TERM. NO.'S FOR REF. ONLY -331 ±.010 -381 ±.010 10 -331 ±.010 -381 ±.010 11 2 -331 ±.010 10 2 -331 ±.010 10 2 -331 ±.010 10 2 -331 ±.010 11 2 -331 ±.010 10 2 -331 ±.010 11 -32 -331 ±.010 11 -32 -331 ±.010 11 -32 -331 ±.010 11 -32 -32 12 -32 -32 13 -32 -32 14 -32 -32 15 -32 -32 12 -32 -32 13 -32 -32 14 -32 -32 15 -32 -32 15 -32 -32 14 -32 -32 15 -32 -32 16 -32 -32 10 -32 -32 10 -32 -	more than you expect			-	_EAD(Pb)-FREE Yes	RoHS l Yes	STOMER TERMINAL Sn100%
$\begin{bmatrix} 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	ELECTRICAL SPECIFICATIONS @ 25°C unless otherwise noted:		.604 ±.010 [15.34 ±.25] → .581 ±.010	□.004[.10] RFACES		ONLY 7	RM. NO.'s FOR REF.
$\begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	PARAMETER TEST CONDITIONS VALUE					— <u>,</u>	
$\begin{array}{c} \hline & & & & & & & & & & & & & & & & & & $	D.C. RESISTANCE 1-3 @20°C 0.9 ohms max.	1				P 1	1 7
$\begin{array}{c} \hline \hline$	D.C. RESISTANCE 4-6 @20°C 0.9 ohms max.	9	J 300 □ 0	.673 ±.010		3	
$\begin{array}{c} \hline \\ \hline $	INDUCTANCE 1-3 100kHz, 100mVAC, 8mADC, Lp 350uH min.	9	5]	[17.10 ±.25]	□ □		e]]
$\begin{array}{c} \hline \\ \hline $	INDUCTANCE 4-6 100kHz, 100mVAC, 8mADC, Lp 350uH min.	9					
$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	LEAKAGE INDUCTANCE 1-3 tie(12+10), 100kHz, 20mV, Ls 0.8uH max.						
$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	LEAKAGE INDUCTANCE 4-6 tie(9+7), 100kHz, 20mV, Ls 0.8uH max.						
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	INTERWINDING CAPACITANCE 1-12 tie(1+3, 12+10), 100kHz, 20mVAC, Cs 15pF max.						
$\begin{array}{c} \hline \\ \hline $	INTERWINDING CAPACITANCE 4-9 tie(4+6, 9+7), 100kHz, 20mVAC, Cs 15pF max.	(60)	[13.87]	AREA REPRESENTS		<u>(12</u>	
$\begin{array}{c} 10026(12) \\ \hline $			[1.50]	RMINAL PAD DIMENSIONS	TEF	\geq	
$\begin{bmatrix} [.70] \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	TURNS RATIO (1-3):(12-10) 1:1, ±2%	-		.028(12)			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $	TURNS RATIO (4-6):(9-7) 1:1, ±2%			[.7ò]´┘ —		\succeq	\exists
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $	CROSSTALK 1M - 100MHz -40dB min.	-		-			3
of Surface A after lead tinning. Designed to comply with the following requirements as de EN60950-1, UL60950-1/CSA60950-1 and AS/NZS60950.1: - Reinforced insulation for a primary circuit at a working Designed to comply with the 8.6mm min. creepage and 7. as defined by IEC60601-1; 2006.	 <u>GENERAL SPECIFICATIONS:</u> OPERATING TEMPERATURE RANGE: 0°C to +70°C. COPLANARITY: All 12 terminals must lie on a plane within .004 [.10] of Surface A after lead tinning. Designed to comply with the following requirements as defined by IEC60950-1, EN60950-1, UL60950-1/CSA60950-1 and AS/NZS60950.1: - Reinforced insulation for a primary circuit at a working voltage of 250Vrms. Designed to comply with the 8.6mm min. creepage and 7.0mm min. clearance 	LAYOUT		[2.54]		8	5 6

more than you expect

CUSTOMER TERMINAL RoHS LEAD(Pb)-FREE

	REV.	DATE	Packaging Specifications	+ 1	Tolerances unless otherwise specified:	DRAWING TITLE		PART NO.	
ſ	6E		Method: Tape & Reel		Angles: ±1° Decimals: ±.005 [.13]	TRANSFORMER			
	6D		PKG-0645	$\Psi \subseteq$	Fractions: ±1/64 Footprint: ±.005 [.13]			749014010	
	6C	12/08	www.we-online.com/midcom	CONVENTION PLACEMENT	This drawing is dual dimensioned. Dimensions				
Ē	6B	8/08	SEE REVISION SHEET FOR	REVISION LEVEL	in brackets are in millimeters.	eiSos p/n: 749014010	VEOHS	SPECIFICATION SHEET 1 OF 1	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 $\frac{\text{Wurth Electronics:}}{\frac{749014010}{2}}$