Self-Protected Low Side Driver with Temperature and Current Limit

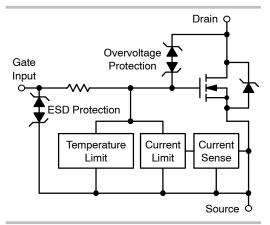
NCV8405A/B is a three terminal protected Low–Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain–to–Gate clamping for overvoltage protection. This device is suitable for harsh automotive environments.

Features

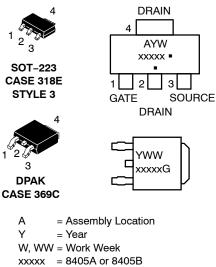
- Short-Circuit Protection
- Thermal Shutdown with Automatic Restart
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX
42 V	90 mΩ @ 10 V	6.0 A*

*Max current limit value is dependent on input condition.

- G or = Pb-Free Package
- (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating Drain-to-Source Voltage Internally Clamped			Value	Unit
			42	V
Drain-to-Gate Voltage Internally Clamped	(R _G = 1.0 MΩ)	V _{DGR}	42	V
Gate-to-Source Voltage		V _{GS}	±14	V
Continuous Drain Current		I _D	Internally L	imited
Power Dissipation – SOT–223 Version Power Dissipation – DPAK Version		P _D	1.0 1.7 11.4 2.0 2.5 40	W
Thermal Resistance – SOT-223 Version Thermal Resistance – DPAK Version	Junction-to-Ambient Steady State (Note 1) Junction-to-Ambient Steady State (Note 2) Junction-to-Soldering Point Steady State Junction-to-Ambient Steady State (Note 1) Junction-to-Ambient Steady State (Note 2) Junction-to-Soldering Point Steady State	R _{0JA} R _{0JA} R _{0JA} R _{0JA} R _{0JS}	130 72 11 60 50 3.0	°C/W
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 40 V, V_{G} = 5.0 V, I_{PK} = 2.8 A, L = 80 mH, R	_{G(ext)} = 25 Ω, TJ = 25°C)	E _{AS}	275	mJ
Load Dump Voltage $V_{LD} = V_A + V_S (V_{GS} = 0)$	and 10 V, R_{I} = 2.0 Ω , R_{L} = 6.0 Ω , t_{d} = 400 ms)	V_{LD}	53	V
Operating Junction Temperature		TJ	-40 to 150	°C
Storage Temperature		T _{stg}	-55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Surface-mounted onto min pad FR4 PCB, (2 oz. Cu, 0.06" thick).
2. Surface-mounted onto 2" sq. FR4 board (1" sq., 1 oz. Cu, 0.06" thick).

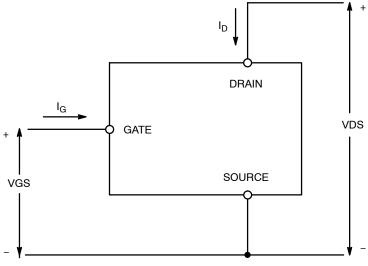


Figure 1. Voltage and Current Convention

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Condition	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						-
Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 10 mA, T _J = 25°C	V _{(BR)DSS}	42	46	51	V
(Note 3)	V_{GS} = 0 V, I _D = 10 mA, T _J = 150°C (Note 5)		42	45	51	
Zero Gate Voltage Drain Current	V_{GS} = 0 V, V_{DS} = 32 V, T_{J} = 25°C	I _{DSS}		0.5	2.0	μΑ
	$V_{GS} = 0 \text{ V}, V_{DS} = 32 \text{ V}, T_{J} = 150^{\circ}\text{C}$ (Note 5)			2.0	10	
Gate Input Current	$V_{DS} = 0 V, V_{GS} = 5.0 V$	I _{GSSF}		50	100	μA
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage	Vee - Vee le - 150 uA	Veg(th)	10	1.6	20	V

Gate Threshold Voltage	$v_{GS} = v_{DS}, I_D = 150 \mu\text{A}$	VGS(th)	1.0	1.0	2.0	v
Gate Threshold Temperature Coefficient		V _{GS(th)} /T _J		4.0		−mV/°C
Static Drain-to-Source On-Resistance	V_{GS} = 10 V, I _D = 1.4 A, T _J = 25°C	R _{DS(on)}		90	100	mΩ
	V _{GS} = 10 V, I _D = 1.4 A, T _J = 150°C (Note 5)			165	190	
	V_{GS} = 5.0 V, I _D = 1.4 A, T _J = 25°C			105	120	
	V _{GS} = 5.0 V, I _D = 1.4 A, T _J = 150°C (Note 5)			185	210	
	V_{GS} = 5.0 V, I _D = 0.5 A, T _J = 25°C	1		105	120	
	V _{GS} = 5.0 V, I _D = 0.5 A, T _J = 150°C (Note 5)			185	210	
Source-Drain Forward On Voltage	V _{GS} = 0 V, I _S = 7.0 A	V _{SD}		1.05		V

SWITCHING CHARACTERISTICS (Note 5)

Turn–ON Time (10% V _{IN} to 90% I _D)	V _{GS} = 10 V, V _{DD} = 12 V	t _{ON}	20	μs
Turn–OFF Time (90% V_{IN} to 10% I_D)	$I_{D} = 2.5 \text{ A}, \text{ R}_{L} = 4.7 \Omega$	t _{OFF}	110	
Slew-Rate ON (70% V_{DS} to 50% V_{DS})	V _{GS} = 10 V, V _{DD} = 12 V,	-dV _{DS} /dt _{ON}	1.0	V/μs
Slew-Rate OFF (50% V_{DS} to 70% $V_{DS})$	$R_L = 4.7 \ \Omega$	dV _{DS} /dt _{OFF}	0.4	

SELF PROTECTION CHARACTERISTICS (T_J = 25° C unless otherwise noted) (Note 4)

Current Limit	V_{DS} = 10 V, V_{GS} = 5.0 V, T_{J} = 25°C	I _{LIM}	6.0	9.0	11	Α
	V _{DS} = 10 V, V _{GS} = 5.0 V, T _J = 150°C (Note 5)		3.0	5.0	8.0	
	V_{DS} = 10 V, V_{GS} = 10 V, T_{J} = 25°C		7.0	10.5	13	
	V _{DS} = 10 V, V _{GS} = 10 V, T _J = 150°C (Note 5)		4.0	7.5	10	
Temperature Limit (Turn-off)	V _{GS} = 5.0 V (Note 5)	T _{LIM(off)}	150	180	200	°C
Thermal Hysteresis	$V_{GS} = 5.0 V$	$\Delta T_{LIM(on)}$		15		
Temperature Limit (Turn-off)	V _{GS} = 10 V (Note 5)	T _{LIM(off)}	150	165	185	
Thermal Hysteresis	V _{GS} = 10 V	$\Delta T_{LIM(on)}$		15		

GATE INPUT CHARACTERISTICS (Note 5)

Device ON Gate Input Current	$V_{GS} = 5 V I_D = 1.0 A$	I _{GON}	50	μA
	V_{GS} = 10 V I _D = 1.0 A		400	
Current Limit Gate Input Current	$V_{GS} = 5 V, V_{DS} = 10 V$	I _{GCL}	0.05	mA
	V_{GS} = 10 V, V_{DS} = 10 V		0.4	
Thermal Limit Fault Gate Input Current	$V_{GS} = 5 V, V_{DS} = 10 V$	I _{GTL}	0.22	mA
	V_{GS} = 10 V, V_{DS} = 10 V		1.0	

ESD ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted) (Note 5)

Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000		V
	Machine Model (MM)		400		

3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. 4. Fault conditions are viewed as beyond the normal operating range of the part.

5. Not subject to production testing.

TYPICAL PERFORMANCE CURVES

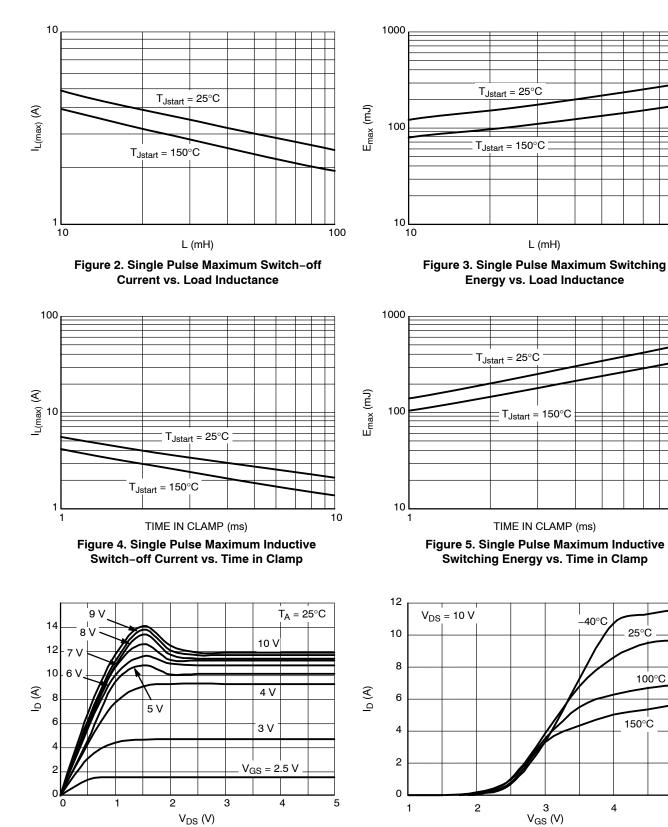
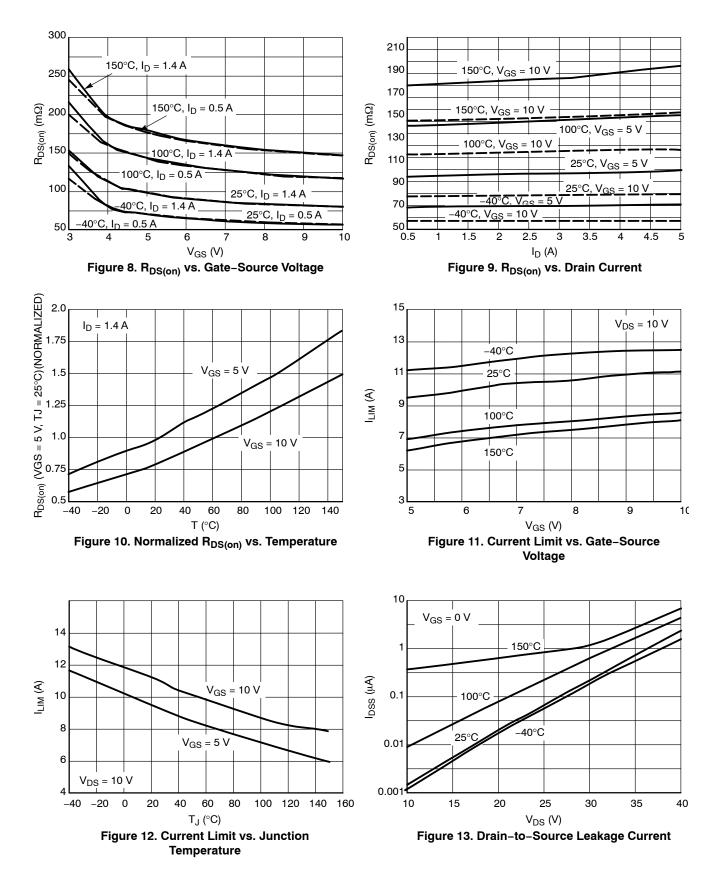


Figure 7. Transfer Characteristics

100


10

100°C

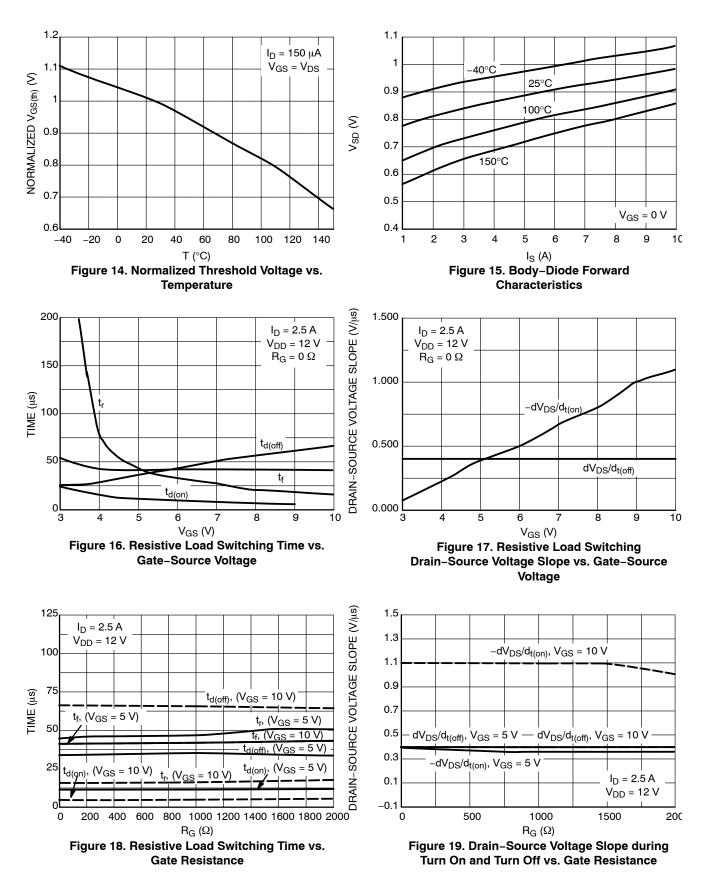

5

Figure 6. Output Characteristics

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

Figure 20. Transient Thermal Resistance

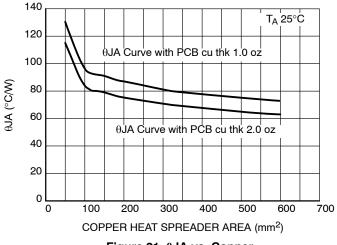


Figure 21. 0JA vs. Copper

TEST CIRCUITS AND WAVEFORMS

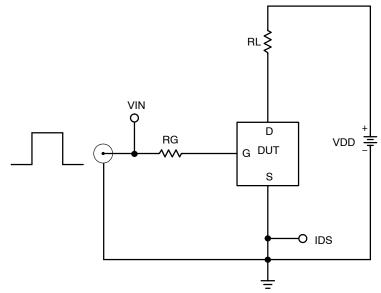


Figure 22. Resistive Load Switching Test Circuit

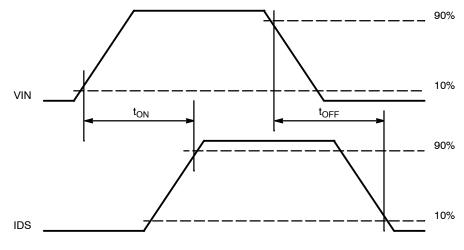


Figure 23. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

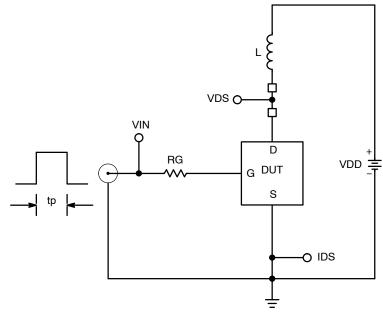


Figure 24. Inductive Load Switching Test Circuit

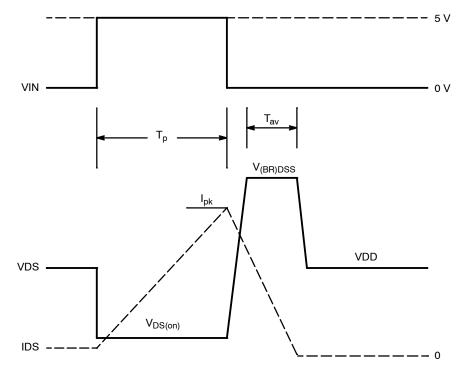
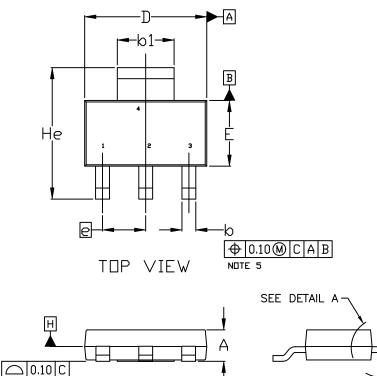


Figure 25. Inductive Load Switching Waveforms

ORDERING INFORMATION


Device	Package	Shipping [†]
NCV8405ASTT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8405ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8405ADTRKG	DPAK (Pb-Free)	2500 / Tape & Reel
NCV8405BDTRKG	DPAK (Pb–Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 1:1

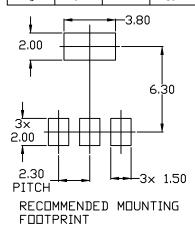
1

SIDE VIEW

DETAIL A

A1

SOT-223 (TO-261) CASE 318E-04 **ISSUE R**


FRONT VIEW

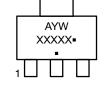
DATE 02 OCT 2018

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D & E DO NOT INCLUDE MOLD з. FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- AI IS DEFINED AS THE VERTICAL DISTANCE 5. FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- POSITIONAL TOLERANCE APPLIES TO 6. DIMENSIONS & AND &1.

	MILLIMETERS				
DIM	MIN.	NDM.	MAX.		
A	1.50	1.63	1.75		
A1	0.02	0.06	0.10		
b	0.60	0.75	0.89		
b1	2.90	3.06	3.20		
с	0.24	0.29	0.35		
D	6.30	6.50	6.70		
E	3.30	3.50	3.70		
e		5.30 B2C	;		
L	0.20				
L1	1.50	1.75	2.00		
He	6.70	7.00	7.30		
θ	0*		10°		

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED			
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2		
ON Semiconductor and Mare trademarks of Semiconductor Components Industries LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries					

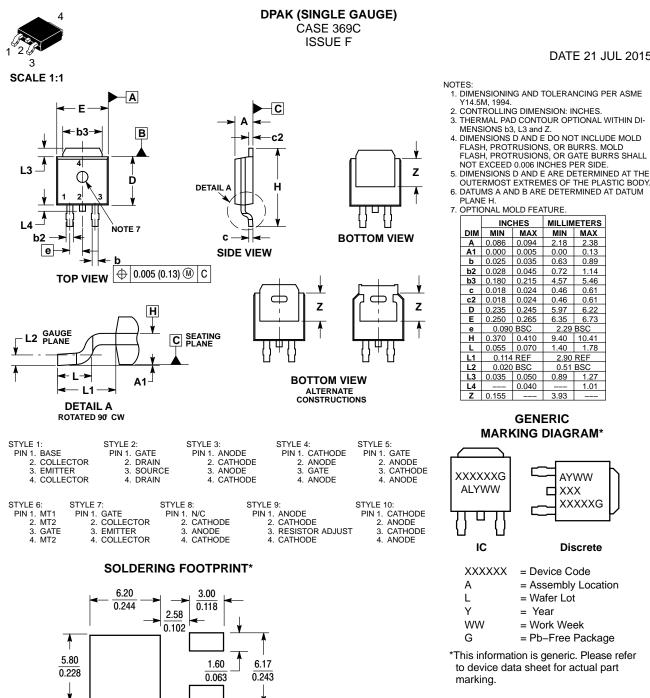

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	Style 9: Pin 1. Input 2. Ground 3. Logic 4. Ground	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	Style 12: Pin 1. Input 2. Output 3. NC 4. Output	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*



- A = Assembly Location
- Y = Year
- W = Work Week
- XXXXX = Specific Device Code
- = Pb-Free Package
- (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

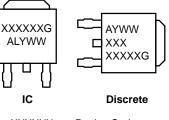
DOCUMENT NUMBER:	98ASB42680B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2	
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.				

© Semiconductor Components Industries, LLC, 2018

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	
NEW STANDARD:	REF TO JEDEC TO-252	"CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK SINGLE GAUGE SURFACE MOUNT		PAGE 1 OF 2

 $\left(\frac{\text{mm}}{\text{inches}}\right)$


SCALE 3:1

DATE 21 JUL 2015

- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL
- NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE

OPTIONAL MOLD FEATURE.				
	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29 BSC	
н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

MARKING DIAGRAM*

XXXXXX	= Device Code
A	= Assembly Location
L	= Wafer Lot
Y	= Year
WW	= Work Week
G	= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY L. GAN	24 SEP 2001
А	ADDED STYLE 8. REQ. BY S. ALLEN.	06 AUG 2008
В	ADDED STYLE 9. REQ. BY D. WARNER.	16 JAN 2009
С	ADDED STYLE 10. REQ. BY S. ALLEN.	09 JUN 2009
D	RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE.	29 JUN 2010
E	ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAM-BALIZA.	06 FEB 2014
F	ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA.	21 JUL 2015

ON Semiconductor and with application or use of any product or circuit, and specifically disclaims any and all liability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be robided in scilluct data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters such the source or sustain life, or for any other application in which the failure of the SCILLC product save to only any license under its patent rights nor the rights of others. SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NCV8405ASTT3G NCV8405ASTT1G