
Adafruit Sharp Memory Display Breakout
Created by Bill Earl

Last updated on 2020-05-18 09:41:20 PM EDT

Overview

The 1.3" SHARP Memory LCD display is a cross between an eInk (e-paper) display and an LCD. It has the ultra-low
power usage of eInk and the fast-refresh rates of an LCD. This model has a matt silver background, and pixels show up
as little mirrors for a silver-reflective display, a really beautiful and unique look. It does not have a backlight, but it is
daylight readable. For dark/night reading you may need to illuminate the LCD area with external LEDs.

The display is 3V powered and 3V logic, so we placed it on a fully assembled & tested breakout board with a 3V
regulator and level shifting circuitry. The display slots into a ZIF socket on board and we use a piece of double-sided
tape to adhere it onto one side. There are four mounting holes so you can easily attach it to a box.

The display is 'write only' which means that it only needs 3 pins to send data. The downside of a write-only display is
that the entire memory must be buffered by the microcontroller driver.

If you have one of the older 96x96 pixel versions, then 96x96 bits = 1,152 bytes. On an Arduino Uno/Leonardo that's
half the RAM available and so it might not be possible to run this display with other RAM-heavy libraries like SD
interfacing.

If you have one of the newer 168x144 pixel versions, then 168x144 bits = 3,024 bytes. That won't fit on an Arduino Uno
or Leonardo! You must use a chip with more RAM like a Metro or Feather M0 or ESP8266.

The Sharp Memory Display breakout board ships with optional headers for use in a breadboard.

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 3 of 27

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 4 of 27

Assembly and Wiring

The display and support circuitry come pre-assembled and fully tested on a handy breakout board. For use in a
breadboard, you will want to install the included 0.1" header strip:

Installing the Header:

Position the header
Trim the header to length if necessary and place it long

pins down in your breadboard.

Position the display
Place the Sharp Memory Display over the pins on the

breadboard.

Solder!

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 5 of 27

https://learn.adafruit.com/assets/9073
https://learn.adafruit.com/assets/9085
https://learn.adafruit.com/assets/9074

Solder each pin to assure good electrical conductivity.

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 6 of 27

https://learn.adafruit.com/assets/9075
https://learn.adafruit.com/assets/9076

Remove the Protective Film
After soldering is complete. Gently peel the film from the

display.

Wiring to the Arduino:

This display can be driven with only 3 pins. Any pins can be used. The wiring we show here uses pins 10, 11 and 13 for
compatibility with the library example code.

Microcontroller GND to LCD Gnd

Microcontroller 5V to LCD Vin

Microcontroller D13 to LCD Clk

Microcontroller D11 to LCD DI

Microcontroller D10 to LCD CS

For the 144x168 Sharp Memory Display, you will need a microprocessor with more memory than the Uno such
as the Arduino Mega, Metro M0 or Metro M4�

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 7 of 27

https://learn.adafruit.com/assets/9077
https://learn.adafruit.com/assets/9078
https://learn.adafruit.com/assets/83335

https://adafru.it/GBd

https://adafru.it/GBd

The other wires are optional, and connect directly to the Memory Display for more advanced uses. Check the raw
display datasheet (in the downloads area) for details.

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 8 of 27

https://cdn-learn.adafruit.com/assets/assets/000/083/343/original/arduino-wiring.fzz?1572560338

Programming

Download the Libraries

To use the Sharp Memory Display with your Arduino, you will need to download and install 2 libraries:

Sharp Memory Display Library (https://adafru.it/cgJ)
Adafruit GFX Library (https://adafru.it/aJa)
Adafruit BusIO Library (https://adafru.it/GxD)

For details on how to install libraries, see this guide: All About Arduino Libraries (https://adafru.it/aYM).

Run the Example Code

Once your libraries are installed, open the Arduino IDE and select:

File->Examples->Adafruit_SHARP_Memory_Display->sharpmemtest

Upload the example code to your Arduino and you should see the test graphics drawn on the screen.

Programming GFX Graphics
The Sharp Memory Display is part of the growing family of Adafruit graphical displays that use the Adafruit GFX Library.
This library lets you use a common set of graphical drawing functions on a whole variety of displays including.LED
matrices, OLEDs, TFT LCDs, eInk and the Sharp Memory Display!

For more details about programming with GFX, see our Adafruit GFX Graphics Library Guide (https://adafru.it/aPx).

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 9 of 27

https://github.com/adafruit/Adafruit_SHARP_Memory_Display
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit_BusIO
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-gfx-graphics-library

CircuitPython Wiring

It's easy to use the Sharp Memory Display with CircuitPython and the Adafruit CircuitPython
SharpMemoryDisplay (https://adafru.it/GBn) module. This module allows you to easily write Python code to control the
display.

You can use this display with any CircuitPython microcontroller board or with a computer that has GPIO and
Python thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility library (https://adafru.it/BSN).

We'll cover how to wire the display to your CircuitPython microcontroller board. First assemble your Sharp Display.

We're going to show you how to wire it up to a Feather M4 Express. Because the logic levels on a Feather M4 Express
are already 3.3v, you don't need a logic level shifter.

Connect the display to your microcontroller board as shown below.

Microcontroller GND to LCD Gnd

Microcontroller 3V to LCD Vin

Microcontroller SCK to LCD Clk

Microcontroller MOSI to LCD DI

Microcontroller D6 to LCD CS

https://adafru.it/GBo

https://adafru.it/GBo

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 10 of 27

https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/assets/83251
https://cdn-learn.adafruit.com/assets/assets/000/083/344/original/circuitpython-wiring.fzz?1572560361

CircuitPython Setup

CircuitPython Installation of SharpMemoryDisplay Library

To use the Sharp Memory Display with your Adafruit CircuitPython board you'll need to install the Adafruit
CircuitPython SharpMemoryDisplay (https://adafru.it/GBn) module on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these
libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our CircuitPython starter guide has a great
page on how to install the library bundle (https://adafru.it/ABU).

If you choose, you can manually install the libraries individually on your board:

adafruit_sharpmemorydisplay
adafruit_framebuf

Before continuing make sure your board's lib folder or root filesystem has the adafruit_sharpmemorydisplay.mpy
and adafruit_framebuf.mpy files copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 11 of 27

https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

CircuitPython Usage

It's easy to use the Sharp Memory Display with CircuitPython and the Adafruit CircuitPython
SharpMemoryDisplay (https://adafru.it/GBn) module. This module allows you to easily write Python code to control the
display.

You can use this display with any CircuitPython microcontroller board.

To demonstrate the usage, we'll initialize the library and use Python code to control the LCD from the board's Python
REPL.

Initialization

First need to initialize the SPI bus. To do that, run the following commands:

import board
import busio
import digitalio
import adafruit_sharpmemorydisplay

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
scs = digitalio.DigitalInOut(board.D6) # inverted chip select

display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 144, 168)

The last three parameters to the initializer are the pins connected to the display's CS line, width and height in that
order. Again make sure to use the right pin names as you have wired up to your board!

Drawing

The SharpMemoryDisplay module currently supports a basic set of commands to draw on the display. You can set
individual pixels, fill the screen, and write lines of text.

To fill or clear the entire screen use the fill function. This function takes a parameter which specifies the color to fill

with, either 0 for black or 1 for white. For example to fill the screen black:

display.fill(0)
display.show()

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 12 of 27

https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay

Notice the fill function doesn't actually change the display. You must call show after making drawing commands to

send the updated pixel data to the display!

To clear the screen to white just call fill again but with the color 1 :

display.fill(1)
display.show()

To set a pixel use the pixel function. This function takes the following parameters:

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 13 of 27

Pixel X position
Pixel Y position
Pixel color (0 = black, 1 = white)

For example to set the pixel at (10, 10) black:

display.pixel(10, 10, 0)
display.show()

Try setting other pixels white by changing the X and Y position. Remember you have to
call show (https://adafru.it/Dvz) after setting pixels to see them appear!

Text

To write text to your display, you must download a font file and copy it to your CIRCUITPY drive. Click the button below
to download the file, and then copy font5x8.bin to your CIRCUITPY drive.

https://adafru.it/DvA

https://adafru.it/DvA

You can write a line of text with the text function. This function takes the following parameters:

String of text
Text X position
Text Y position
Text color (0 = black, 1 = white)

For example to clear the screen and then write two lines of text:

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 14 of 27

https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/blob/master/examples/simpletest.py
https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/master/examples/font5x8.bin

display.fill(1)
display.text('Hello', 0, 0, 0)
display.text('World', 0, 10, 0)
display.show()

Notice the second line of text starts at Y position 10 , this moves it down the display 10 pixels so it's below the first line

of text. The font used by the text function is 8 pixels tall so a size of 10 gives a bit of room between the lines.

That's all there is to drawing on the Sharp Memory Display with CircuitPython! The drawing functions are basic but
provide building blocks for more advanced usage. For example you can display text with sensor readings or other
state, or even program a simple game like pong!

Full Example Code

import time
import board
import busio
import digitalio

import adafruit_sharpmemorydisplay

Initialize SPI bus and control pins
spi = busio.SPI(board.SCK, MOSI=board.MOSI)
scs = digitalio.DigitalInOut(board.D6) # inverted chip select

pass in the display size, width and height, as well
display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 96, 96)
display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 144, 168)

print("Pixel test")

Clear the display. Always call show after changing pixels to make the display

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 15 of 27

Clear the display. Always call show after changing pixels to make the display
update visible!
display.fill(1)
display.show()

Set a pixel in the origin 0,0 position.
display.pixel(0, 0, 0)
Set a pixel in the middle position.
display.pixel(display.width // 2, display.width // 2, 0)
Set a pixel in the opposite corner position.
display.pixel(display.width - 1, display.height - 1, 0)
display.show()
time.sleep(2)

print("Lines test")
we'll draw from corner to corner, lets define all the pair coordinates here
corners = (
 (0, 0),
 (0, display.height - 1),
 (display.width - 1, 0),
 (display.width - 1, display.height - 1),
)

display.fill(1)
for corner_from in corners:
 for corner_to in corners:
 display.line(corner_from[0], corner_from[1], corner_to[0], corner_to[1], 0)
display.show()
time.sleep(2)

print("Rectangle test")
display.fill(1)
w_delta = display.width / 10
h_delta = display.height / 10
for i in range(11):
 display.rect(0, 0, int(w_delta * i), int(h_delta * i), 0)
display.show()
time.sleep(2)

print("Text test")
display.fill(1)
display.text(" hello world!", 0, 0, 0)
display.text(" This is the", 0, 8, 0)
display.text(" CircuitPython", 0, 16, 0)
display.text("adafruit library", 0, 24, 0)
display.text(" for the SHARP", 0, 32, 0)
display.text(" Memory Display :) ", 0, 40, 0)
display.show()

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 16 of 27

Python Wiring

It's easy to use the Sharp Memory Display with Python and the Adafruit CircuitPython
SharpMemoryDisplay (https://adafru.it/GBn) module. This module allows you to easily write Python code to control the
display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your Sharp Display.

Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For other platforms,
please visit the guide for CircuitPython on Linux to see whether your platform is supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

Raspberry Pi GND to LCD Gnd

Raspberry Pi 3.3V to LCD Vin

Raspberry Pi SCK (GPIO 11) to LCD Clk

Raspberry Pi MOSI (GPIO 10) to LCD DI

Raspberry Pi GPIO 6 to LCD CS

https://adafru.it/GBp

https://adafru.it/GBp

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 17 of 27

https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/assets/83341
https://cdn-learn.adafruit.com/assets/assets/000/083/342/original/python-wiring.fzz?1572560302

Python Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This may also
require enabling SPI on your platform and verifying you are running Python 3. Since each platform is a little different,
and Linux changes often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Python Installation of SharpMemoryDisplay Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-sharpmemorydisplay

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use
CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't, you can run the following to
install it:

sudo apt-get install ttf-dejavu

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts. There are several system libraries
that PIL relies on, so installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 18 of 27

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Python Usage

It's easy to use the Sharp Memory Display with CircuitPython and the Adafruit CircuitPython
SharpMemoryDisplay (https://adafru.it/GBn) module. This module allows you to easily write Python code to control the
display.

You can use this display with a computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

To demonstrate the usage, we'll initialize the library and use Python code to control the display from the board's
Python REPL.

Since we are running full CPython on our Linux/computer, we can take advantage of the powerful Pillow image
drawing library to handle text, shapes, graphics, etc. Pillow is a gold standard in image and graphics handling, you can
read about all it can do here (https://adafru.it/FU7).

Initialization

First need to initialize the SPI bus. To do that, run the following commands:

import board
import busio
import digitalio
import adafruit_sharpmemorydisplay

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
scs = digitalio.DigitalInOut(board.D6) # inverted chip select

display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 144, 168)

The last three parameters to the initializer are the pins connected to the display's CS line, width and height in that
order. Again make sure to use the right pin names as you have wired up to your board!

Example Code

"""
This demo will fill the screen with white, draw a black box on top
and then print Hello World! in the center of the display

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!
"""

import board
import busio
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_sharpmemorydisplay

Colors
BLACK = 0
WHITE = 255

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 19 of 27

https://github.com/adafruit/Adafruit_CircuitPython_SharpMemoryDisplay
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://pillow.readthedocs.io/en/stable/

WHITE = 255

Parameters to Change
BORDER = 5
FONTSIZE = 10

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
scs = digitalio.DigitalInOut(board.D6) # inverted chip select

display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 96, 96)
display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 144, 168)

Clear display.
display.fill(1)
display.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
image = Image.new("1", (display.width, display.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black background
draw.rectangle((0, 0, display.width, display.height), outline=BLACK, fill=BLACK)

Draw a smaller inner rectangle
draw.rectangle(
 (BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
 outline=WHITE,
 fill=WHITE,
)

Load a TTF font.
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(
 (display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),
 text,
 font=font,
 fill=BLACK,
)

Display image
display.image(image)
display.show()

Let's take a look at the sections of code one by one. We start by importing the board so that we can access the pin

definitions, busio so we can initialize SPI, digitalio , several PIL modules for Image Drawing, and the

adafruit_sharpmemorydisplay driver.

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 20 of 27

import board
import busio
import digitalio
from PIL import Image, ImageDraw, ImageFont
import adafruit_sharpmemorydisplay

To make it easy to keep track of which numbers represent which colors, we define some colors near the top.

Colors
BLACK = 0
WHITE = 255

In order to make it easy to change display sizes, we'll define a few variables in one spot here. We have the border size
and font size, which we will explain a little further below.

BORDER = 5
FONTSIZE = 10

Next we set the SPI object to the board's SPI with busio.SPI() . We also define some Pins that will be used for the

display and initialize the display. See the initialization section above for more details. By default, the initializer for the
144x168 display is uncommented because that's what we currently have in the store. If you had the 96x96 pixel version
of the screen, you could use the other initializer instead.

spi = busio.SPI(board.SCK, MOSI=board.MOSI)
dc = digitalio.DigitalInOut(board.D6) # data/command
cs = digitalio.DigitalInOut(board.CE0) # Chip select
reset = digitalio.DigitalInOut(board.D5) # reset

#display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 96, 96)
display = adafruit_sharpmemorydisplay.SharpMemoryDisplay(spi, scs, 144, 168)

Next we clear the display in case it was initialized with any random artifact data.

Clear display.
display.fill(0)
display.show()

Next, we need to initialize PIL to create a blank image to draw on. Think of it as a virtual canvas. Since this is a
monochrome display, we set it up for 1-bit color, meaning a pixel is either white or black. We can make use of the
display's width and height properties as well.

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
image = Image.new('1', (display.width, display.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Now we start the actual drawing. Here we are telling it we want to draw a rectangle from (0,0) , which is the upper left,

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 21 of 27

to the full width and height of the display. We want it both filled in and having an outline of black, so we pass BLACK
for both values.

Draw a black background
draw.rectangle((0, 0, display.width, display.height), outline=BLACK, fill=BLACK)

If we ran the code now, it would still show a blank display because we haven't told python to use our virtual canvas yet.
You can skip to the end if you would like to see how to do that. This is what our canvas currently looks like in memory.

Next we will create a smaller white rectangle. The easiest way to do this is to draw another rectangle a little smaller
than the full screen with no fill or outline and place it in a specific location. In this case, we will create a rectangle that
is 5 pixels smaller on each side. This is where the BORDER variable comes into use. It makes calculating the size of the
second rectangle much easier. We want the starting coordinate, which consists of the first two parameters, to be our
BORDER value. Then for the next two parameters, which are our ending coordinates, we want to subtract our border
value from the width and height. Also, because this is a zero-based coordinate system, we also need to subtract 1 from
each number. Again, we set the fill and outline to WHITE .

Draw a smaller inner rectangle
draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
 outline=WHITE, fill=WHITE)

Here's what our virtual canvas looks like in memory.

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 22 of 27

Now drawing text with PIL is pretty straightforward. First we start by setting the font to the default system text. After
that we define our text and get the size of the text. We're grabbing the size that it would render at so that we can
calculate the center position. Finally, we take the font size and screen size to calculate the position we want to draw
the text at and it appears in the center of the screen.

Load a TTF font.
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2),
 text, font=font, fill=BLACK)

Finally, we need to display our virtual canvas to the display and we do that with 2 commands. First we set the image to
the screen, then we tell it to show the image.

Display image
display.image(image)
display.show()

Here's what the final output should look like.

Don't forget you MUST call display.image(image) and display.show() to actually display the graphics. The
display takes a while to draw so cluster all your drawing functions into the buffer (fast) and then display them
once to the display (slow)

�

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 23 of 27

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 24 of 27

Downloads and
Links

Libraries:

Sharp Memory Display Library (https://adafru.it/cgJ)
Adafruit GFX Library (https://adafru.it/aJa)

Files

Datasheet for the LS013B4DN04 LCD Module (https://adafru.it/cgK)
Fritzing object in Adafruit Fritzing Library (https://adafru.it/aP3)
EagleCAD PCB files on GitHub (https://adafru.it/rHE)

Library Reference

Adafruit GFX Library (https://adafru.it/aPe)

https://adafru.it/DwW

https://adafru.it/DwW

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 25 of 27

https://github.com/adafruit/Adafruit_SHARP_Memory_Display
https://github.com/adafruit/Adafruit-GFX-Library
http://www.adafruit.com/datasheets/LS013B4DN04-3V_FPC-204284.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Sharp-Memory-Display
http://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://cdn-learn.adafruit.com/assets/assets/000/068/725/original/LS013B7DH05.pdf?1546719395

© Adafruit Industries https://learn.adafruit.com/adafruit-sharp-memory-display-breakout Page 26 of 27

© Adafruit Industries Last Updated: 2020-05-18 09:41:20 PM EDT Page 27 of 27

	Guide Contents
	Overview
	Assembly and Wiring
	Installing the Header:
	Position the header
	Position the display
	Solder!
	Remove the Protective Film

	Wiring to the Arduino:
	Programming
	Download the Libraries
	Run the Example Code
	Programming GFX Graphics

	CircuitPython Wiring
	CircuitPython Setup
	CircuitPython Installation of SharpMemoryDisplay Library
	CircuitPython Usage
	Initialization
	Drawing
	Text
	Full Example Code
	Python Wiring
	Python Setup
	Python Installation of SharpMemoryDisplay Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Initialization
	Example Code
	Downloads and Links
	Libraries:
	Files
	Library Reference

	Schematic & Fabrication Print

