- Three Bidirectional Transceivers
- Driver Meets or Exceeds ANSI Standard EIA/TIA-422-B and RS-485 and ITU Recommendation V. 11
- Two Skew Limits Available
- Designed to Operate Up to 20 Million Data Transfers per Second (FAST-20 SCSI)
- High-Speed Advanced Low-Power Schottky Circuitry
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capacity ... $\pm 60 \mathrm{~mA}$
- Thermal Shutdown Protection
- Driver Positive- and Negative-Current Limiting
- Receiver Input Impedances ... $12 \mathrm{k} \Omega$ Min
- Receiver Input Sensitivity ... $\pm 300 \mathrm{mV}$ Max
- Receiver Input Hysteresis . . . 60 mV Typ
- Operate From a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection
- Feature Independent Direction Controls for Each Channel

description

The SN75ALS170 and SN75ALS170A triple differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. It is designed for balanced transmission lines and the driver meets ANSI Standards EIA/TIA-422-B and RS-485 and both the driver and receiver meet ITU Recommendation V.11. The SN75ALS170A is designed for FAST-20 SCSI and can transmit or receive data pulses as short as 30 ns with a maximum skew of 5 ns .

The SN75ALS170 and SN75ALS170A operate from a single 5-V power supply. The drivers and receivers have active-high and active-low enables, respectively, which are internally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus when the driver is disabled or $\mathrm{V}_{\mathrm{CC}}=0$. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The SN75ALS170 and the SN75ALS170A are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

SKEW LIMIT	PART NUMBER	
10 ns	SN75ALS170DW	SN75ALS170J
5 ns	SN75ALS170ADW	

Function Tables

EACH DRIVER

INPUT D	DIR	OUTPUTS	
		A	B
H	H	H	L
L	H	L	H
X	L	Z	Z

EACH RECEIVER

DIFFERENTIAL INPUTS $\mathbf{A}-\mathbf{B}$	DIR	OUTPUT \mathbf{R}
$\mathrm{V}_{\text {ID }} \geq 0.3 \mathrm{~V}$	L	H
$-0.3 \mathrm{~V}<\mathrm{V}_{\text {ID }}<0.3 \mathrm{~V}$	L	$?$
$\mathrm{~V}_{\text {ID }} \leq-0.3 \mathrm{~V}$	L	L
X	H	Z
Open	L	H

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, ? = indeterminate,
X = irrelevant, $\mathrm{Z}=$ high impedance (off)
logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW package.
logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, V_{CC} (see Note 1) .. 7 . 7
Voltage range at any bus terminal ... 7 V to 12 V

Continuous total power dissipation ... See Dissipation Rating Table

Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: DW package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 60 seconds: J package $300^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.
DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING
DW	1125 mW	9.0 mW/ ${ }^{\circ} \mathrm{C}$	720 mW
J	1025 mW	$8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	656 mW

recommended operating conditions

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

SN75ALS170, SN75ALS170A TRIPLE DIFFERENTIAL BUS TRANSCEIVER

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger		MIN	TYP \ddagger	MAX	UNIT	
V_{IK}	Input clamp voltage	II $=-19 \mathrm{~mA}$				-1.5	V	
V_{O}	Output voltage	$\mathrm{O}=0$		0		6	V	
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}=-55 \mathrm{~mA} \end{aligned}$	2.7			V	
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOL}=55 \mathrm{~mA} \end{aligned}$			1.7	V	
\| V ${ }_{\text {OD1 }}$ \|	Differential output voltage	$\mathrm{I}=0$		1.5		6	V	
\| VOD2		Differential output voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$,	See Figure 1	$\begin{gathered} 1 / 2 \mathrm{~V}_{\mathrm{OD}} 1 \\ \text { or } 2 \S \end{gathered}$			V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$,	See Figure 1	1.5	2.5	5	V	
VOD3	Differential output voltage	$\mathrm{V}_{\text {test }}=-7 \mathrm{~V}$ to 12 V ,	See Figure 2	1.5		5	V	
$\Delta\left\|\mathrm{V}_{\text {OD }}\right\|$	Change in magnitude of differential output voltage $\\|$	$\mathrm{R}_{\mathrm{L}}=540 \Omega$ or 100Ω,	See Figure 1			± 0.2	V	
VOC	Common-mode output voltage					3	V	
$\Delta\left\|\mathrm{V}_{\text {OC }}\right\|$	Change in magnitude of common-mode output voltage ${ }^{\text {I }}$					± 0.2	V	
Io	Output current	Output disabled,	$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$			1	mA	
		See Note 3	$\mathrm{V}_{\mathrm{O}}=-7 \mathrm{~V}$			-0.8		
${ }^{\text {IIH }}$	High-level input current	$\mathrm{V}_{1}=2.4 \mathrm{~V}$				20	$\mu \mathrm{A}$	
IIL	Low-level input current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-400	$\mu \mathrm{A}$	
Ios	Short-circuit output current	$\mathrm{V}_{\mathrm{O}}=-6 \mathrm{~V}$				-250	mA	
		$\mathrm{V}_{\mathrm{O}}=0$				-150		
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$				250		
		$\mathrm{V}_{\mathrm{O}}=8 \mathrm{~V}$				250		
ICC	Supply current	No load	Outputs enabled		69	90	mA	
			Outputs disabled		57	78		

\dagger The power-off measurement in ANSI Standard EIA/TIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ The minimum $\mathrm{V}_{\mathrm{OD} 2}$ with a $100-\Omega$ load is either $1 / 2 \mathrm{~V}_{\mathrm{OD} 1}$ or 2 V , whichever is greater.
$\mathbb{I}_{\Delta}\left|\mathrm{V}_{\mathrm{OD}}\right|$ and $\Delta\left|\mathrm{V}_{\mathrm{OC}}\right|$ are the changes in magnitude of V_{OD} and V_{OC} respectively, that occur when the input is changed from a high level to a low level.
NOTE 3: This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions. The EIA/TIA-422-B limit does not apply for a combined driver and receiver terminal.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{d}}(\mathrm{OD})$	Differential output delay time	ALS170	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=54 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \end{aligned}$	$C_{L}=50 \mathrm{pF},$ See Figure 3	3	8	13	ns
		ALS170A			5.5	8	10.5	
		ALS170	$\begin{aligned} & R_{L 1}=R_{L 3}=165 \Omega, \\ & C_{L}=60 \mathrm{pF}, \\ & \text { See Figure } 4 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L} 2}=75 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \end{aligned}$	3	8	13	
		ALS170A			5.5	8	10.5	
${ }_{\text {tsk }}(\mathrm{p})$	Pulse skew \ddagger		$\mathrm{R}_{\mathrm{L}}=54 \Omega,$ See Figure 3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,		1	5	ns
			$\begin{aligned} & \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 3}=165 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}, \end{aligned}$	$\mathrm{R}_{\mathrm{L} 2}=75 \Omega,$ See Figure 4		1	5	ns
${ }^{\text {tsk }}$ (lim)	Skew limit§	ALS170	$\mathrm{R}_{\mathrm{L}}=54 \Omega,$ See Figure 3	$C_{L}=50 \mathrm{pF}$,			10	ns
		ALS170A					5	
		ALS170	$\begin{aligned} & R_{L 1}=R_{L 3}=165 \Omega, \\ & C_{L}=60 p F, \end{aligned}$	$\mathrm{R}_{\mathrm{L} 2}=75 \Omega,$ See Figure 4			10	
		ALS170A					5	
${ }^{\text {t }}$ (OD)	Differential-output transition time		$\mathrm{R}_{\mathrm{L}}=54 \Omega,$ See Figure 3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	3	8	13	ns
			$\begin{aligned} & \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 3}=165 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}, \end{aligned}$	$R_{L 2}=75 \Omega$, See Figure 4	3	8	13	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Pulse skew is defined as the $\mid \mathrm{t}_{\mathrm{d}(\mathrm{ODH})^{-t} \mathrm{~d}(\mathrm{ODL}) \mid \text { of each channel. }}$
§ Skew limit is the maximum difference in propagation delay times between any two channels of one device and between any two devices. This parameter is applicable at one V_{CC} and operating temperature within the recommended operating conditions.

DATA SHEET PARAMETER	EIA/TIA-422-B	RS-485			
V_{O}	$\mathrm{V}_{\text {oa }}, \mathrm{V}_{\text {ob }}$	$\mathrm{V}_{\text {oa }}, \mathrm{V}_{\text {ob }}$			
\| $\mathrm{V}_{\text {OD1 }}$ \|	V_{O}	V_{O}			
\| VOD2		$\mathrm{V}_{\mathrm{t}}\left(\mathrm{R}_{\mathrm{L}}=100 \Omega\right)$	$\mathrm{V}_{\mathrm{t}}\left(\mathrm{R}_{\mathrm{L}}=54 \Omega\right)$		
\| VOD3			V_{t} (Test Termination Measurement 2)		
$\mathrm{V}_{\text {test }}$		$\mathrm{V}_{\text {tst }}$			
$\Delta\left\|\mathrm{V}_{\text {OD }}\right\|$	$\\| V_{t}\left\|-\left\|\bar{V}_{t}\right\|\right\|$	$\left\\|V_{t}\|-\| \bar{V}_{t}\right\\|$			
V_{OC}	$\left\|\mathrm{V}_{\text {OS }}\right\|$	$\left\|\mathrm{V}_{\text {os }}\right\|$			
$\Delta\left\|\mathrm{V}_{\mathrm{OC}}\right\|$	$\left\|\mathrm{V}_{\text {OS }}-\overline{\mathrm{V}}_{\text {os }}\right\|$	$\left\|\mathrm{V}_{\text {OS }}-\overline{\mathrm{V}}_{\text {OS }}\right\|$			
IOS	$\left\|I_{\text {sa }}\right\|,\left\|l_{\text {sb }}\right\|$				
IO	$\|\|l\| l a l\|,\left\|l_{\text {xb }}\right\|$	$\mathrm{l}_{\mathrm{ia}}, \mathrm{l}_{\text {l }}$			

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
$\mathrm{V}_{\text {IT }+}$	Positive-going input threshold voltage	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$,	$\mathrm{I} \mathrm{O}=-0.4 \mathrm{~mA}$			0.3	V
$\mathrm{V}_{\text {IT }-}$	Negative-going input threshold voltage	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{O}=8 \mathrm{~mA}$	-0.3 \ddagger			V
$V_{\text {hys }}$	Hysteresis voltage ($\mathrm{V}_{\text {IT }+}-\mathrm{V}_{\text {IT }-}$)				60		mV
$\mathrm{V}_{\text {IK }}$	Enable-input clamp voltage	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
VOH	High-level output voltage	$\mathrm{V}_{\mathrm{ID}}=300 \mathrm{mV},$ See Figure 5	$\mathrm{IOH}=-400 \mu \mathrm{~A}$,	2.7			V
V ${ }_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{ID}}=-300 \mathrm{mV},$ See Figure 5	$\mathrm{l} \mathrm{OL}=8 \mathrm{~mA}$,			0.45	V
IOZ	High-impedance-state output current	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-400	
1	Line input current	Other input $=0$, See Note 4	$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$			1	mA
			$\mathrm{V}_{\mathrm{I}}=-7 \mathrm{~V}$			-0.8	
$\mathrm{IIH}^{\text {H }}$	High-level enable-input current	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low-level enable-input current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				-100	$\mu \mathrm{A}$
r	Input resistance			12			$\mathrm{k} \Omega$
Ios	Short-circuit output current	$\mathrm{V}_{\mathrm{ID}}=300 \mathrm{mV}$,	$\mathrm{V}_{\mathrm{O}}=0$	-15		-85	mA
ICC	Supply current	No load	Outputs enabled		69	90	mA
			Outputs disabled		57	78	

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.
NOTE 4: This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature range

PARAMETER			TEST CONDITIONS	MIN	TYP \dagger MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level output	ALS170	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { See Figure } 6 \end{aligned}$	9	19	ns	
		ALS170A		11.5	16.5		
tPHL	Propagation delay time, high-to-low-level output	ALS170		9	19	ns	
		ALS170A		11.5	16.5		
${ }_{\text {tsk }}(\mathrm{p})$	Pulse skew§	ALS170	$\begin{aligned} & V_{I D}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \text { See Figure } 6 \end{aligned}$		26	ns	
		ALS170A			5		
${ }^{\text {tsk }}$ (lim)	Skew limit $\\|$	ALS170			10	ns	
		ALS170A			5		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Pulse skew is defined as the |tpLH-t ${ }^{-1}$ LHL of each channel.
I Skew limit is the maximum difference in propagation delay times between any two channels of one device and between any two devices. This parameter is applicable at one V_{CC} and operating temperature within the recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver V_{OD} and V_{OC}

Figure 2. Driver $\mathrm{V}_{\mathrm{OD} 3}$

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 3. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 4. Driver Test Circuit and Voltage Waveforms With Double-Differential-SCSI Termination for the Load

Figure 5. Receiver V_{OH} and V_{OL}

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 6. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 7
Figure 8

TYPICAL CHARACTERISTICS

Figure 9

RECEIVER
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE

Figure 11

RECEIVER
HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

Figure 10

RECEIVER
LOW-LEVEL OUTPUT VOLTAGE vs
LOW-LEVEL OUTPUT CURRENT

Figure 12

TYPICAL CHARACTERISTICS

Figure 13

RECEIVER OUTPUT VOLTAGE VS
ENABLE VOLTAGE

Figure 14

Figure 15

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

Figure 16. Typical Application Circuit

Figure 17. Typical Differential SCSI Application Circuit

APPLICATION INFORMATION

Figure 18. Typical Differential SCSI Bus Interface Implementation

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN75ALS170ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS170A	Samples
SN75ALS170ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS170A	Samples
SN75ALS170DW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS170	Samples
SN75ALS170DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS170	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. Tl may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
SN75ALS170ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN75ALS170DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75ALS170ADWR	SOIC	DW	20	2000	350.0	350.0	43.0
SN75ALS170DWR	SOIC	DW	20	2000	350.0	350.0	43.0

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

