MSA-0236

Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0236 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Avago's 10 GHz $\rm f_{T}, 25~GHz~f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.$

Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 2.7 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- · Cost Effective Ceramic Microstrip Package

36 micro-X Package

Typical Biasing Configuration

MSA-0236 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	60 mA				
Power Dissipation ^[2,3]	325 mW				
RF Input Power	+13 dBm				
Junction Temperature	150°C				
Storage Temperature ^[4]	−65 to 150°C				

Thermal Resistance ^[2,5] :	
$\theta_{\rm jc} = 145^{\circ}{ m C/W}$	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 6.9 mW/°C for $T_C > 153$ °C.
- 4. Storage above +150 $^{\circ}\mathrm{C}$ may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of $\theta_{\rm jc}$ than do alternate methods.

Electrical Specifications $^{[1]}$, $T_{A}=25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	11.5	12.5	13.5
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 1.6 GHz	dB		±0.6	±1.0
$f_{3 \text{ dB}}$	3 dB Bandwidth		GHz		2.7	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.2:1	
vswr -	Output VSWR	f = 0.1 to 3.0 GHz			1.4:1	
NF	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		4.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		17.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		125	
V_{d}	Device Voltage		V	4.5	5.0	5.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 18 to 40 mA. Typical performance as a function of current is on the following page.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0236-BLKG	100	Bulk		
MSA-0236-TR1G	1000	7" Reel		

.198

.211

.212

-2

-11

-24

Freq.	S ₁₁		S ₂₁		S ₁₂			S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.08	170	12.6	4.25	176	-18.6	.118	2	.16	-6
0.2	.08	163	12.5	4.23	171	-18.5	.119	2	.15	-10
0.4	.08	147	12.5	4.19	161	-18.4	.120	4	.15	-21
0.6	.08	130	12.4	4.14	152	-18.3	.121	4	.15	-30
0.8	.07	112	12.2	4.09	143	-18.1	.125	7	.15	-39
1.0	.07	91	12.1	4.02	134	-18.0	.126	10	.15	-46
1.5	.06	47	11.6	3.80	112	-17.3	.137	11	.13	-66
2.0	.03	-1	11.0	3.53	91	-16.3	.153	10	.11	-89
2.5	.03	-115	10.2	3.24	75	-15.4	.169	12	.09	-111
3.0	.09	-157	9.3	2.92	57	-15.1	.176	8	.08	-127
3.5	.16	-175	8.3	2.60	39	-14.4	.190	3	.09	-129

23

-6

-33

-14.1

-13.5

-13.5

MSA-0236 Typical Scattering Parameters (Z $_{\rm 0}$ = 50 Ω , T $_{\rm A}$ = 25 $^{\circ}$ C, I $_{\rm d}$ = 25 mA)

Typical Performance, $T_A = 25^{\circ}C$ (unless otherwise noted)

.20

.27

.41

173

136

94

7.2

5.2

3.2

2.29

1.81

1.44

4.0

5.0

6.0

Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 25 mA.

Figure 2. Device Current vs. Voltage.

.11

.15

.11

-118

-117

-148

Figure 3. Power Gain vs. Current.

Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. **Mounting Surface Temperature,** $f = 1.0 \text{ GHz}, I_d = 25 \text{ mA}.$

Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

Figure 6. Noise Figure vs. Frequency.

36 micro-X Package Dimensions

Notes:

- 1. Dimensions are in millimeters (inches)
- 2. Tolerances: in .xxx = \pm 0.005 mm .xx = \pm 0.13