6	
Modifications:	• <u>Table 7</u> : The	e maximum limits for leaka	ge current and supply cu	rrent have changed.	
74LVC1G384 v.6	20150903	Product data sheet	-	74LVC1G384 v.5	
Modifications: • Added type number 74LVC1G384GX (SOT1226)					
74LVC1G384 v.5	20150115	Product data sheet	-	74LVC1G384 v.4	
Modifications:	• SOT886 (X	SON6) package outline dra	wing modified.		
74LVC1G384 v.4	20111206	Product data sheet	-	74LVC1G384 v.3	
Modifications:	 Legal pages 	s updated.			
74LVC1G384 v.3	20101103	Product data sheet	-	74LVC1G384 v.2	
74LVC1G384 v.2	20070829	Product data sheet	-	74LVC1G384 v.1	
74LVC1G384 v.1	20040226	Product data	-	-	

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

Nexperia

74LVC1G384

Bilateral switch

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: <u>http://www.nexperia.com</u>

For sales office addresses, please send an email to: <u>salesaddresses@nexperia.com</u>

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description 3
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
10.1	Test circuits 6
10.2	ON resistance 6
10.3	ON resistance test circuit and graphs7
11	Dynamic characteristics 9
11.1	Waveforms and test circuit 10
11.2	Additional dynamic characteristics 12
11.3	Test circuits 14
12	Package outline 16
13	Abbreviations 23
14	Revision history 23
15	Legal information 24
15.1	Data sheet status 24
15.2	Definitions
15.3	Disclaimers 24
15.4	Trademarks 25
16	Contact information 25
17	Contents

© Nexperia B.V. 2017. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 07 December 2016

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

 74LVC1G384GN,132
 74LVC1G384GS,132
 74LVC1G384GF,132
 74LVC1G384GM,115
 74LVC1G384GM,132

 74LVC1G384GV,125
 74LVC1G384GW,125
 74LVC1G384GXH
 74LVC1G384GXH
 74LVC1G384GXH