L99DZ81EP

Door actuator driver

Datasheet - production data

- Door actuator driver with 3 bridges for double door lock control, 4 high-side drivers for bulbs and LEDs control.
- H-bridge control for external power transistors

Description

The L99DZ81EP is a microcontroller driven multifunctional door actuator driver for automotive applications. Up to two DC motors and four grounded resistive loads can be driven with three half bridges and four high-side drivers. Four external MOS transistors in bridge configuration can be driven. The integrated SPI controls all operating modes (forward, reverse, brake and high impedance). Also all diagnostic information is available via SPI read.

TQFP-64

Features

- One full bridge for 6 A load (R_{ON} = 150 mΩ)
- One half bridges for 3 A load ($R_{ON} = 300 \text{ m}\Omega$)
- One configurable high-side driver for up to 1.5 A (R_{ON} = 500 mΩ) or 0.35 A (R_{ON} = 1600 mΩ) load
- One configurable high-side driver for 0.7 A $(R_{ON} = 800 \text{ m}\Omega) \text{ or } 0.35 \text{ A} (R_{ON} = 1600 \text{ m}\Omega)$ load
- Two high-side drivers for 0.5 A load (R_{ON} = 1600 mΩ)
- Programmable softstart function to drive loads with higher inrush currents as current limitation value
- Very low V_S current consumption in standby mode (I_S < 6 μ A typ; T_j ≤ 85°C)
- Current monitor output for all high-side drivers
- Central two-stage charge pump
- Motor bridge driver with full R_{dson} down to 6 V
- Device contains temperature warning and protection
- Open-load detection for all outputs
- Overcurrent protection for all outputs
- Separated half bridges for door lock motor
- Programmable PWM control of all outputs
- STM standard serial peripheral interface (ST-SPI 3.1)
- Prepared for additional fail-safe path for H-bridge

Table 1. Device summary

Package	Order codes	
	Tray	Tape and reel
TQFP-64	L99DZ81EP	L99DZ81EPTR

Contents

1	Bloc	k diagram and pin description7
2	Elect	rical specifications 11
	2.1	Absolute maximum ratings11
	2.2	ESD protection
	2.3	Thermal data
	2.4	Package and PCB thermal data 13
		2.4.1 TQFP-64 thermal data
	2.5	Electrical characteristics
	2.6	Outputs OUT4 - OUT10 17
	2.7	H-bridge driver
	2.8	SPI / logic – electrical characteristics 25
3	Appl	ication information
	3.1	Dual power supply: VS and VCC
	3.2	Wake up and Active mode/standby mode
	3.3	Charge pump
	3.4	Diagnostic functions
	3.5	Overvoltage and undervoltage detection at VS
	3.6	Overvoltage and undervoltage detection at VCC
	3.7	Temperature warning and shutdown
	3.8	Inductive loads
	3.9	Open-load detection
	3.10	Overcurrent detection
	3.11	Current monitor
	3.12	PWM mode of the power outputs
	3.13	Cross-current protection
	3.14	Programmable soft-start function to drive loads with higher inrush current
	045	
	3.15	H-bridge control (DIR, PWMH, bits SD, SDS)
	3.16	H-bridge driver slew-rate control
	3.17	Resistive low

3.18 Short circuit detection/drain source monitoring	
3.19 H-bridge monitoring in off-mode	
3.20 Programmable cross current protection	
3.21 Watchdog	40
4 Functional description of the SPI	41
4.1 General description	41
4.1.1 Chip Select Not (CSN)	41
4.1.2 Serial Data In (DI)	41
4.1.3 Serial Clock (CLK)	41
4.1.4 Serial Data Out (DO)	41
4.1.5 SPI communication flow	41
4.2 Command byte	43
4.2.1 Operation code definition	43
4.3 Device memory map	43
5 SPI - control and status registers	45
5.1 Control Register 0	
5.2 Control Register 1	
5.3 Control Register 2	
5.4 Control Register 3	
5.5 Control Register 4	
5.6 Control Register 5	
5.7 Control Register 6	50
5.8 Configuration Register	51
5.9 Status Register 0	
5.10 Status Register 1	
5.11 Status Register 2	53
5.12 Status Register 3	53
6 Package and packing information	55
6.1 ECOPACK [®] package	
6.2 TQFP-64 mechanical data	

7	Revision history	····· 6'	1
---	-------------------------	----------	---

List of tables

Table 1.	Device summary	1
Table 2.	Pin definitions and functions	7
Table 3.	Absolute maximum ratings 1	1
Table 4.	ESD protection	2
Table 5.	Operating junction temperature1	2
Table 6.	Temperature warning and thermal shutdown 1	2
Table 7.	Package thermal impedance1	2
Table 8.	Supply	5
Table 9.	Overvoltage and undervoltage detection1	5
Table 10.	Current monitor output (CM) 1	6
Table 11.	Charge pump	6
Table 12.	On-resistance	7
Table 13.	Power outputs switching times 1	8
Table 14.	Current monitoring	
Table 15.	Gate drivers for the external Power-MOS (H-bridge) 2	0
Table 16.	Gate drivers for the external Power-MOS switching times 2	0
Table 17.	Drain source monitoring	3
Table 18.	Open-load monitoring	4
Table 19.	Delay time from Standby to Active mode 2	5
Table 20.	Inputs: DI, CSN, CLK, DIR and PWMH 2	5
Table 21.	AC-Characteristics	6
Table 22.	Dynamic characteristics	
Table 23.	Watchdog	
Table 24.	H-bridge control truth table	
Table 25.	H-bridge DS-monitor threshold 3	
Table 26.	Cross-current protection time 4	
Table 27.	Command byte 4	
Table 28.	Operation code definition 4	
Table 29.	RAM memory map	
Table 30.	ROM memory map	
Table 31.	Global status byte 4	
Table 32.	Control Register 0 4	
Table 33.	Control Register 1 4	
Table 34.	Control Register 2 4	
Table 35.	Control Register 3	
Table 36.	Control Register 4 4	
Table 37.	Control Register 5	
Table 38.	Control Register 6 5	
Table 39.	Configuration Register	
Table 40.	Status Register 0	
Table 41.	Status Register 1	
Table 42.	Status Register 2	
Table 43.	Status Register 3	
Table 44.	TQFP-64 mechanical data	
Table 45.	Document revision history	1

List of figures

Figure 1.	Block diagram	. 7
Figure 2.	Pin connection (top view)	
Figure 3.	TQFP-64 2 layer PCB.	
Figure 4.	TQFP-64 4 layer PCB	13
Figure 5.	TQFP-64 thermal impedance junction to ambient vs PCB copper area	14
Figure 6.	IGHxr ranges	22
Figure 7.	IGHxf ranges	22
Figure 8.	H-driver delay times	23
Figure 9.	SPI timing parameters	27
Figure 10.	SPI input and output timing parameters	28
Figure 11.	SPI delay description	28
Figure 12.	Power-output (OUT<10:4>) timing	29
Figure 13.	Overcurrent recovery mode	34
Figure 14.	H-bridge GSHx slope	36
Figure 15.	H-bridge diagnosis	37
Figure 16.	H-bridge open-load detection (no open-load detected)	38
Figure 17.	H-bridge open-load detection (open-load detected)	38
Figure 18.	H-bridge open-load detection (short to ground detected)	39
Figure 19.	H-bridge open-load detection with H-OLTH HIGH = '1' (short to V_S detected)	39
Figure 20.	Write and read SPI	42
Figure 21.	TQFP-64 package dimension	56
Figure 22.	TQFP-64 power lead-less tray shipment (no suffix) (part 1)	57
Figure 23.	TQFP-64 power lead-less tray shipment (no suffix) (part 2)	58
Figure 24.	TQFP-64 power lead-less tape and reel shipment (suffix "TR") (part 1)	59
Figure 25.	TQFP-64 power lead-less tape and reel shipment (suffix "TR") (part 2)	60

1 Block diagram and pin description

Table 2. Pi	n definitions	and functions
-------------	---------------	---------------

Pin	Symbol	Function
58	GND ₁	Ground: reference potential. GND1 and GND2 are internally connected. GND2 supplies OUT4-6.
17, 18, 26, 31, 32	GND ₂	Important: For the capability of driving the full current at the outputs, all pins of GND must be externally connected!
17, 57	SGND	Signal Ground: this pin is shared with GND2 pin.

		Table 2. Pin definitions and functions (continued)			
11, 12, 23, 36, 37 vS2 12, 25 OUT6 141 Half-bridge outputs 4, 56: the output is built by a high side and a low selected by the input CSN transistor. Each driver thas an internal parasitic reverse diode (bulk-drain-diode: high side driver thas an internal parasitic reverse diode (bulk-drain-diode: high side driver thas an internal parasitic reverse diode (bulk-drain-diode: high side driver thas an internal parasitic reverse diode (bulk-drain-diode: high side driver thas an internal parasitic reverse diode (bulk-drain-diode: high side driver thas an internal parasitic reverse diode (bulk-drain-diode: high side driver thas an internal parasitic reverse diode forevesitice and the	Pin	Symbol	Function		
all pins of VS must be externally connected! 19, 20, 21, 22 OUT4 19, 20, 21, 22 OUT5 27, 28, 29, 30 OUT5 34 OUT6 24, 25 OUT6 37 DO 40 DO 5 Serial data output: the diagnosis data is available via the SPI and this s-state-output: The output remains in 3-state, if the chip is not selected by the input CSN (CSN = high). 34 CM 35 CSN 35 CSN 36 CLM 41 DI 35 CSN 36 CLM 36 CSN 37 CSN 38 CLK 41 DI 38 CLK 39 VCC 39 VCC 39 VCC 39 VCC 39 VCC 30 DIR 20 Direction Input: this input controls the internal shift register of the SPI and requires CMOS logic levels. 33 </td <td>11, 12, 23, 36,</td> <td></td> <td>protection required): for this input a ceramic capacitor as close as possible to GND is recommended. VS1 supplies OUT7-10 and the internal VS supply, VS2 supplies OUT4-6.</td>	11, 12, 23, 36,		protection required): for this input a ceramic capacitor as close as possible to GND is recommended. VS1 supplies OUT7-10 and the internal VS supply, VS2 supplies OUT4-6.		
27, 28, 29, 30 OUT5 side switch, which are internally connected. The output stage of both switches is a power DMOS transistor. Each driver has an internal parasitic reverse diode (bulk-drain-diode: high side driver from output to VS, low side driver from GND to output). This output is over current and open load protected. 40 DO Serial data output: the diagnosis data is available via the SPI and this 3-state-output. The output remains in 3-state, if the chip is not selected by the input CSN (CSN = high). 34 CM Current monitor output: depending on the selected multiplexer bits of the Control Register this output sources an image of the instant current through the corresponding high side driver with a fixed ratio. 35 CSN Chip-Select-Not input: this input is low active and requires CMOS logic levels. The serial data transfer between the device and the micro controller is enabled by pulling the input CSN to low level. 41 DI Serial data input: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is a 24 bit control word and the most significant bit (MSB, bit 23) is transferred first. 38 CLK Serial dock input: this input controls the internal shift register of the SPI and requires CMOS logic levels. 39 VCC Supply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended. 44 OUT9 High-side-driver output 9: the output is output and he side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode	37				
27, 28, 29, 30 OUTS switches is a power DMOS transistor. Each driver has an internal parasitic reverse diode (bulk-drain-diode: high side driver from output to VS, low side driver from GND to output). This output is over current and open load protected. 24, 25 OUT6 Serial data output: the diagnosis data is available via the SPI and this 3-state-output. The output remains in 3-state, if the chip is not selected by the input CSN (CSN = high). 34 CM Current monitor output: depending on the selected multiplexer bits of the Control Register this output sources an image of the instant current through the corresponding high side driver with a fixed ratio. 35 CSN Chip-Select-Not input: this input is low active and requires CMOS logic levels. The serial data from selected by pulling the input CSN to low level. 41 DI Serial data input: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is a 24 bit control word and the most significant bit (MSB, bit 23) is transferred first. 38 CLK Serial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels. 39 VCC Supply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended. 41 DUT PWMH PWMH PWMH PWMH 44 OUT9 Supply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is present but the energy which can be dissipated is limited. The high-side	19, 20, 21, 22	OUT4			
24, 25 OUT6 parasitic reverse diode (bulk-drain-diode: high side driver from output to VS, low side driver from GND to output). This output is over current and open load protected. 40 DO Serial data output: the diagnosis data is available via the SPI and this 3-state-output. The output remains in 3-state, if the chip is not selected by the input CSN (CSN = high). 34 CM Current monitor output: depending on the selected multiplexer bits of the Control Register this output sources an image of the instant current through the corresponding high side driver with a fixed ratio. 35 CSN Chip-Select-Not input: this input is low active and requires CMOS logic levels. The serial data transfer between the device and the micro controller is enabled by pulling the input CSN to low level. 41 DI Serial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels. 33 DIR Direction Input: this input controls the H-Bridge Drivers. 39 VCC Supply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended. 44 OUT9 High-side-driver output 9: the output is built by a high side switch and is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high-side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.	27, 28, 29, 30	OUT5			
40DO3-state-output. The output remains in 3-state, if the chip is not selected by the input CSN (CSN = high).34CMCurrent monitor output: depending on the selected multiplexer bits of the Control Register this output sources an image of the instant current through the corresponding high side driver with a fixed ratio.35CSNChip-Select-Not input: this input is low active and requires CMOS logic levels. The serial data transfer between the device and the micro controller is enabled by pulling the input CSN to low level.41DISerial data input: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is a 24 bit control word and the most significant bit (MSB, bit 23) is transferred first.38CLKSerial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels.39VCCSupply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended.44OUT9High-side-driver output 9: the output is built by a high side switch and is intended for resistive loads; hence the internal reverse diode from GND to the output is mising. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.42PWMHPWMH input: this input signal can be used to control the H-Bridge Gate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 56, 59, 60Not connected.61OUT8Important: This output can be configured to supply a bulb with low on- resis	24, 25	OUT6	parasitic reverse diode (bulk-drain-diode: high side driver from output to VS, low side driver from GND to output). This output is over current		
34CMthe Control Register this output sources an image of the instant current through the corresponding high side driver with a fixed ratio.35CSNChip-Select-Not input: this input is low active and requires CMOS logic levels. The serial data transfer between the device and the micro controller is enabled by pulling the input CSN to low level.41DISerial data input: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is a 24 bit control word and the most significant bit (MSB, bit 23) is transferred first.38CLKSerial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels.33DIRDirection Input: this input controls the H-Bridge Drivers.39VCCSupply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended.44OUT9High-side-driver output 9: the output is built by a high side switch and is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.42PWMHPWMH input: this input signal can be used to control the H-Bridge Gate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 59, 60Not connected.61OUT8High side driver output 8: see OUT9. Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application. <td>40</td> <td>DO</td> <td>3-state-output. The output remains in 3-state, if the chip is not</td>	40	DO	3-state-output. The output remains in 3-state, if the chip is not		
35CSNlogic levels. The serial data transfer between the device and the micro controller is enabled by pulling the input CSN to low level.41DISerial data input: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is a 24 bit control word and the most significant bit (MSB, bit 23) is transferred first.38CLKSerial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels.33DIRDirection Input: this input controls the H-Bridge Drivers.39VCCSupply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended.44OUT9High-side-driver output 9: the output is built by a high side switch and is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.42PWMHPWIHH input: this input signal can be used to control the H-Bridge Gate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 56, 59, 60Not OUT7Not connected.61OUT8High side driver output 8: see OUT9. Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	34	СМ	the Control Register this output sources an image of the instant		
41DIserial data from the microcontroller. The data is a 24 bit control word and the most significant bit (MSB, bit 23) is transferred first.38CLKSerial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels.33DIRDirection Input: this input controls the H-Bridge Drivers.39VCCSupply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended.44OUT9High-side-driver output 9: the output is built by a high side switch and is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.42PWMHPWMH input: this input signal can be used to control the H-Bridge Gate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 56, 59, 60Not connected.61OUT8High side driver output 8: see OUT9. Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	35	CSN	logic levels. The serial data transfer between the device and the		
38CLKSPI and requires CMOS logic levels.33DIRDirection Input: this input controls the H-Bridge Drivers.39VCCSupply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended.44OUT9High-side-driver output 9: the output is built by a high side switch and is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.42PWMHPWMH input: this input signal can be used to control the H-Bridge Gate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 56, 59, 60NCNot connected.61OUT8Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	41	DI	serial data from the microcontroller. The data is a 24 bit control word		
39VCCSupply Voltage: 5 V supply. A ceramic capacitor as close as possible to GND is recommended.44OUT9High-side-driver output 9: the output is built by a high side switch and is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.42PWMHPWMH input: this input signal can be used to control the H-Bridge Gate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 56, 59, 60NCNot connected.61OUT8High side driver output 8: see OUT9. Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	38	CLK			
39VCCto GND is recommended.44OUT9High-side-driver output 9: the output is built by a high side switch and is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.42PWMHPWMH input: this input signal can be used to control the H-Bridge Gate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 56, 59, 60NCNot connected.61OUT8Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	33	DIR	Direction Input: this input controls the H-Bridge Drivers.		
44OUT9is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is over current and open load protected.42PWMHPWMH input: this input signal can be used to control the H-Bridge Gate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 56, 59, 60NCNot connected.61OUT7High side driver output 8: see OUT9. Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	39	VCC			
42PWMHGate drivers.3, 43, 45, 48, 49, 50, 53, 54, 55, 56, 59, 60NCNot connected.62, 63OUT7High side driver output 8: see OUT9. Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	44	OUT9	is intended for resistive loads; hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high- side driver is a power DMOS transistor with an internal parasitic reverse diode from the output to VS (bulk-drain-diode). The output is		
49, 50, 53, 54, 55, 56, 59, 60NCNot connected.62, 63OUT7High side driver output 8: see OUT9. Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	42	PWMH			
61 OUT8 Important: This output can be configured to supply a bulb with low on- resistance or a LED with higher on-resistance in a different application.	49, 50, 53, 54,	NC	Not connected.		
61 OUT8 resistance or a LED with higher on-resistance in a different application.	62, 63	OUT7	•		
47 OUT10 High-side-driver-output 10: see OUT9.	61	OUT8	resistance or a LED with higher on-resistance in a different		
	47	OUT10	High-side-driver-output 10: see OUT9.		

Pin	Symbol	Function	
13	GH2	GH2: gate driver for power MOS high side switch in half-bridge 2.	
14	SH2	SH2: source of high-side switch in half-bridge 2.	
15	GL2	GL2: gate driver for power MOS low side switch in half-bridge 2.	
16	SL2	SL2: source of low side switch in half-bridge 2.	
64	GH1	GH1: gate driver for power MOS high side switch in half-bridge 1.	
1	SH1	SH1: source of high-side switch in half-bridge 1.	
4	GL1	GL1: gate driver for power MOS low side switch in half-bridge 1.	
5	SL1	SL1: source of low side switch in half-bridge 1.	
7	CP1P	CP1P: charge pump pin for capacitor 1, positive side.	
8	CP1M	CP1M: charge pump pin for capacitor 1, negative side.	
9	CP2P	CP2P: charge pump pin for capacitor 2, positive side.	
10	CP2M	CP2M: charge pump pin for capacitor 2, negative side.	
6	CP	CP: charge pump output.	

Table 2. Pin definitions and functions (continued)

Figure 2. Pin connection (top view)

2 Electrical specifications

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Symbol	Parameter/test condition		Value [DC Voltage]	Unit
	DC supply voltage		-0.3 to +28	V
V _{S1} , V _{S2}	Single pulse / t _{max} < 400 ms "tra	ansient load dump"	-0.3 to +40	V
V _{CC}	Stabilized supply voltage, logic	supply	-0.3 to V _S + 0.3	V
V _{DI,} V _{CLK} , V _{CSN} , V _{DO} , V _{CM} , V _{DIR} , V _{PWMH} , V _{DIR}	Logic input / output voltage rang	ge	-0.3 to V _{CC} + 0.3	V
V _{OUTn}	Output voltage (n = 4 to 10)		-0.3 to V _S + 0.3	V
$\begin{array}{c} V_{SL1}, V_{SH1}, V_{SL2}, V_{SH2}\\ (V_{Sxy}) \end{array}$	High voltage signal pins		-6 to 40	V
$\begin{matrix} V_{GL1}, V_{GH1}, V_{GL2}, V_{GH2} \\ (V_{Gxy}) \end{matrix}$	High voltage signal pins		V _{Sxy} - 1 to V _{Sxy} + 10; V _{CP} + 0.3	V
V _{CP1P}	High voltage signal pins		$V_{\rm S}$ - 0.3 to $V_{\rm S}$ + 10	V
V _{CP2P}	High voltage signal pins		$V_{\rm S}$ - 0.6 to $V_{\rm S}$ + 10	V
V _{CP1M} , V _{CP2M}	High voltage signal pins		-0.3 to V _S + 0.3	V
N/	High voltage signal pin	$V_{S1,2} \le 26 \text{ V}$	$V_{\rm S}$ - 0.3 to $V_{\rm S}$ + 14	V
V _{CP}	nigh voltage signal pin	V _{S1,2} > 26 V	V _S - 0.3 to +40	V
I _{OUT9,10}	Output current ⁽¹⁾		±1.25	А
I _{OUT6,7}	Output current ⁽¹⁾ (low on-resista	ance mode)	±5	А
I _{OUT7}	Output current ⁽¹⁾ (high on-resist	tance mode)	±5	А
I _{OUT8}	Output current ⁽¹⁾		±2.5	А
I _{OUT4,5}	Output current ⁽¹⁾		±10	А
I _{VS1cum}	Maximum cumulated input current at VS_1 pins ⁽¹⁾		±12.5	А
I _{VS2cum}	Maximum cumulated input curre	ent at VS ₂ pins ⁽¹⁾	±12.5	А
I _{GND1cum}	Maximum cumulated output cur	rrent at GND ₁ pins ⁽¹⁾	±5	А
I _{GND2cum}	Maximum cumulated output cur	rrent at GND ₂ pins ⁽¹⁾	±12.5	А

1. Values for the absolute maximum DC current through the bond wires. This value does not consider maximum power dissipation or other limits.

2.2 ESD protection

Parameter	Value	Unit
All pins	±2 ⁽¹⁾	kV
Power output pins: OUT4 – OUT10	±4 ⁽¹⁾	kV

1. HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A.

2.3 Thermal data

Table 5. Operating junction temperature

Symbol	Parameter	Value	Unit
Tj	Operating junction temperature	-40 to 150	°C

Table 6. Temperature warning and thermal shutdown

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
T _{jTW ON}	Temperature warning threshold (junction temperature)		130		150	°C
T _{jTS ON}	Thermal shutdown threshold (junction temperature)		150		170	°C
T _{jtft}	Thermal warning / shutdown filter time			32		μs

Table 7. Package thermal impedance

Symbol	Parameter	Value	Unit
R _{thj-amb}	Thermal resistance junction to ambient (max)	See Figure 5	K/W

2.4 Package and PCB thermal data

2.4.1 TQFP-64 thermal data

Figure 4. TQFP-64 4 layer PCB

Note:

Layout condition of R_{th} and Z_{th} measurements (board finish thickness 1.6 mm +/- 10%, board double layer and four layers, board dimension 77 mm x114 mm, board material FR4, Cu thickness 0.070mm (outer layers), Cu thickness 0.035mm (inner layers), thermal vias separation 1.2 mm, thermal via diameter 0.3 mm +/- 0.08 mm, Cu thickness on vias 0.025 mm, footprint dimension 6 mm x 6 mm). 4-layer PCB: Cu on mid1 layer, Cu on mid2 layer and Cu on bottom layer: 62 cm². Z_{th} measured on the major power dissipator contributor

Figure 5. TQFP-64 thermal impedance junction to ambient vs PCB copper area

2.5 Electrical characteristics

The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V \leq V_S \leq 18 V, 4.75 V \leq V_{CC} \leq 5.5 V; all outputs open; T_i = -40 °C to 150 °C, unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _S	Operating voltage range		5		28	V
I _{VS(act)}	Current consumption in active mode	V _S = 13.5 V ⁽¹⁾		5	10	mA
I _{VS(stby)}	Current consumption in standby mode	$V_{S} = 16 \text{ V}; V_{CC} = 5.3 \text{ V};$ standby mode; OUT4 - OUT10 floating; T _{TEST} = -40 °C to 25 °C		4	12	μΑ
		$T_{\text{TEST}} = 85 \ ^{\circ}\text{C}^{(1)}$		6	25	μA
V _{CC}	Operating voltage range		4.5		5.5	V
I _{VCC(active)}	V _{CC} supply current	$\label{eq:V_S} \begin{array}{l} V_{S} = 16 \; V; \; V_{CC} = 5.3 \; V; \\ CSN = V_{CC}; \; active mode; \\ OUT4 - OUT10 \; floating \end{array}$		5	10	mA
		$V_{S} = 16 \text{ V}; V_{CC} = 5.0 \text{ V};$ $CSN = V_{CC}; \text{ active mode};$ OUT4 - OUT10 floating; $T_{TEST} = -40 \text{ °C to } 25 \text{ °C}$		3	6	μΑ
I _{VCC(stby)}	V _{CC} standby current	$T_{\text{TEST}} = 85 \ ^{\circ}\text{C}^{(1)}$		4	8	μA
		$\label{eq:VS} \begin{array}{l} V_{S} = 16 \; V; \; V_{CC} = 5.3 \; V; \\ CSN = V_{CC}; \; active mode; \\ OUT4 \; \text{-} \; OUT10 \; floating; \\ T_{TEST} = \text{-}40 \; ^{\circ}C \; to \; 125 \; ^{\circ}C \end{array}$			25	μΑ

Table	8. Sı	ipply
-------	-------	-------

1. This parameter is guaranteed by design

Table 5. Overvoltage and undervoltage detection							
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
V _{SUV ON}	VS UV threshold voltage ⁽¹⁾	V _S increasing	5.6		7.2	V	
V _{SUV OFF}	VS UV threshold voltage ⁽¹⁾	V _S decreasing	5		5.9	V	
V _{SUV hyst}	VS UV hysteresis ⁽¹⁾	V _{SUV ON} -V _{SUV OFF}		0.5		V	
t _{vsuvfilt}	VS UV filter time			48		μs	
V _{SOV OFF}	VS OV threshold voltage ⁽¹⁾	V _S increasing	18.5		24.5	V	
V _{SOV ON}	VS OV threshold voltage ⁽¹⁾	V _S decreasing	18.0		23.5	V	
V _{SOV hyst}	VS OV hysteresis ⁽¹⁾	V _{SOV OFF} -V _{SOV ON}		1		V	
t _{vsovfilt}	VS OV filter time			48		μs	
V _{VCCRESHU}	Upper V _{CC} reset threshold ⁽²⁾	V _{CC} increasing	5.8		7.5	V	

Table 9. Overvoltage and undervoltage detection

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{VCCRESHD}	Upper V_{CC} reset threshold	V _{CC} decreasing	5.5		7.1	V
V _{VCCRES} hysth	Upper reset hysteresis	V _{VCCRESHU} - V _{VCCRESHD}		0.1		V
V _{POROFF}	Power-on-reset threshold	V _{CC} increasing	3.4		4.4	V
V _{PORON}	Power-on-reset threshold	V _{CC} decreasing	3.1		4.1	V
V _{POR hystL}	Power-on-reset hysteresis	V _{POROFFL} - V _{PORONL}		0.3		V

1. VS = 5V to 28V

2. If V_{CC} exceeds this value all registers are reset and the device enters standby mode.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V_{CM}	Functional voltage range		0		V _{CC} - 1 V	V
	Current monitor output ratio: ICM ^{/I} OUT4,5,6,7 (low on-resistance)			1/10000		
I _{CM r}	I _{CM} /I _{OUT8} (low on-resistance)	$0 \text{ V} \le \text{V}_{\text{CM}} \le \text{V}_{\text{CC}} - 1 \text{ V}$		1/6500		
	I _{CM} /I _{OUT7,8,9,10 and 7,8 (high on- resistance)}			1/2000		
ICM acc	Current monitor accuracy accl _{CMOUT4,5,6} and 7(low on-resistance)	$\begin{array}{l} 0 \ V \leq V_{CM} \leq V_{CC} - 1 \ V; \\ I_{OUTmin} = 500 \ mA; \\ I_{OUT4,5max} = 5.9 \ A; \\ I_{OUT6max} = 2.9 \ A; \\ I_{OUT7max} = 1.4 \ A \end{array}$		4 % + 1 % FS (1)	8 % + 2 % FS (1)	
	accl _{CMOUT7,8,9,10(high on-resistance}	$\begin{array}{l} 0 \; V \leq V_{CM} \leq V_{CC} - 1 \; V; \\ I_{OUT.min} = 100 \; mA; \\ I_{OUT9,10max} = 0.4A; \\ I_{OUT7max} = 0.3 \; A; \\ I_{OUT8(low \; rdson)max} = 0.6 \; A; \\ I_{OUT8(high \; rdson)max} = 0.3 \; A \end{array}$				
t _{cmb}	Current monitor blanking time			32		μs

Table 10. Current monitor output (CM)

1. FS (full scale) = $I_{OUTmax} * I_{CMr}$

Table 11. Charge pump

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V	Charge pump output	$V_{S} = 6 V; I_{CP} = -10 mA$	V _S + 6	V _S + 7	V _S + 7.85	V
V _{CP}	voltage	$V_S \ge 10 \text{ V}; \text{ I}_{CP} = -15 \text{ mA}$	V _S + 11	V _S + 12	V _S + 13.5	V
I _{CP}	Charge pump output current ⁽¹⁾	$V_{CP} = V_S + 10 V;$ $V_S = 13.5 V;$ $C_1 = C_2 = C_{CP} = 100 nF$	25		47	mA
I _{CPlim}	Charge pump output current limitation ⁽²⁾	$V_{CP} = V_S; V_S = 13.5 V;$ $C_1 = C_2 = C_{CP} = 100 \text{ nF}$	29		70	mA

		<u> </u>				
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{CP_low}	Charge pump low threshold voltage		V _S + 4.6	V _S + 5	V _S + 5.4	V
T _{CP}	Charge pump low filter time			64		μs

Table 11. Charge pump (continued)

1. I_{CP} is the minimum current the device can provide to an external circuit without V_{CP} going below V_S + 10 V

2. $\rm I_{CPlim}$ is the maximum current, which flows out of the device in case of a short to $\rm V_S$

2.6 Outputs OUT4 - OUT10

The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V \leq V_S \leq 18 V, 4.75 V \leq V_{CC} \leq 5.5 V; all outputs open; T_i = -40°C to 150°C, unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
lon out c	On-resistance to supply or	V_{S} = 13.5 V; T_{amb} = +25 °C; $I_{OUT4,5}$ = ±3.0 A		150	200	mΩ
^r on out4,5	GND	V_{S} = 13.5 V; T_{amb} = +125 °C; $I_{OUT4,5}$ = ±3.0 A		225	300	mΩ
^r on oute	On-resistance to supply or	$V_{S} = 13.5 \text{ V}; T_{amb} = +25 \text{ °C};$ $I_{OUT6} = \pm 1.5 \text{ A}$		300	400	mΩ
	GND	$V_{S} = 13.5 \text{ V}; T_{amb} = +125 \text{ °C};$ $I_{OUT6} = \pm 1.5 \text{ A}$		450	600	mΩ
^r on out7	On-resistance to supply in low resistance mode	V _S = 13.5 V; T _{amb} = +25 °C; I _{OUT7} = -0.8 A		500	700	mΩ
		V _S = 13.5 V; T _{amb} = +125 °C; I _{OUT7} = -0.8 A		700	950	mΩ
	On-resistance to supply in high resistance mode	V _S = 13.5 V; T _{amb} = +25 °C; I _{OUT7} = -0.2 A		1600	2400	mΩ
		V_{S} = 13.5 V; T_{amb} = +125 °C; I_{OUT7} = -0.2 A		2500	3400	mΩ
ron outa	On-resistance to supply in	V _S = 13.5 V; T _{amb} = +25 °C; I _{OUT8} = -0.4 A		800	1200	mΩ
	low resistance mode	$V_{S} = 13.5 \text{ V}; T_{amb} = +125 \text{ °C};$ $I_{OUT8} = -0.4 \text{ A}$		1200	1700	mΩ
	On-resistance to supply in	V_{S} = 13.5 V; T _{amb} = +25 °C; I _{OUT8} = -0.2 A		1600	2400	mΩ
	high resistance mode	V_{S} = 13.5 V; T_{amb} = +125 °C; I_{OUT8} = -0.2 A		2500	3400	mΩ

Table 12. On-resistance

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
ron out9,10	On-resistance to supply	V_{S} = 13.5 V; T_{amb} = +25 °C; $I_{OUT9,10}$ = -0.4 A		1600	2200	mΩ	
		$V_{S} = 13.5 \text{ V}; T_{amb} = +125 \text{ °C};$ $I_{OUT9,10} = -0.4 \text{ A}$		2500	3400	mΩ	
	Switched-off output current high side drivers of OUT _{4,6,9,10}	V _{OUT} = 0 V; standby mode	-5	-2		μΑ	
I _{QLH}		V _{OUT} = 0 V; active mode	-10.2	-7		μΑ	
1	Switched-off output current	V _{OUT} = 0 V; standby mode	-5	-2		μΑ	
I _{QLH7,8}	high side drivers of $OUT_{7,8}$	V _{OUT} = 0 V; active mode	-15	-10		μA	
I _{QLL}	Switched off output ourrent	V _{OUT} = V _S ; standby mode		80	165	μA	
	Switched-off output current low side drivers of OUT_{4-6}	V _{OUT} = V _S - 0.5 V; active mode	-10	-7		μA	

Symbol	Parameter	Test condition	Min.	Тур.	Max	Unit
	Output delay time high side driver on (all OUT except OUT _{7,8})		10	40	80	μs
^t d ON H	Output delay time high side driver on (OUT _{7,8} in high R _{DSON} mode)	$V_S = 13.5 \text{ V}; V_{CC} = 5 \text{ V};$ corresponding low side driver is not active ⁽¹⁾⁽²⁾⁽³⁾	15	35	60	μs
	Output delay time high side driver on (OUT $_{7,8}$ in low R $_{\rm DSON}$ mode)		10	35	80	μs
	Output delay time high side driver off ($OUT_{4,5,6}$)	V _S = 13.5 V;	50	150	300	μs
^t d OFF H	OFF H $\frac{\text{driver off (OUT}_{4,5,6})}{\text{Output delay time high side}} V_{S} = 13.5 \text{ V}; \\ V_{CC} = 5 \text{ V}^{(1)(2)(3)}$	$V_{CC} = 5 V^{(1)(2)(3)}$	40	70	100	μs
^t d ON L	Output delay time low side driver on	$V_S = 13.5 V$; $V_{CC} = 5 V$; corresponding low side driver is not active ⁽¹⁾⁽²⁾⁽³⁾	15	30	70	μs
^t d OFF L	Output delay time low side driver (OUT ₄₋₆) off	V _S = 13.5 V; V _{CC} = 5 V (1)(2)(3)	40	150	300	μs
t _{d HL}	Cross current protection time	$t_{cc ONLS_OFFHS} - t_{d OFF H}^{(4)}$	- 40	200	400	116
t _{d LH}	(OUT ₄₋₆)	$t_{cc \text{ ONHS_OFFLS}} - t_{d \text{ OFF L}}^{(4)}$		200	400	μs
dV _{OUT} /dt	Slew rate of OUTx	$V_{S} = 13.5 V;$ $V_{CC} = 5 V^{(1)(2)(3)}$	0.08	0.2	0.6	V/µs
f _{PWMx(low)}	Low PWM switching frequency	$V_{S} = 13.5 \text{ V}; V_{CC} = 5 \text{ V}$		122		Hz
f _{PWMx(high)}	High PWM switching frequency	$V_{S} = 13.5 \text{ V}; V_{CC} = 5 \text{ V}$		244		Hz

1. $R_{load} = 16 \Omega$ at OUT₆ and OUT_{7,8} in low on-resistance mode

- 2. $R_{load} = 4 \Omega \text{ at } OUT_{4,5}$
- 3. $R_{load} = 64 \Omega$ at $OUT_{9,10}$ and $OUT_{7,8}$ in high on-resistance mode
- 4. t_{CC} is the switch-on delay time if complement in half bridge has to switch off

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{OC4} , I _{OC5}	Overcurrent threshold to supply or GND	V_{S} = 13.5 V; V_{CC} = 5 V; sink and	6		9.2	А
II _{OC6}		source	3		5.3	А
	Overcurrent threshold to supply in low on-resistance mode		1.5		2.5	А
_{0C7}	Overcurrent threshold to supply in high on-resistance mode		0.35		0.65	А
	Overcurrent threshold to supply in low on-resistance mode	V _S = 13.5 V; V _{CC} = 5 V; source	0.7		1.3	А
I _{OC8}	Overcurrent threshold to supply in high on-resistance mode		0.35		0.65	А
I _{OC9} , I _{OC10}	Overcurrent threshold to supply		0.5		1.0	А
t _{FOC}	Filter time of overcurrent signal	Duration of overcurrent condition to set the status bit	10	55	100	μs
f _{rec0}	Recovery frequency for OC; recovery frequency bit = 0		1		4	kHz
f _{rec1}	Recovery frequency for OC; recovery frequency bit = 1		2		6	kHz
I _{OLD4} , I _{OLD5}	Undercurrent threshold to supply or GND	V _S = 13.5 V; V _{CC} = 5 V;	60	150	300	mA
I _{OLD6}		sink and source	8	30	80	mA
н. т	Undercurrent threshold to supply in low on-resistance mode		15	40	60	mA
I _{OLD7}	Undercurrent threshold to supply in high on-resistance mode		5	10	15	mA
	Undercurrent threshold to supply in low on-resistance mode	V _S = 13.5 V; V _{CC} = 5 V; source	10	30	45	mA
I _{OLD8}	Undercurrent threshold to supply in high on-resistance mode		5	10	15	mA
I _{OLD9} , I _{OLD10}	Undercurrent threshold to supply		10	20	30	mA
t _{FOL}	Filter time of open-load signal	Duration of open- load condition to set the status bit	0.5	2.0	3.0	ms

Table 14. Current monitoring

2.7 H-bridge driver

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit				
Oymbol				тур.	Max.	Onit				
Drivers for external high-side Power-MOS										
I _{GHx(Ch)}	Average charge current (charge stage)	T _j = 25 °C		0.3		А				
P	On-resistance (discharge-	$V_{SHx} = 0 \text{ V}; \text{ I}_{GHx} = 50 \text{ mA};$ T _j = 25 °C	4	6	8	Ω				
R _{GHx}	stage)	$V_{SHx} = 0 \text{ V}; \text{ I}_{GHx} = 50 \text{ mA};$ T _j = 125 °C		8	10	Ω				
V _{GHxH}	Gate-on voltage	Outputs floating	V _{SHx} + 8	V _{SHx} + 10	V _{SHx} + 11.5	V				
R _{GSHx}	Passive gate-clamp resistance	V _{GHx} = 0.5 V		15		kΩ				
	Drivers for	external low-side Power-MO	S							
I _{GLx(Ch)}	Average charge-current (charge stage)	T _j = 25 °C		0.3		А				
P.	On-resistance (discharge-	$V_{SLx} = 0 \text{ V}; \text{ I}_{GHx} = 50 \text{ mA};$ T _j = 25 °C	4	6	8	Ω				
R _{GLx}	stage)	$V_{SLx} = 0 \text{ V}; \text{ I}_{GHx} = 50 \text{ mA};$ T _j = 125 °C		8	10	Ω				
V _{GHLx}	Gate-on voltage	Outputs floating	V _{SLx} + 8	V _{SLx} + 10	V _{SLx} + 11.5	V				
R _{GSLx}	Passive gate-clamp resistance			15		kΩ				

 Table 15. Gate drivers for the external Power-MOS (H-bridge)

Table 16. Gate drivers for the external Power-MOS switching times

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
T _{G(HL)xHL}	Propagation delay time high to low (switch mode) ⁽¹⁾	V_S = 13.5 V; V_{SHx} = 0; R _G = 0 Ω; C _G = 2.7 nF		1.5		μs
T _{G(HL)xLH}	Propagation delay time low to high (switch mode) ⁽¹⁾			1.5		μs
I _{GHxrmax}	Maximum charge current (current mode)	$\label{eq:V_S} \begin{array}{l} V_S = 13.5 \ V; \ V_{SHx} = 0; \\ V_{GHx} = 1 \ V; \\ SLEW < 4:0 \geq 1 \ F_H \end{array}$	24.5	31	38.5	mA
I _{GHxfmax}	Maximum discharge current (current mode)	$ \begin{array}{l} V_{S} = 13.5 \ V; \ V_{SHx} = 0; \\ V_{GHx} = 2 \ V; \\ SLEW < 4:0 \geq 1 \ F_{H} \end{array} $	18.5	25	33	mA
dl _{IGHxr}	Charge current accuracy	V_{S} = 13.5 V; V_{SHx} = 0; V_{GHx} = 1V	See Figure 6			
dl _{IGHxf}	Discharge current accuracy	V_{S} = 13.5 V; V_{SHx} = 0; V_{GHx} = 2 V	See	See Figure 7		

Table To. Gate drivers for the external Power-MOS switching times								
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
V _{DSHxrSW}	Switching Voltage ($V_S - V_{SH}$) between current mode and switch mode (rising)	V _S = 13.5 V		1.5		V		
V _{TDSHxf} ⁽²⁾	Trigger Voltage to sample the V_{GSH} for switching between switch mode and current mode (falling)	V _S = 13.5 V; V _{GHx} = 4 V		1.5		V		
V _{TGSHxacc}	Sampled trigger voltage accuracy	V _S = 13.5 V; V _{SHx} = 0		1		V		
t0 _{GHxr}	Rise time (switch mode)	V_{S} = 13.5 V; V_{SHx} = 0; R _G = 0 Ω; C _G = 2.7 nF		45		ns		
t0 _{GHxf}	Fall time (switch mode)	V_{S} = 13.5 V; V_{SHx} = 0; R _G = 0 Ω; C _G = 2.7 nF		85		ns		
t0 _{GLxr}	Rise time	V_{S} = 13.5 V; V_{SLx} = 0; R _G = 0 Ω; C _G = 2.7 nF		45		ns		
t0 _{GLxf}	Fall time			85		ns		
t _{CCP}	Programmable cross-current protection time		0.1		5	μs		
f _{PWMH}	PWMH switching frequency ⁽¹⁾				50	kHz		

 Table 16. Gate drivers for the external Power-MOS switching times

1. Without cross-current protection time t_{CCP}

2. Parameter not tested, typical value validated by characterization.

Figure 6. IGHxr ranges

Figure 7. IGHxf ranges

57

Figure 8. H-driver delay times

Table 17	. Drain	source	monitoring
----------	---------	--------	------------

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{SCd1}	Drain-source threshold voltage	V _S = 13.5 V	0.3	0.5	0.7	V
V _{SCd2}	Drain-source threshold voltage	V _S = 13.5 V	0.8	1	1.2	V
V _{SCd3}	Drain-source threshold voltage	V _S = 13.5 V	1.2	1.5	1.8	V
V _{SCd4}	Drain-source threshold voltage	V _S = 13.5 V	1.6	2	2.4	V
t _{SCd}	Drain-source monitor filter time		3	5.5	8	μs
t _{scs}	Drain-source comparator settling time	V_{S} = 13.5 V; V_{SH} = jump from GND to V_{S}	_		5	μs

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{ODSL}	Low-side drain-source monitor low off-threshold voltage	V _{SLx} = 0 V; V _S = 13.5 V	0.14 * V _S	0.18 * V _S	0.21 * V _S	V
V _{ODSH}	Low-side drain-source monitor high off-threshold voltage	V _{SLx} = 0 V; V _S = 13.5 V	0.75 * V _S	0.85 * V _S	0.95 * V _S	V
V _{OLSHx}	Output voltage of selected SHx in open-load test mode	V _{SLx} = 0 V; V _S = 13.5 V		0.5 * V _S		V
R _{pdOL}	Pull-down resistance of the non- selected SHx pin in open-load mode	V _{SLx} = 0 V; V _S = 13.5 V; V _{SHX} = 4.5 V		20		kΩ
T _{OL}	Open-load filter time			2		ms

Table 18. Open-load monitoring

2.8 SPI / logic – electrical characteristics

The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6V \leq V_S \leq 18 V, 4.75 V \leq V_{CC} \leq 5.5 V; all outputs open; T_i = -40 °C to 150 °C, unless otherwise specified.

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
t _{set}	Delay time	Switching time from standby to active mode. Time until output drivers are enabled after CSN going to high and set bit $0 = 1$ of control register 0.	250	310	410	μs
t _{wakup}	Wake-up time	Switching from standby to active mode. Time after the first falling edge of CSN until the first positive CLK edge, which latches EN = 1 correctly into the device	_		20	μs
t _{awake}	Stay awake time	Switching from standby to active mode. After the first rising edge of CSN a second SPI frame with EN = 1 is correctly recognized	_	256		μs

Table 19. Delay time from Standby to Active mode

Table 20. Inputs: DI, CSN, CLK, DIR and PWMH

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
	In	puts: CSN, CLK, DI, DIR, PWMH				
V _{IL}	Input voltage low level	$V_{\rm S}$ = 13.5 V; $V_{\rm CC}$ = 5.0 V	0.3 * V _{CC}			V
V _{IH}	Input voltage high level	$V_{S} = 13.5 \text{ V}; V_{CC} = 5.0 \text{ V}$			0.7 * V _{CC}	V
V _{IHYS}	Input hysteresis	$V_{S} = 13.5 \text{ V}; V_{CC} = 5.0 \text{ V}$	500			mV
R _{CSN in}	CSN pull-up resistor		60	110	215	kΩ
R _{CLK in}	CLK pull-down resistor	$V_{S} = 13.5 V; V_{CC} = 5.0 V;$ 0.3 * $V_{CC} \le V_{CLK} \le V_{CC}$	60	110	215	kΩ
R _{DI in}	DI pull-down resistor	$V_{S} = 13.5 \text{ V}; V_{CC} = 5.0 \text{ V}; \\ 0.3 * V_{CC} \le V_{DI} \le V_{CC}$	60	110	215	kΩ
R _{DIR}	DIR pull-down resistor		60	110	215	kΩ
R _{PWMH}	PWMH pull-down resistor	$V_{S} = 13.5 V; V_{CC} = 5.0 V;$ 0.3 * $V_{CC} \le V_{PWMH} \le V_{CC}$	60	110	215	kΩ
		Output: DO				
V _{OL}	Output voltage low level	$I_{OL} = 5 \text{ mA}; \text{ V}_{S} = 13.5 \text{ V};$ $V_{CC} = 5.0 \text{ V}$			0.3 * V _{CC}	V
V _{OH}	Output voltage high level	I_{OH} = -5 mA; V _S = 13.5 V; V _{CC} = 5.0 V	0.7 * V _{CC}			V
I _{DOLK}	3-state leakage current	$V_{\rm CSN} = V_{\rm CC}; 0 < V_{\rm DO} < V_{\rm CC}$	-10		10	μA

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
C _{OUT} ⁽¹⁾	Output capacitance (DO)		_	_	10	pF
C _{IN} ⁽¹⁾	Input capacitance (DI, CSN, CLK, DIR, PWMH)		_	_	10	pF

Table 21.	AC-Characteristics
-----------	---------------------------

1. Value of input capacity is not measured in production test. Parameter guaranteed by design.

For definition of the parameters please see Figure 9, Figure 10 and Figure 11.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{CSNQVL}	DO enable from 3-state to low level	$\label{eq:cd} \begin{array}{l} C_{DO} = 100 \mbox{ pF; } I_{DO} = 1 \mbox{ mA;} \\ \mbox{pull-up load to } V_{CC}; \mbox{ V}_S = 13.5 \mbox{ V;} \\ \mbox{V}_{CC} = 5 \mbox{ V} \end{array}$		100	250	ns
t _{CSNQVH}	DO enable from 3-state to high level	$\begin{array}{l} C_{DO} = 100 \text{pF; } \text{I}_{DO} = \text{-1 mA;} \\ \text{pull-down load to GND;} \\ \text{V}_{\text{S}} = 13.5 \text{ V; } \text{V}_{\text{CC}} = 5 \text{ V} \end{array}$		100	250	ns
^t CSNQTL	DO disable from low level to 3-state	$\begin{array}{l} C_{DO} = 100 \text{pF; } \text{I}_{DO} = 4 \text{ mA;} \\ \text{pull-up load to } \text{V}_{CC} \text{; } \text{V}_{S} = 13.5 \text{ V;} \\ \text{V}_{CC} = 5 \text{ V} \end{array}$		380	450	ns
t _{CSNQTH}	DO disable from high level to 3-state	$\begin{array}{l} C_{DO} = 100 \text{ pF}; \text{ I}_{DO} = \text{-4 mA};\\ \text{pull-down load to GND};\\ \text{V}_{\text{S}} = 13.5 \text{ V}; \text{ V}_{\text{CC}} = 5 \text{ V} \end{array}$		380	450	ns
t _{CLKQV}	CLK falling until DO valid	$V_{DO} < 0.3 * V_{CC} \text{ or}$ $V_{DO} > 0.7 * V_{CC}; C_{DO} = 100 \text{ pF};$ $V_{S} = 13.5 \text{ V}; V_{CC} = 5 \text{ V}$		50	250	ns
t _{SCSN}	CSN setup time, CSN low before rising edge of CLK	V _S = 13.5 V; V _{CC} = 5 V	400			ns
t _{SDI}	DI setup time, DI stable before rising edge of CLK	V _S = 13.5 V; V _{CC} = 5 V	200			ns
T _{CLK}	Clock Period	$V_{S} = 13.5 \text{ V}; V_{CC} = 5 \text{ V}$	1000			ns
t _{HCLK}	minimum CLK high time	V _S = 13.5 V; V _{CC} = 5 V	115			ns
t _{LCLK}	minimum CLK low time	V _S = 13.5 V; V _{CC} = 5 V	115			ns
t _{HCSN}	minimum CSN high time	V _S = 13.5 V; V _{CC} = 5 V	4			μs
t _{SCLK}	CLK setup time before CSN rising	V _S = 13.5 V; V _{CC} = 5 V	400			ns
t _{r DO}	DO rise time	$C_{DO} = 100 \text{ pF}; \text{ V}_{S} = 13.5 \text{ V};$ $\text{V}_{CC} = 5 \text{ V}$		80	140	ns
t _{f DO}	DO fall time	C _{DO} = 100 pF; V _S = 13.5 V; V _{CC} = 5 V		50	100	ns

Table 22. Dynamic characteristics

	-	· · · · · ·	·			
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{r in}	rise time of input signal DI, CLK, CSN	V _S = 13.5 V; V _{CC} = 5 V			100	ns
t _{f in}	fall time of input signal DI, CLK, CSN	V _S = 13.5 V; V _{CC} = 5 V			100	ns

Table 22. Dynamic characteristics (continued)

Symbol	Parameter	Parameter Test condition										
TC _{WDTO}	Watchdog time out		50	64	100	ms						
	Figure 12. Power-output (OUT<10:4>) timing											
		CSN low to high: data from transferred to output powe	0									

Table 23. Watchdog

3 Application information

3.1 Dual power supply: V_S and V_{CC}

The power supply voltage V_s supplies the power drivers and the Power-MOS gate drivers. For supplying the high-side drivers for the power- and gate-driver outputs, an internal charge-pump is used. The SPI interface and the logic circuitry is supplied by V_{CC} .

Due to the independent V_{CC} supply the control and status information are not lost, if there are spikes or glitches on the power supply voltage.

3.2 Wake up and Active mode/standby mode

After power up of V_S and V_{CC} the device operates in standby-mode. Pulling the signal CSN to low level wakes the device up and the analog part is activated (active mode). After at least 10 μ s, the first SPI communication is valid and the EN-bit can be used to set the EN-mode.

The device can be set into active mode writing a '1' into the EN-register. If the EN-register is not set to '1', the device goes back to standby mode typical 256 μ s after the rising edge of CSN and all latched data are cleared. In standby mode the current at V_S (V_{CC}) is less than 6 μ A (5 μ A) for CSN = high (DO in 3-state). It is recommended to switch all outputs off before entering standby mode.

3.3 Charge pump

The charge pump uses two external capacitors, which are switched with a frequency of typically 125 kHz. The output of the charge pump has a current limitation. In standby mode and after a thermal shutdown has been triggered the charge pump is disabled. If the charge pump output voltage remains too low for longer than T_{CP} , the power-MOS outputs, the EC-control are switched off and the H-Bridge gate drivers are switched to resistive low. The CP_LOW bit has to be cleared through a software reset to reactivate the drivers.

3.4 Diagnostic functions

All diagnostic functions (overcurrent, open-load, power supply overvoltage /undervoltage, temperature warning and thermal shutdown) are internally filtered. The condition has to be valid for at least the associated filter time before the corresponding status bit in the status registers is set. The filters are used to improve the noise immunity of the device. The open-load and temperature warning functions are intended for information purpose and do not change the state of the output drivers. On contrary, the overcurrent condition disables the corresponding driver and thermal shutdown disables all drivers. Without setting the overcurrent recovery bits in the input data register, the microcontroller has to clear the overcurrent status bits to reactivate the corresponding drivers.

3.5 Overvoltage and undervoltage detection at V_S

If the power supply voltage V_S rises above the overvoltage threshold V_{SOV_OFF}, the outputs OUT4 to OUT10 are switched to high impedance state, the charge pump is disabled and the H-Bridge gate drivers are switched into sink condition to protect the H-bridge and the load. When the voltage V_S drops below the undervoltage threshold V_{SUV_OFF} (UV-switch-OFF voltage), the output stages are switched to high impedance to avoid the operation of the power devices without sufficient gate driving voltage (increased power dissipation). If the supply voltage V_S recovers to normal operating voltage, the charge pump is switched on again, the CP_LOW bit is cleared and the output stages return to the programmed state. If the undervoltage/overvoltage recovery disable bit is set, the automatic turn-on of the drivers is deactivated.

If the undervoltage/overvoltage recovery disable bit (OV_UV_RD) is set, the microcontroller needs to clear the status bits to reactivate the drivers. It is recommended to set OV_UV_RD bit to avoid a possible high current oscillation in case of a shorted output to GND and low battery voltage.

3.6 Overvoltage and undervoltage detection at V_{CC}

At power-on (V_{CC} increases from undervoltage to V_{POROFF}) the circuit is initialized by an internally generated power-on-reset (POR). If the voltage V_{CC} decreases below the low threshold (V_{PORON}), the outputs are switched to 3-state (high impedance) and the status registers are cleared. If the voltage at pin V_{CC} increases above the V_{CC} reset high threshold V_{VCCRESHU}, the device enters the reset state, all outputs are switched off and all internal registers are cleared. After the voltage at pin V_{CC} has decreased below V_{VCCRESHL}, the device enters normal operating mode again and the internal registers are reset.

3.7 Temperature warning and shutdown

If the junction temperature rises above the temperature warning threshold (T_{jTW}) , a temperature warning flag is set after the temperature warning filter time (T_{jtft}) and can be read via SPI. If the junction temperature increases above the temperature shutdown threshold (T_{jTS}) , the thermal shutdown bit is set and the power transistors of all output stages are switched off to protect the device after the thermal shutdown filter time. The gates of the H-Bridge are discharged by the 'Resistive Low' mode.

The temperature warning and thermal shutdown flags are latched and must be cleared by the microcontroller. This is done by a read and clear command on an arbitrary register, because both bits are part of the global status register.

After these bits have been cleared, the output stages are reactivated. If the temperature is still above the thermal warning threshold, the thermal warning bit is set after T_{jtft} . Once this bit is set and the temperature is above the temperature shutdown threshold, temperature shutdown is detected after T_{jtft} and the outputs are switched off. Therefore the minimum time after which the outputs are switched off after the bits have been cleared in case the temperature is still above the thermo-shutdown threshold is twice the thermo-warning/-shutdown filter time T_{jtft} .

3.8 Inductive loads

Each half bridge is built by internally connected high- and low-side power DMOS transistors. Due to the built-in reverse diodes of the output transistors, inductive loads can be driven at the outputs OUT4 to OUT6 without external freewheeling diodes. The high-side drivers OUT7 to OUT10 are intended to drive resistive loads. Therefore only a limited energy (E < 1 mJ) can be dissipated by the internal ESD-diodes in freewheeling condition. For inductive loads (L > 100 μ H) an external freewheeling diode connected between GND and the corresponding output is required.

3.9 Open-load detection

The open load detection monitors the load current in each activated output stage. If the load current is below the open load detection threshold for at least t_{FOL} the corresponding open-load bit is set in the status register. Due to mechanical/electrical inertia of typical loads a short activation of the outputs (e.g. 3 ms) can be used to test the open load status without changing the mechanical/electrical state of the loads.

3.10 Overcurrent detection

In case of an overcurrent condition, a flag is set in the status register. If the overcurrent signal is valid for at least T_{FOC} , the overcurrent flag is set and the corresponding driver is switched off to reduce the power dissipation and to protect the integrated circuit. If the overcurrent recovery bit of the output is cleared, the microcontroller has to clear the status bits to reactivate the corresponding driver.

3.11 Current monitor

The current monitor output sources a current image at the current monitor output, which has three fixed ratios of the instantaneous current of the selected high-side driver. Outputs with a resistance of 500 m Ω and higher have a ratio of 1/2000, except for OUT8, which has a ratio of 1/6500, and those with a lower resistance one of 1/10000. The signal at output CM is blanked after switching on the driver until correct settlement of the circuitry. The bits CM_SEL<3:0> define which of the outputs are multiplexed to the current monitor output CM. The current monitor output allows a more precise analysis of the actual state of the load rather than the detection of an open- or overload condition. For example, it can be used to detect the motor state (starting, free running, stalled). Moreover, it is possible to control the power of the defroster more precisely by measuring the load current. The current monitor output is enabled after the current-monitor blanking time, when the selected output is switched on. If this output is off, the current monitor output is in high-impedance mode.

3.12 **PWM mode of the power outputs**

Each driver has a corresponding PWM enable bit, which can be programmed by the SPI interface. If the PWM enable bit is set, the output is controlled by the logically AND-combination of an internally generated PWM signal and the output control bit of the corresponding driver. The PWM-Frequency of all outputs can be programmed to either 122 Hz of 244 Hz typically. The on-duty-cycle is set by the four 7-bit registers, which control one PWM counter each. Therefore the maximum on-time is 100% - 1 LSB.

1 LSB = 100/128 %. Which output uses which corresponding PWM driver can be seen in the SPI register definition. When programming a specific duty-cycle, the output on/off times as well as the slopes must be taken into account.

3.13 Cross-current protection

The six half-brides of the device are crosscurrent protected by an internal delay time. If one driver (LS or HS) is turned off, the activation of the other driver of the same half bridge is automatically delayed by the crosscurrent protection time. After the crosscurrent protection time is expired the slew-rate limited switch-off phase of the driver is changed to a fast turn-off phase and the opposite driver is turned-on with slew-rate limitation. Due to this behavior, it is always guaranteed that the previously activated driver is completely turned off before the opposite driver starts to conduct

3.14 Programmable soft-start function to drive loads with higher inrush current

Loads with start-up currents higher than the overcurrent limits (e.g. inrush current of lamps, Start current of motors and cold resistance of heaters) can be driven by using the programmable softstart function (i.e. overcurrent recovery mode). Each driver has a corresponding overcurrent recovery bit. If this bit is set, the device automatically switches the outputs on again after a programmable recovery time. The duty cycle in overcurrent condition can be programmed by the SPI interface to about 12 % or 25 %. The PWM modulated current provides sufficient average current to power up the load (e.g. heat up the bulb) until the load reaches operating condition. The PWM frequency settles at 1.7 kHz and 3 kHz. The device itself cannot distinguish between a real overload and a non linear load like a light bulb. A real overload condition can only be qualified by time. For overload detection the microcontroller can switch on the light bulbs by setting the overcurrent recovery bit for the first e.g. 50 ms. After clearing the recovery bit the output is automatically switched off, if the overload condition remains. This overcurrent detection procedure has to be followed in order to make it possible to switch on the low side driver of a bridge output, if the associated high-side driver has been used in recovery mode before.

Figure 13. Overcurrent recovery mode

H-bridge control (DIR, PWMH, bits SD, SDS) 3.15

The PWMH input controls the drivers of the external H-bridge transistors. The motor direction can be chosen with the direction input (DIR), the duty cycle and frequency with the PWMH input. With the SPI-registers SD and SDS four different slow-decay modes (via drivers and via diode) can be selected using the high side or the low side transistors. Unconnected inputs are defined by internal pull-down current.

	Con pi	itrol ns	Со	ntrol	bits		Fai	lure l	oits			Outp	ut pin	ı			
N°	DIR	PWMH	HEN	SD	SDS	CP_LOW	٥V	٨N	SQ	TSD	GH1	GL1	GH2	GL2	Comment		
1	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	RL	RL	RL	RL	H-bridge disabled		
2	Х	Х	1	Х	Х	1	0	0	0	0	RL	RL	RL	RL	Charge pump voltage too low		
3	Х	Х	1	Х	Х	0	Х	Х	Х	1	RL	RL	RL	RL	Thermo-shutdown		
4	Х	Х	1	Х	Х	0	1	0	0	0	L	L	L	L	Overvoltage		
5	Х	Х	1	Х	Х	0	0	0	1	0	L ⁽¹⁾	L ⁽¹⁾	L ⁽¹⁾	L ⁽¹⁾	Short-circuit ⁽¹⁾		
6	0	1	1	Х	Х	0	0	0	0	0	L	Н	Н	L	Bridge H2/L1 on		
7	Х	0	1	0	0	0	0	0	0	0	L	Н	L	Н	Slow-decay mode LS1 and LS2 on		
8	0	0	1	0	1	0	0	0	0	0	L	Н	L	L	Slow-decay mode LS1 on		

Table 24. H-bridge control truth table

		ntrol ns	Cor	ntrol	bits		Fai	lure l	oits			Output pin					
N°	DIR	PWMH	HEN	SD	SDS	CP_LOW	٥V	١٧	SQ	TSD	6H1	GL1	GH2	GL2	Comment		
9	1	0	1	0	1	0	0	0	0	0	L	L	L	Н	Slow-decay mode LS2 on		
10	1	1	1	Х	Х	0	0	0	0	0	Н	L	L	Н	Bridge H1/L2 on		
11	х	0	1	1	0	0	0	0	0	0	н	L	н	L	Slow-decay mode HS1 and HS2 on		
12	0	0	1	1	1	0	0	0	0	0	L	L	Н	L	Slow-decay mode HS2 on		
13	1	0	1	1	1	0	0	0	0	0	Н	L	L	L	Slow-decay mode HS1 on		

Table 24. H-bridge c	ontrol truth table	(continued)
----------------------	--------------------	-------------

1. Only the half-bridge (low and high-side), in which one MOSFET is in short circuit condition is switched off. Both MOSFETs of the other half-bridge remain active and driven by DIR and PWMH

3.16 H-bridge driver slew-rate control

The rising and falling slope of the drivers for the external high-side Power-MOS can be slew rate controlled. If this mode is enabled the gate of the external high-side Power-MOS is driven by a current source instead of a low-impedance output driver switch as long as the drain-source voltage over this Power-MOS is below the switch threshold. The current is programmed using the bits SLEW<4:0>, which represent a binary number. This number is multiplied by the minimum current step. This minimum current step is the maximum source/sink-current ($I_{GHxrmax} / I_{GHxfmax}$) divided by 31. Programming SLEW<4:0> to 0 disables the slew rate control and the output is driven by the low-impedance output driver switch.

3.17 Resistive low

The resistive output mode protects the L99DZ81EP and the H-bridge in the standby mode and in some failure modes (thermal shut down (TSD), charge pump low (CP_LOW) and stuck-at-'1' at pin DI). When a gate driver changes into the resistive output mode due to a failure a sequence is started. In this sequence the concerning driver is switched into sink condition for 32 μ s to 64 μ s to ensure a fast switch-off of the H-bridge transistor. If slew rate control is enabled, the sink condition is slew-rate controlled. Afterwards the driver is switched into the resistive output mode (resistive path to source).

3.18 Short circuit detection/drain source monitoring

The drain source voltage of each activated external MOSFET of the H-bridge is monitored by comparators to detect shorts to ground or battery. If the voltage-drop over the external MOSFET exceeds the threshold voltage V_{SCd} for longer than the short current detection time t_{SCd} the corresponding gate driver switches the external MOSFET off and the corresponding drain source monitoring flag (DS_MON[3:0]) is set. The DS_MON bits have

to be cleared through the SPI to reactivate the gate drivers. The drain source monitoring has a filter time of typ. 6 µs. This monitoring is only active while the corresponding gate driver is activated. If a drain-source monitor event is detected, the corresponding gate-driver remains activated for at maximum the filter time. When the gate driver switches on, the drain-source comparator requires the specified settling time until the drain-source monitoring is valid. During this time, this drain-source monitor event may start the filter time. The threshold voltage V_{SCd} can be programmed using the SPI.

DIAG<1>	DIAG<0>	Monitoring threshold voltage (typical)
0	0	V _{SCD1} = 0.5 V
0	1	V _{SCD2} = 1.0 V
1	0	V _{SCD3} = 1.5 V
1	1	V _{SCD4} = 2.0 V

Table 25.	H-bridge	DS-monitor	threshold
10010 20.	II-billuge		unconola

Figure 15. H-bridge diagnosis

H-bridge monitoring in off-mode 3.19

The drain source voltages of the H-Bridge driver external transistors can be monitored, while the transistors are switched off. If either bit OL_H1L2 or OL_H2L1 is set to '1', while bit HEN = '1', the H-drivers enter resistive low mode and the drain-source voltages can be monitored. Since the pull-up resistance is equal to the pull-down resistance on both sides of

the bridge a voltage of 2/3 V_S on the pull-up high-side and 1/3 V_S on the low side is expected, if they drive a low-resistive inductive load (e.g. motor). If the drain source voltage on each of these Power-MOS is less than 1/6 V_S, the drain-source monitor bit of the associated driver is set.

In case of a short to ground the drain-source monitor bits of both low-side gate drivers are set. A short to V_S can be diagnosed by setting the "H-Bridge OL high threshold (H-OLTH HIGH)" bit to one.

Figure 17. H-bridge open-load detection (open-load detected)

Figure 19. H-bridge open-load detection with H-OLTH HIGH = '1' (short to V_S detected)

3.20 Programmable cross current protection

Both external MOSFET transistors in one half-bridge are disabled for the cross-current protection time (t_{CCP}) after one MOSFET inside this halfbridge is switched off to prevent current flowing from the high-side to the low-side MOSFET.

The cross current protection time t_{CCP} can be programmed by SPI using bits COPT<3:0>.

COPT<3>	COPT<2>	COPT<1>	COPT<0>	Min	Тур	Max	unit
0	0	0	0	150	250	360	ns
0	0	0	1	390	500	670	ns
0	0	1	0	590	750	980	ns
0	0	1	1	800	1000	1280	ns
0	1	0	0	1000	1250	1600	ns
0	1	0	1	1210	1500	1910	ns
0	1	1	0	1420	1750	2220	ns
0	1	1	1	1630	2000	2540	ns
1	0	0	0	1830	2250	2850	ns
1	0	0	1	2050	2500	3120	ns
1	0	1	0	2250	2750	3450	ns
1	0	1	1	2460	3000	3760	ns
1	1	0	0	2660	3250	4100	ns
1	1	0	1	2880	3500	4370	ns
1	1	1	0	3080	3750	4680	ns
1	1	1	1	3200	4000	5000	ns

Table 26. Cross-current protection time

3.21 Watchdog

The watchdog monitors the μ C during normal operation within a nominal trigger cycle of 60ms. The watchdog is triggered by toggling the watchdog bit, which restarts the watchdog timer (i.e. content of the watchdog trigger bit has to be inverted). If no watchdog bit inversion has been occurred during the watchdog time-out time T_{WDTO} the H-bridge drivers switch into resistive-low condition, all power outputs are switched off.

4 Functional description of the SPI

4.1 General description

The SPI complies with Standard ST-SPI Interface Version 3.1.

Its communication is based on a Serial Peripheral Interface structure using CSN (Chip Select Not), DI (Serial Data In), DO (Serial Data Out/Error) and CLK (Serial Clock) signal lines.

4.1.1 Chip Select Not (CSN)

The CSN input pin is used to select the serial interface of this device. When CSN is high, the output pin (DO) is in high impedance state. A low signal wakes up the device and a serial communication can be started. The state when CSN is going low until the rising edge of CSN is called a communication frame.

4.1.2 Serial Data In (DI)

The DI input pin is used to transfer data serially into the device. The data applied to the DI is sampled at the rising edge of the CLK signal. A stuck-at '0' or '1' enters the standby mode.

4.1.3 Serial Clock (CLK)

The CLK input signal provides the timing of the serial interface. The Data Input (DI) is latched at the rising edge of Serial Clock CLK. The SPI can be driven by a micro controller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. Data on Serial Data Out (DO) is shifted out at the falling edge of the serial clock (CLK). The serial clock CLK must be active only during a frame (CSN low). Any other switching of CLK close to any CSN edge could generate set up/hold violations in the SPI logic of the device. The clock monitor counts the number of clock pulses during a communication frame (while CSN is low). If the number of CLK pulses does not correspond to the frame width indicated in the <SPI-frame-ID> (ROM address 03H) the frame is ignored and the <frame error> bit in the <Global Status Byte> is set.

Note: Due to this safety functionality, daisy chaining the SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected ICs is recommended.

4.1.4 Serial Data Out (DO)

The data output driver is activated by a logical low level at the CSN input and goes from high impedance to a low or high level depending on the global status bit 7 (Global Error Flag). The content of the selected status or control register is transferred into the data out shift register after the address bits have been transmitted. Each subsequent falling edge of the CLK shifts the next bit out.

4.1.5 SPI communication flow

At the beginning of each communication the master can read the contents of the <SPIframe-ID> register (ROM address 03H) of the slave device.

This 8-bit register indicates the SPI frame length (24 bit) and the availability of additional features. Each communication frame consists of a command byte, which is followed by two data bytes.

The data returned on DO within the same frame always starts with the <Global Status> Byte. It provides general status information about the device. It is followed by two data bytes (i. e. 'In-frame-response').

For write cycles the <Global Status> Byte is followed by the previous content of the addressed register.

Figure 20. Write and read SPI

4.2 Command byte

														,										
Command byte			Data byte 1				Data byte 2																	
Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	OC1	OC0	A5	A4	A3	A2	A1	A0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Table 27. Command byte

OCx: operation code

Ax: address

Dx: data bit

Each communication frame starts with a command byte. It consists of an operating code which specifies the type of operation (<Read>, <Write>, <Read and Clear>, <Read Device Information>) and a 6 bit address. If less than 6 bits are required, the remaining bits are unused but are reserved.

4.2.1 Operation code definition

Table 28. Operation code definition

OC1	OC0	Meaning
0	0	<write mode=""></write>
0	1	<read mode=""></read>
1	0	<read and="" clear="" mode=""></read>
1	1	<read device="" information=""></read>

The <Write Mode> and <Read Mode> operations allow access to the RAM of the device.

A <Read and Clear Mode> operation is used to read a status register and subsequently clear its content.

The <Read Device Information> allows access to the ROM area which contains device related information such as <ID-Header>, <Product Code>, <Silicon Version> and <SPI-frame-ID>.

4.3 Device memory map

Table	29.	RAM	memory	map
-------	-----	-----	--------	-----

Address	Name	Access	Content
00h	Control Register 0	Read/write	Device enable, output bridge and H-bridge open-load control
01h	Control Register 1	Read/write	High-side/ low-side
02h	Control Register 2	Read/write	Bridge recovery mode, PWM

Address	Name	Access	Content
03h	Control Register 3	Read/write	High-side recovery mode, PWM setup and current- monitor selection
04h	Control Register 4	Read/write	H-bridge driver control
05h	Control Register 5	Read/write	PWM register
06h	Control Register 6	Read/write	PWM register
10h	Status Register 0	Read/clear	Output bridge overcurrent and H-bridge drain-source diagnosis
11h	Status Register 1	Read/clear	Output bridge and H-bridge open-load diagnosis
12h	Status Register 2	Read/clear	High-side overcurrent/open-load
13h	Status Register 3	Read/clear	V _S and chargepump diagnosis
3Fh	Configuration Reg.	Read/write	Mask bits in global status register

Table 29. RAM memory map (continued)

Table 30. ROM memory map

Address	Name	Access	Content
00h	ID Header	Read only	4300h (ASSP ST_SPI)
01h	Version	Read only	0200h
02h	Product Code 1	Read only	0100h (01 ST_SPI)
03h	Product Code 2	Read only	5500h (U ST_SPI)
3Eh	SPI-Frame ID.	Read only	4200h SPI-Frame-ID (ST_SPI)

5 SPI - control and status registers

Bit	7	6	5	4	3	2	1	0
Name	GL_ER	CO_ER	C_RESET	TSD	TW	UOV_OC_DS	OL	NR
Reset	0	0	1	0	0	0	0	0

Table	31.	Global	status	byte
-------	-----	--------	--------	------

GL_ER:	Global Error Flag. Failures of bits 6 to 0 are always linked to the Global Error Flag. This flag is set, if at least one of these bits indicates a failure. It is reflected via the DO pin while CSN is held low and no SPI clock signal is applied. This operation does not cause the Communication Error bit in the <global status=""> to be set. The signal TW bit3 and OL bit1can be masked.</global>
CO_ER:	Communication Error. If the number of clock pulses during the previous frame is not 24, the frame is ignored and this bit is set.
C_RESET:	Chip RESET. If a stuck at '1' on input DI during any SPI frame occurs, or if a Power On Reset (VCC monitor) occurs. C_RESET is reset ('1') with any SPI command. When C_RESET is active ('0'), the gate drivers are switched off (resistive path to source). After a startup of the circuit C_RESET is active due to the power-up reset pulse. Therefore, the gate drivers are switched off. They can only be activated after the C_RESET has been reset by an SPI command.
TSD:	Thermal shutdown. All gate drivers and the charge pump are switched off (resistive path to source). The TSD bit has to be cleared through a read and clear command to reactivate the gate drivers and the chargepump.
TW:	Thermal Warning. This bit can be masked using the configuration register.
UOV_OC_DS	: Logical OR of the filtered undervoltage/overvoltage, chargepump-low, overcurrent of the power outputs and the H-bridge drain-source monitor signals.
OL:	Open-load. Logical OR of the filtered output driver open-load signals. This bit can be masked using the configuration register.
NR:	Not Ready. After switching the device from standby mode to active mode an internal timer is started to allow the chargepump to settle before the outputs can be activated. This bit is cleared automatically after the startup time.

5.1 Control Register 0

Bit	Name	Access	Reset	Content
15	0		0	
	-		-	
14	0	_	0	
13	0	—	0	Reserved (must be set to '0')
12	0	_	0	
11	0	_	0	
10	0		0	
9	OUT4_HS on/off	Read/write	0	
8	OUT4_LS on/off	Read/write	0	The corresponding output driver is activated, if this bit is set.
7	OUT5_HS on/off	Read/write	0	Setting the PWM enable bit, the driver is only switched on, if the
6	OUT5_LS on/off	Read/write	0	PWM timer enables it. An internal cross-current protection prevents, that both the low- and high-side of the half-bridges
5	OUT6_HS on/off	Read/write	0	OUT4-OUT6 are switched on simultaneously.
4	OUT6_LS on/off	Read/write	0	
3	0	_	0	
2	0	_	0	Reserved (must be set to '0')
1	0	_	0	
0	EN	Read/write	0	The device is switched into active mode, if EN is '1'. It enters the standby mode, if the EN bit is '0'. In standby mode all bits are reset.

Table 32. Control Register 0

5.2 Control Register 1

Bit	Name	Access	Reset			Co	ntent	
15	OUT7_HS1 on/off	Read/write	0					
14	OUT7_HS2 on/off	Read/write	0	 	HS1	HS2	Mode	
13	OUT8_HS1 on/off	Read/write	0		0	0	Off	
				-	0	1	Low on-resistance	
12	OUT8_HS2 on/off	Read/write	0	-	1	0	High on-resistance	
					1	1	Off	
11	OUT9_HS on/off	Read/write	0			•	ver is activated, if this bit is set.	
10	OUT10_HS on/off	Read/write	0	Setting the PWM enable bit, the driver is only switche the PWM timer enables it.			he driver is only switched on, if	
9	0		0	Decerve	Reserved (must be set to '0')			
8	0	_	0	Reserve	a (must be	sei io U)		

Bit	Name	Access	Reset	Content
7	0	—	0	
6	0	—	0	
5	0	—	0	
4	0	—	0	Reserved (must be set to '0')
3	0	—	0	
2	0	—	0	
1	0	—	0	
0	0	_	0	

Table 33. Control Register 1 (continued)

5.3 Control Register 2

Bit	Name	Access	Reset	Content	
15	0	—	0		
14	0	—	0	Reserved (must be set to '0')	
13	0	—	0		
12	OUT4_OCR	Read/write	0		
11	OUT5_OCR	Read/write	0	Setting this bit to high enables the overcurrent recovery mode for the corresponding output.	
10	OUT6_OCR	Read/write	0		
9	0	—	0		
8	0	_	0		
7	0	_	0	Reserved (must be set to '0')	
6	0	—	0		
5	0	_	0		
4	OUT4_PWM1	Read/write	0		
3	OUT5_PWM2	Read/write	0	Setting this bit to '1' enables the PWM mode for the corresponding output.	
2	OUT6_PWM3	Read/write	0		
1	0	—	0	Reserved (must be set to '0')	
0	0	_	0		

Table 34. Control Register 2

5.4 Control Register 3

15 14	OUT7_OCR	Deed/write	1		Content		
14		Read/write	0				
40	OUT8_OCR	Read/write	0	 Setting this bit to high enables the overcurrent recovery mode 			
13	OUT9_OCR	Read/write	0				
12	OUT10_OCR	Read/write	0				
11	0		0	Reserved (must be set	Reserved (must be set to '0')		
10	OUT7_PWM1	Read/write	0				
9	OUT8_PWM2	Read/write	0	⁰ Setting this bit to '1' enables the PWM mode for the			
8	OUT9_PWM3	Read/write	0	corresponding output.			
7	OUT10_PWM4	Read/write	0				
6	0	_	0	Reserved (must be set	to '0')		
5	OCR_FREQ	Read/write	0	This bit defines the overcurrent recovery frequency (0: 1.7kHz (typ.) 1: 3kHz (typ.))			
4	OV_UV_RD	Read/write	0	If this bit is set, the associated status bit has to be cleared after an overvoltage /undervoltage event to enable the output drivers again.			
3	CM_SEL<3>	Read/write	0	A current image of the selected binary coded output is multiplexed to the CM output. If a corresponding output does not exist, the current monitor is deactivated (especially '0000').			
2	CM_SEL<2>	Read/write	0	CM_SEL<3:0>	Selected output		
2	CIVI_SEL<2>		0	0000	3-state		
				0001	Reserved		
		Read/write		0010	Reserved		
1	CM_SEL<1>		0	0011	Reserved		
							0100
				0101	OUT<5>		
				0110	OUT<6>		
				0111	OUT<7>		
				1000	OUT<8>		
0	CM_SEL<0>	Read/write	0	1001	OUT<9>		
				1010	OUT<10>		
				1011	Reserved		
				1100	Reserved		
				1101-1111	3-state		

Table 35. Control Register 3

5.5 Control Register 4

Bit	Name	Access	Reset	Content
15	SLEW<4>	Read/write	0	
14	SLEW<3>	Read/write	0	
13	SLEW<2>	Read/write	0	Binary coded Slew Rate Current of the H-Bridge
12	SLEW<1>	Read/write	0	
11	SLEW<0>	Read/write	0	
10	H-OLTH HIGH	Read/write	0	H-bridge OL high threshold (5/6 $* V_S$) select
9	OL_H1L2	Read/write	0	Test open-load condition between H1 and L2
8	OL_H2L1	Read/write	0	Test open-load condition between H2 and L1
7	SD	Read/write	0	Slow decay
6	SDS	Read/write	0	Slow decay single
5	COPT<3>	Read/write	1	
4	COPT<2>	Read/write	1	Cross surrent protection time (default 4000pp)
3	COPT<1>	Read/write	1	Cross-current protection time (default 4000ns)
2	COPT<0>	Read/write	1	
1	DIAG<1>	Read/write	0	Drain course menitoring threshold voltage
0	DIAG<0>	Read/write	0	Drain-source monitoring threshold voltage

 Table 36. Control Register 4

5.6 Control Register 5

Table	37	Control	Register 5
Table	57.	001101	Negister 5

Bit	Name	Access	Reset	Content
15	0	—	0	Reserved (must be set to '0')
14	PWM2<6>	Read/write	0	
13	PWM2<5>	Read/write	0	
12	PWM2<4>	Read/write	0	
11	PWM2<3>	Read/write	0	Binary coded PWM2 on-duty-cycle
10	PWM2<2>	Read/write	0	
9	PWM2<1>	Read/write	0	
8	PWM2<0>	Read/write	0	
7	PWMFREQ	Read/write	0	PWM-frequency (0: 122 Hz or 1: 244 Hz)

Bit	Name	Access	Reset	Content
6	PWM1<6>	Read/write	0	
5	PWM1<5>	Read/write	0	
4	PWM1<4>	Read/write	0	
3	PWM1<3>	Read/write	0	Binary coded PWM1 on-duty-cycle
2	PWM1<2>	Read/write	0	
1	PWM1<1>	Read/write	0	
0	PWM1<0>	Read/write	0	

Table 37. Control Register 5 (continued)

5.7 Control Register 6

Table 38. Control Register 6

Bit	Name	Access	Reset	Content
15	0	—	0	Reserved (must be set to '0')
14	PWM4<6>	Read/write	0	
13	PWM4<5>	Read/write	0	
12	PWM4<4>	Read/write	0	
11	PWM4<3>	Read/write	0	Binary coded PWM4 on-duty-cycle
10	PWM4<2>	Read/write	0	
9	PWM4<1>	Read/write	0	
8	PWM4<0>	Read/write	0	
7	0	—	0	Reserved (must be set to '0')
6	PWM3<6>	Read/write	0	
5	PWM3<5>	Read/write	0	
4	PWM3<4>	Read/write	0	
3	PWM3<3>	Read/write	0	Binary coded PWM3 on-duty-cycle
2	PWM3<2>	Read/write	0	
1	PWM3<1>	Read/write	0	
0	PWM3<0>	Read/write	0	

5.8 Configuration Register

Bit	Name	Access	Reset	Content	
15	0	—	0		
14	0		0		
13	0		0		
12	0	—	0		
11	0		0	Reserved (must be set to '0')	
10	0	—	0		
9	0	—	0		
8	0	—	0	0 0	
7	0	—	0		
6	HEN	Read/write	0	A '1' enables the H-bridge	
5	0	—	0	Reserved (must be set to '0')	
4	0	—	0		
3	MASK TW	Read/write	0	Masks thermo warning to global status register	
2	0	—	0	Reserved (must be set to '0')	
1	MASK OL	Read/write	0	Masks all open-load diagnosis to global status register	
0	WD	Read/write	0	Watchdog	

Table 39. Configuration Register

5.9 Status Register 0

Table 40. Status Register 0

Bit	Name	Access	Content	
15	0	Read		
14	0	Read		
13	0	Read	Reserved	
12	0	Read	Reserved	
11	0	Read		
10	0	Read		
9	OUT4_HS OC	Read/clear		
8	OUT4_LS OC	Read/clear		
7	OUT5_HS OC	Read/clear	Overcurrent status bit of the corresponding output driver. A '1' indicates	
6	OUT5_LS OC	Read/clear	that an overcurrent has occurred.	
5	OUT6_HS OC	Read/clear		
4	OUT6_LS OC	Read/clear		

Bit	Name	Access	Content
3	DS_MON_HS<2>	Read/clear	
2	DS_MON_HS<1>	Read/clear	DS-Monitoring bit. A '1' indicates that a drain-monitoring event (short-
1	DS_MON_LS<2>	Read/clear	circuit or open-load) has occurred.
0	DS_MON_LS<1>	Read/clear	

Table 40. Status Register 0 (continued)

5.10 Status Register 1

Bit	Name	Access	Content	
15	0	Read		
14	0	Read		
13	0	Read	Reserved	
12	0	Read	Reserved	
11	0	Read		
10	0	Read		
9	OUT4_HS OL	Read/clear		
8	OUT4_LS OL	Read/clear	Open-Load status bit of the corresponding output driver. A '1' indicates that an open-load event has occurred.	
7	OUT5_HS_OL	Read/clear		
6	OUT5_LS OL	Read/clear		
5	OUT6_HS OL	Read/clear		
4	OUT6_LS OL	Read/clear		
3	0	Read		
2	0	Read	Reserved	
1	0	Read	I CESEI VEG	
0	0	Read		

Table 41. Status Register 1

5.11 Status Register 2

Bit	Name	Access	Content	
15	OUT7 OC	Read/clear		
14	OUT7 OL	Read/clear		
13	OUT8 OC	Read/clear		
12	OUT8 OL	Read/clear	Oversurrent and open load status hit of the corresponding output driver	
11	OUT9 OC	Read/clear	Overcurrent and open-load status bit of the corresponding output driver	
10	OUT9 OL	Read/clear		
9	OUT10 OC	Read/clear		
8	OUT10 OL	Read/clear		
7	0	Read	- Reserved	
6	0	Read		
5	0	Read		
4	0	Read		
3	VS UV	Read/clear	V undervoltage and even/oltage status hit	
2	VS OV	Read/clear	V _S undervoltage and overvoltage status bit.	
1	0	Read	Beconved	
0	0	Read	Reserved	

Table 42. Status Register 2

5.12 Status Register 3

		r	
Bit	Name	Access	Content
15	0	Read	
14	0	Read	
13	0	Read	
12	0	Read	
11	0	Read	Percented .
10	0	Read	Reserved
9	0	Read	
8	0	Read	
7	0	Read	
6	0	Read	

Table 43. Status Register 3

Bit	Name	Access	Content
5	0	Read	
4	0	Read	
3	0	Read	Reserved
2	0	Read	
1	0	Read	
0	CP LOW	Read/clear	This bit indicates, that the charge pump voltage is too low

Table 43. Status Register 3 (continued)

6 Package and packing information

6.1 ECOPACK[®] package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

6.2 TQFP-64 mechanical data

Querra la cal	Millimeters				
Symbol	Min.	Тур.	Max.		
А			1,20		
A1	0,05		0,15		
A2	0,95	1,00	1,05		
b	0,17	0,22	0,27		
С	0,09		0,20		
D	11,80	12,00	12,20		
D1	9,80	10,00	10,20		
D2 ⁽¹⁾	5,85	6,00	6,15		
D3		7,50			
E	11,80	12,00	12,20		
E1	9,80	10,00	10,20		
E2 ⁽¹⁾	5,85	6,00	6,15		
E3		7,50			
е		0,50			
L	0,45	0,60	0,75		
L1		1,00			
k	0°	3,50°	7°		
CCC			0,08		

Table 44. TQFP-64 mechanical data

1. The size of exposed pads is variable depending on lead frame design and pad size end user should verify "D2" and "E2" dimensions for each device application

Figure 21. TQFP-64 package dimension

6.3 TQFP-64 packing information

The devices can be packed in tray or tape and reel shipments (see the *Figure 1: Device summary on page 1* for packaging quantities).

Figure 23. TQFP-64 power lead-less tray shipment (no suffix) (part 2)

Figure 25. TQFP-64 power lead-less tape and reel shipment (suffix "TR") (part 2)

7 Revision history

Table 45. Document	revision	history
--------------------	----------	---------

Date	Revision	Change	
12-Jun-2013	1	Initial release.	
19-Sep-2013	2	Updated Disclaimer.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

