FEATURES:

- Phase-Lock Loop Clock Distribution
- 10 MHz to 133 MHz operating frequency
- Distributes one clock input to one bank of five outputs
- Zero Input-Output Delay
- Output Skew < 250ps
- Low jitter <200 ps cycle-to-cycle
- IDT2305A-1 for Standard Drive
- IDT2305A-1H for High Drive
- No external RC network required
- Operates at 3.3V VDD
- Power down mode
- Available in SOIC package

DESCRIPTION:

The IDT2305A is a high-speed phase-lock loop (PLL) clock buffer, designed to address high-speed clock distribution applications. The zero delay is achieved by aligning the phase between the incoming clock and the output clock, operable within the range of 10 to 133 MHz .

The IDT2305A is an 8-pin version of the IDT2309A. IDT2305A accepts one reference input, and drives out five low skew clocks. The -1H version of this device operates up to 133 MHz frequency and has a higher drive than the-1 device. All parts have on-chip PLLs which lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad. In the absence of an input clock, the IDT2305A enters power down. In this mode, the device will draw less than $12 \mu \mathrm{~A}$ for Commercial Temperature range and less than $25 \mu \mathrm{~A}$ for Industrial temperature range, the outputs are tri-stated, and the PLL is not running, resulting in a significant reduction of power.

The IDT2305A is characterized for both Industrial and Commercial operation.

FUNCTIONALBLOCKDIAGRAM

PINCONFIGURATION

SOIC TOP VIEW

APPLICATIONS:

- SDRAM
- Telecom
- Datacom
- PC Motherboards/Workstations
- Critical Path Delay Designs

ABSOLUTE MAXIMUMRATINGS ${ }^{(1)}$

Symbol	Rating	Max.	Unit
VDD	Supply Voltage Range	-0.5 to +4.6	V
$\mathrm{V}_{1}{ }^{(2)}$	InputVoltage Range(REF)	$-0.5 \mathrm{to}+5.5$	V
VI	InputVoltage Range (except REF)	$\begin{gathered} \hline-0.5 \text { to } \\ \text { VDD+0.5 } \end{gathered}$	V
IIK (V1 < 0)	InputClamp Current	-50	mA
10 (Vo = 0 to VDD)	Continuous Output Current	± 50	mA
VdD or GND	ContinuousCurrent	± 100	mA
$\begin{aligned} & \hline \mathrm{TA}_{\mathrm{A}}=55^{\circ} \mathrm{C} \\ & \text { (in still air) } \end{aligned}$	Maximum Power Dissipation	0.7	W
Tstg	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	Commercial Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Operating Temperature	Industrial Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed
3. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils.

PIN DESCRIPTION

Pin Name	Pin Number	Type	
REF	1	IN	Inputreference clock,5 Volt tolerantinput
CLK2 ${ }^{(1)}$	2	Out	Output clock
CLK1 ${ }^{(1)}$	3	Out	Outputclock
GND	4	Ground	Ground
CLK3 ${ }^{(1)}$	5	Out	Output clock
VDD	6	PWR	$3.3 V$ Supply
CLK4 $^{(1)}$	7	Out	Outputclock
CLKOUT $^{(1)}$	8	Out	Outputclock, internal feedback on this pin

NOTES:

1. Weak pull down on all outputs.

OPERATING CONDITIONS-COMMERCIAL

Symbol	Parameter	Min.	Max.	Unit
VDD	Supply Voltage	3	3.6	V
TA	Operating Temperature(AmbientTemperature)	0	70	${ }^{\circ} \mathrm{C}$
CL	Load Capacitance $<100 \mathrm{MHz}$	-	30	pF
	Load Capacitance $100 \mathrm{MHz}-133 \mathrm{MHz}$	-	10	
CIN	InputCapacitance	-	7	pF

DCELECTRICALCHARACTERISTICS-COMMERCIAL

SWITCHING CHARACTERISTICS(2305A-1)-COMMERCIAL ${ }^{(1,2)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t1	OutputFrequency	10pFLoad	10	-	133	MHz
		30pFLoad	10	-	100	
	Duty Cycle $=\mathrm{t} 2 \div \mathrm{t} 1$	Measured at 1.4V, Fout $=66.66 \mathrm{MHz}$	40	50	60	\%
t3	Rise Time	Measured between 0.8 V and 2 V	-	-	2.5	ns
t_{4}	Fall Time	Measured between 0.8 V and 2 V	-	-	2.5	ns
t5	Outputto OutputSkew	All outputs equally loaded	-	-	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	Measuredat Vdd/2	-	0	± 350	ps
t	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	-	0	700	ps
tJ	Cycle-to-Cycle Jitter, pk - pk	Measured at54-81MHz, loaded outputs	-	-	170	ps
		Otherfrequencies, loaded outputs			200	ps
tLOCK	PLLLock Time	Stable power supply, valid clock presented on REF pin	-	-	1	ms

NOTES:

1. REF Input has a threshold voltage of $\mathrm{V} \mathrm{DD} / 2$.
2. All parameters specified with loaded outputs.

SWITCHING CHARACTERISTICS (2305A-1H) - COMMERCIAL

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t1	OutputFrequency	10pFLoad	10	-	133	MHz
		30pFLoad	10	-	100	
	Duty Cycle $=\mathrm{t} 2 \div \mathrm{t} 1$	Measured at 1.4V, Fout $=66.66 \mathrm{MHz}$	40	50	60	\%
	Duty Cycle $=\mathrm{t} 2 \div \mathrm{t} 1$	Measured at 1.4V, Fout < 50 MHz	45	50	55	\%
t3	Rise Time	Measured between 0.8 V and 2 V	-	-	1.5	ns
${ }_{4}$	Fall Time	Measured between 0.8 V and 2 V	-	-	1.5	ns
t5	Outputto Output Skew	All outputs equally loaded	-	-	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at Vdd/2	-	0	± 350	ps
¢	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	-	0	700	ps
t8	OutputSlew Rate	Measured between 0.8 V and 2 V using Test Circuit\#2	1	-	-	V/ns
ts	Cycle-to-Cycle Jitter, pk - pk	Measured at $54-81 \mathrm{MHz}$, loaded outputs	-	-	170	ps
		Otherfrequencies, loaded outputs			200	ps
tıock	PLL Lock Time	Stable power supply, valid clock presented on REF pin	-	-	1	ms

NOTES:

1. REF Input has a threshold voltage of $\mathrm{VDD} / 2$.
2. All parameters specified with loaded outputs.

OPERATING CONDITIONS-INDUSTRIAL

Symbol	Parameter	Min.	Max.	Unit
VDD	Supply Voltage	3	3.6	V
TA	Operating Temperature(AmbientTemperature)	-40	+85	${ }^{\circ} \mathrm{C}$
CL	Load Capacitance $<100 \mathrm{MHz}$	-	30	pF
	Load Capacitance $100 \mathrm{MHz}-133 \mathrm{MHz}$	-	10	
	InputCapacitance	-	7	pF

DCELECTRICALCHARACTERISTICS-INDUSTRIAL

Symbol	Parameter	Conditions		Min.	Max.	Unit
VIL	InputLOWVoltage Level			-	0.8	V
VIH	Input HIGH Voltage Level			2	-	V
ILL	InputLOW Current	VIN $=0 \mathrm{~V}$		-	50	$\mu \mathrm{A}$
11 H	Input HIGH Current	VIN = Vdd		-	100	$\mu \mathrm{A}$
VoL	OutputLOWVoltage	Standard Drive	$\mathrm{IoL}=8 \mathrm{~mA}$	-	0.4	V
		High Drive	$\mathrm{loL}=12 \mathrm{~mA}(-1 \mathrm{H})$			
Voh	Output HIGH Voltage	Standard Drive	$\mathrm{IOH}=-8 \mathrm{~mA}$	2.4	-	V
		High Drive	$\mathrm{IOH}=-12 \mathrm{~mA}(-1 \mathrm{H})$			
IDD_PD	Power Down Current	REF $=0 \mathrm{MHz}$		-	25	$\mu \mathrm{A}$
IDD	Supply Current	Unloaded Outputs at 66.66MHz		-	35	mA

SWITCHING CHARACTERISTICS (2305A-1) - INDUSTRIAL
$(1,2)$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\dagger 1$	OutputFrequency	10pFLoad	10	-	133	MHz
		30pFLoad	10	-	100	
	Duty Cycle $=\mathrm{t} 2 \div \mathrm{t} 1$	Measured at 1.4V, Fout $=66.66 \mathrm{MHz}$	40	50	60	\%
t3	Rise Time	Measured between 0.8 V and 2 V	-	-	2.5	ns
$t 4$	Fall Time	Measured between 0.8 V and 2 V	-	-	2.5	ns
t5	Outputto OutputSkew	All outputs equally loaded	-	-	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	MeasuredatVdD/2	-	0	± 350	ps
t	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	-	0	700	ps
ts	Cycle-to-Cycle Jitter, pk - pk	Measured at $54-81 \mathrm{MHz}$, loaded outputs	-	-	170	ps
		Otherfrequencies, loaded outputs			200	ps
tlock	PLL Lock Time	Stable power supply, valid clock presented on REF pin	-	-	1	ms

NOTES:

1. REF Input has a threshold voltage of $\mathrm{VDD} / 2$.
2. All parameters specified with loaded outputs.

SWITCHING CHARACTERISTICS (2305A-1H) - INDUSTRIAL ${ }^{(1,2)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t1	OutputFrequency	10pFLoad	10	-	133	MHz
		30pFLoad	10	-	100	
	Duty Cycle $=$ t2 \div t1	Measured at 1.4V, Fout $=66.66 \mathrm{MHz}$	40	50	60	\%
	Duty Cycle $=$ t2 \div t1	Measured at 1.4 V , Fout $<50 \mathrm{MHz}$	45	50	55	\%
t3	Rise Time	Measured between 0.8 V and 2 V	-	-	1.5	ns
${ }_{4}$	Fall Time	Measured between 0.8 V and 2 V	-	-	1.5	ns
t5	Outputto Output Skew	All outputs equally loaded	-	-	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at Vdd/2	-	0	± 350	ps
t	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	-	0	700	ps
t8	OutputSlew Rate	Measured between 0.8 V and 2 V using Test Circuit \#2	1	-	-	V/ns
t	Cycle-to-Cycle Jitter, pk - pk	Measured at $54-81 \mathrm{MHz}$, loaded outputs	-	-	170	ps
		Otherfrequencies, loaded outputs			200	ps
tıock	PLL Lock Time	Stable power supply, valid clock presented on REF pin	-	-	1	ms

NOTES:

1. REF Input has a threshold voltage of $\mathrm{VDD} / 2$.
2. All parameters specified with loaded outputs.

ZERO DELAY AND SKEW CONTROL

All outputs should be uniformly loaded in order to achieve Zero I/O Delay. Since the CLKOUT pin is the internal feedback for the PLL, its relative loading can affect and adjust the input/output delay.

For designs utilizing zero I/O Delay, all outputs including CLKOUT must be equally loaded. Even if the output is not used, it must have a capacitive load equal to that on the other outputs in order to obtain true zero I/O Delay. If/O Delay adjustments are needed, use the Output Load Difference diagram to calculate loading differences between the CLKOUT pin and other outputs. For zero output-to-output skew, all outputs must be loaded equally.

SWITCHINGWAVEFORMS

Duty Cycle Timing

All Outputs Rise/Fall Time

TESTCIRCUITS

Test Circuit 2 (t8, Output Slew Rate On -1H Devices)

ORDERINGINFORMATION

Blank \quad Commercial ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)
I Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

DCG SOIC - Green

2305A-1
2305A-1H Zero Delay Clock Buffer with High Drive

Ordering Code	Opackage Type	Operating Range
2305A-1DCG8 (tapeandreel)	8-Pin SOIC	Commercial
2305A-1DCG	8-Pin SOIC	Commercial
2305A-1DCGI	8-Pin SOIC	Industrial
2305A-1DCGI8 (tapeandreel)	8-Pin SOIC	Industrial
2305A-1HDCG8(tape and reel)	8-Pin SOIC	Commercial
2305A-1HDCG	8-Pin SOIC	Commercial
2305A-1HDCGI	8-Pin SOIC	Industrial
2305A-1HDCGI8(tapeand reel)	8-Pin SOIC	Industrial

G denotes Pb-free, RoHS complaint package; "8" denotes tape and reel

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
clockhelp@idt.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

IDT (Integrated Device Technology):
2305A-1DCGI8 2305A-1DCG 2305A-1DCG8 2305A-1HDCG8 2305A-1HDCGI8 2305A-1HDCGI 2305A-1DCGI 2305A-1HDCG

