Power MOSFET and Schottky Diode

30 V, 2.9 A, N-Channel with Schottky Barrier Diode, TSOP-6

Features

- Fast Switching
- Low Gate Change
- Low R_{DS(on)}
- Low V_F Schottky Diode
- Independently Connected Devices to Provide Design Flexibility
- This is a Pb-Free Device

Applications

- DC-DC Converters
- Portable Devices like PDA's, Cellular Phones, and Hard Drives

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Pa	arameter		Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Vo	ltage		V_{GS}	±12	V
N-Channel Continuous Drain Current (Note 1) Steady State T _A = 25°C T _A = 85°C			I _D	2.6 1.9	Α
Current (Note 1)	t≤5 s	T _A = 25°C		2.9	
Power Dissipation	Steady State	T _A = 25°C	P_{D}	0.9	W
(Note 1)	t≤5 s			1.1	
Pulsed Drain Curre	nt	t _p = 10 μs	I _{DM}	8.6	Α
Operating Junction	T _J , T _{STG}	-25 to 150	°C		
Source Current (Bo	IS	0.9	Α		
Lead Temperature to (1/8" from case for		ırposes	TL	260	°C

SCHOTTKY MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}	30	V
DC Blocking Voltage	V_R	30	V
Average Rectified Forward Current	l _F	1	Α

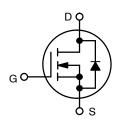
THERMAL RESISTANCE RATINGS

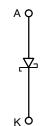
Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	140	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	110	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®


http://onsemi.com


N-CHANNEL MOSFET

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
30 V	90 mΩ @ 4.5 V	2.6 A
	125 mΩ @ 2.5 V	2.2 A

SCHOTTKY DIODE

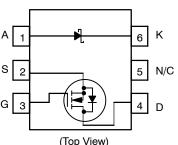
V _R Max	V _F Max	I _F Max	
30 V	0.53 V	1.0 A	

N-Channel MOSFET

Schottky Diode

MARKING

TSOP-6 CASE 318G STYLE 15


TD = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I	_D = 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				21.4		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			1.0	
		$V_{DS} = 24 \text{ V}$	T _J = 85°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	_{GS} = ±12 V			100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I	_D = 250 μA	0.5	0.9	1.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-3.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V	I _D = 2.6 A		52	90	
		V _{GS} = 2.5 V	I _D = 2.2 A		67	125	mΩ
Forward Transconductance	9FS	V _{DS} = 15 V,	I _D = 2.6 A		2.6		S
CHARGES, CAPACITANCES AND GATE F	RESISTANCE						
Input Capacitance	C _{ISS}				295		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = V_{DS} = 0 \text{ V}$			48		
Reverse Transfer Capacitance	C _{RSS}	• 103 –			27		
Total Gate Charge	Q _{G(TOT)}				3.7	5.5	
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V}, ^{1}$	V _{DS} = 15 V,		0.6		nC
Gate-to-Source Charge	Q_{GS}	I _D = 2	2.0 A		0.9		
Gate-to-Drain Charge	Q_{GD}				0.8		
SWITCHING CHARACTERISTICS (Note 3)							
Turn-On Delay Time	t _{d(ON)}				7.0		
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, \text{ V}$	V _{DS} = 15 V,		4.0		ns
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 1.0 A, F$			14		
Fall Time	t _f				2.0		1
DRAIN-TO-SOURCE CHARACTERISTICS	3						•
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V IS = 0.9 A	T _J = 25°C		0.7	1.2	V
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, d_{IS}/d_t = 100 A/ μ s, IS = 0.9 A			8.0		1
Charge Time	Ta				5.0		ns
Discharge Time	T _b				3.0		1
Reverse Recovery Time	Q _{RR}				3.0		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.41	0.45	V
Forward Voltage		I _F = 1.0 A		0.46	0.53	
Maximum Instantaneous	I _R	V _R = 30 V		7.3	20	μΑ
Reverse Current		V _R = 20 V		2.5	8.0	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 85^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.35		V
Forward Voltage		I _F = 1.0 A		0.41		
Maximum Instantaneous	I _R	V _R = 30 V		0.4		mA
Reverse Current		V _R = 20 V		0.17		

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 125^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.31		V
Forward Voltage		I _F = 1.0 A		0.39		
Maximum Instantaneous	I _R	V _R = 30 V		4.4		mA
Reverse Current		V _R = 20 V		1.6		

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Capacitance	С	$V_R = 10 \text{ V, f} = 1.0 \text{ MHz}$		28		pF

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGD4169FT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS N-CHANNEL

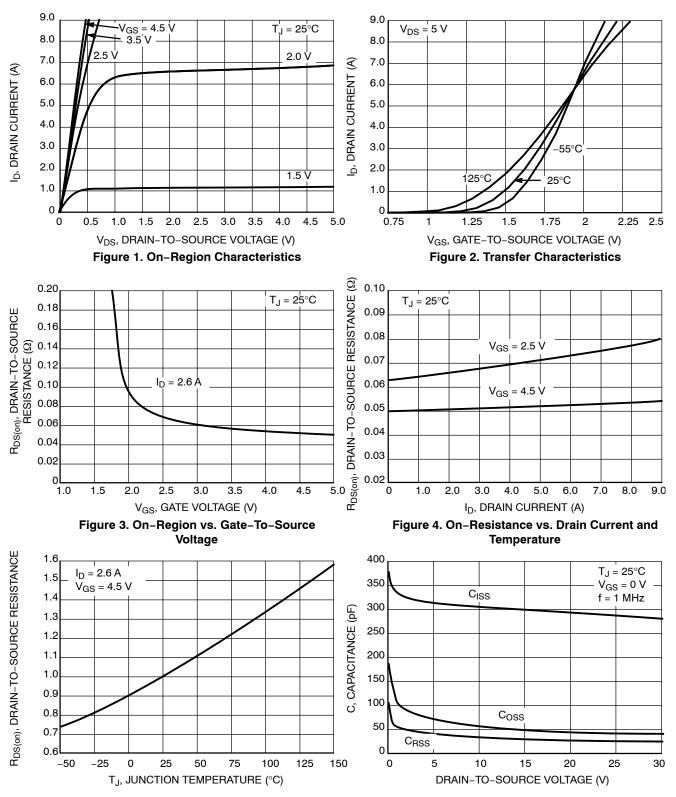


Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

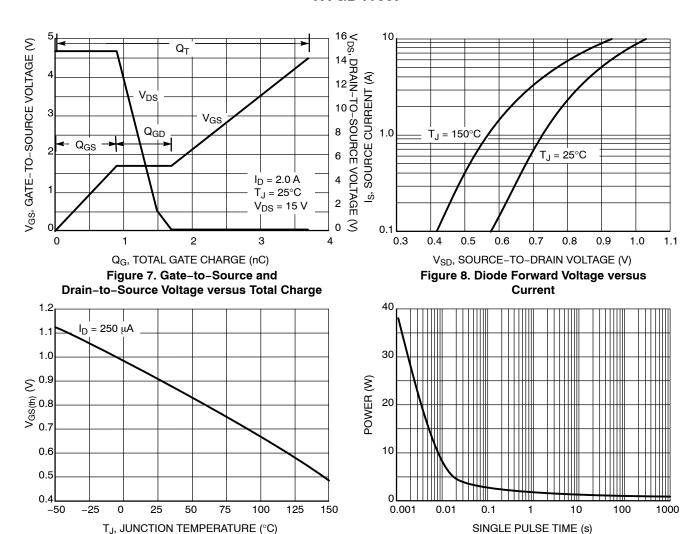


Figure 9. Threshold Voltage

Figure 10. Single Pulse Maximum Power Dissipation

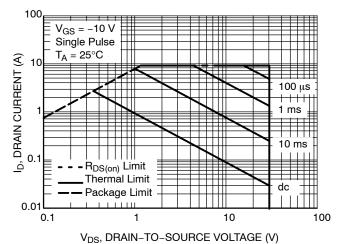


Figure 11. Maximum Rated Forward Biased Safe Operating Area

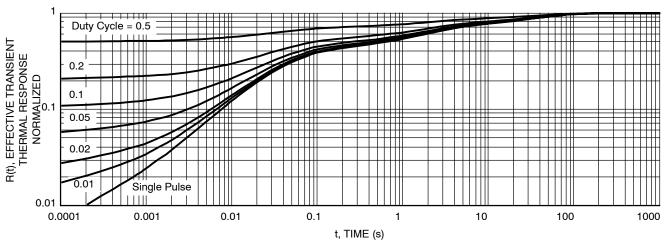
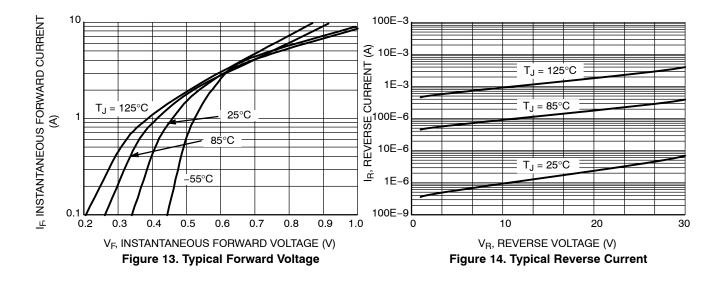



Figure 12. FET Thermal Response

TYPICAL CHARACTERISTICS SCHOTTKY

http://onsemi.com

Δ1

STYLE 13: PIN 1. GATE 1

2. SOURCE 2

3. GATE 2

4. DRAIN 2

5. SOURCE 1

DRAIN 1

TSOP-6 CASE 318G-02 **ISSUE V**

12

C SEATING PLANE

DATE 12 JUN 2012

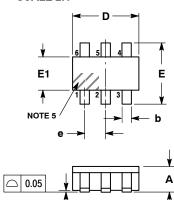
STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR

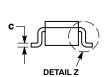
3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR

2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O

STYLE 12:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D
- AND E1 ARE DETERMINED AT DATUM H.
 PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

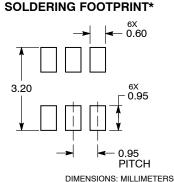

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	0.90	1.00	1.10			
A1	0.01	0.06	0.10			
b	0.25	0.38	0.50			
С	0.10	0.18	0.26			
D	2.90	3.00	3.10			
E	2.50	2.75	3.00			
E1	1.30	1.50	1.70			
е	0.85	0.95	1.05			
Ĺ	0.20	0.40	0.60			
L2	0.25 BSC					
М	Uo.		100			


STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1

STYLE 11:

BASE 1 6. COLLECTOR 2

PIN 1. SOURCE 1


DETAIL Z

Н

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. VZ 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	STYLE 10: PIN 1. D(OUT)+ 2. GND 3. D(OUT)- 4. D(IN)- 5. VBUS 6. D(IN)+

. D(in)	2. DRAIN	2. GND	2. DRAIN 2
. D(in)+	SOURCE	D(OUT)-	3. DRAIN 2
. D(oút)+	4. DRAIN	4. D(IN)-	4. SOURCE 2
. D(out)	5. DRAIN	5. VBUS	5. GATE 1
. GND ´	HIGH VOLTAGE G	GATE 6. D(IN)+	DRAIN 1/GATE 2
14:	STYLE 15:	STYLE 16:	STYLE 17:
. ANODE	PIN 1. ANODE	PIN 1. ANODE/CATHODE	PIN 1. EMITTER
. SOURCE	2. SOURCE	2. BASE	2. BASE
. GATE	3. GATE	EMITTER	ANODE/CATHODE
. CATHODE/DRAIN	4. DRAIN	4. COLLECTOR	4. ANODE
. CATHODE/DRAIN	5. N/C	5. ANODE	CATHODE
. CATHODE/DRAIN	CATHODE	CATHODE	COLLECTOR

GENERIC MARKING DIAGRAM*

STYLE 14: PIN 1. ANODE

5.

3 GATE

RECOMMENDED

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

XXX = Specific Device Code

Α =Assembly Location Υ = Year

W = Work Week = Pb-Free Package XXX = Specific Device Code M = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative