MOS FET Relays G3VM-81HR

High-capacity MOS FET Relay Allowing Switching of a 1.25-A Continuous Load Current with a 80-V Load Voltage, 6-pin SOP Package.

- Continuous load current of 1,250 mA.
- Dielectric strength of 1,500 Vrms between I/O.
- RoHS Compliant.

■ Application Examples

- · Broadband systems
- Measurement devices
- Data loggers
- Amusement machines

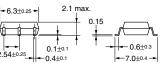
71

Note: The actual product is marked differently from the image shown here.

■ List of Models

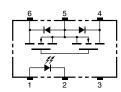
Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO		80 VAC	G3VM-81HR	75	
	terminals		G3VM-81HR(TR)		2,500

■ Dimensions

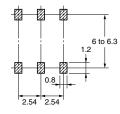

Note: All units are in millimeters unless otherwise indicated.

G3VM-81HR

Note: The actual product is marked differently from the image shown here.



Weight: 0.13 g


■ Terminal Arrangement/Internal Connections (Top View)

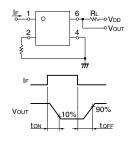
G3VM-81HR

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-81HR

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}	1	Α	100 μs pulses, 100 pps
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V_R	5	٧	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V_{OFF}	80	٧	
	Continuous load current	Io	1,250	mA	
	ON current reduction rate	Δ I _{ON} /°C	-12.5	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	T _j	125	°C	
	ric strength between input and See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min
Operating temperature		Ta	-20 to +85	°C	With no icing or condensation
Storage temperature		T _{stg}	-40 to +125	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

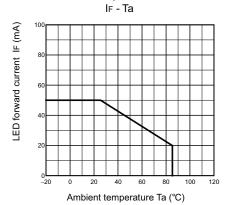

Note:

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

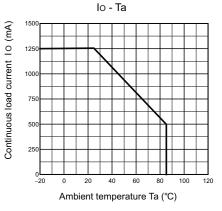
■ Electrical Characteristics (Ta = 25°C)

ltem		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _R = 5 V	
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		2	5	mA	I _O = 1,250 mA	
Output	Maximum resistance with output ON	R _{ON}		0.11	0.15	Ω	I _F = 5 mA, I _O = 1,250 mA	
	Current leakage when the relay is open	I _{LEAK}		1.2	1.5	nA	V _{OFF} = 20 V, T _a = 50°C	
	Capacity between terminals	C _{OFF}		460	1,000	pF	V = 0, f = 100 MHz	
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V	
Insulation resistance		R _{I-O}	1,000			ΜΩ	$\begin{aligned} &V_{\text{I-O}} = 500 \text{ VDC}, \\ &R_{\text{oH}} \leq 60\% \end{aligned}$	
Turn-ON time		t _{ON}		2.0	3.0	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$	
Turn-OFF time		t _{OFF}		0.7	1.0	ms	V _{DD} = 20 V (See note 2.)	

Note: 2. Turn-ON and Turn-OFF Times

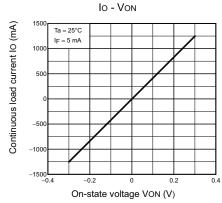

■ Recommended Operating Conditions

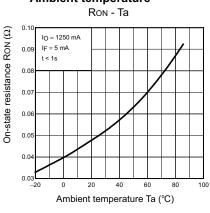
Use the G3VM under the following conditions so that the Relay will operate properly.

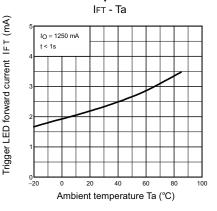

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			64	V
Operating LED forward current	I _F	5		30	mA
Continuous load current (AC peak/DC)	Io			1,250	mA
Operating temperature	T _a	25		60	°C

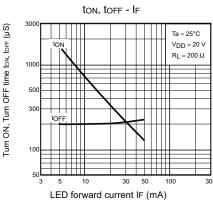
■ Engineering Data

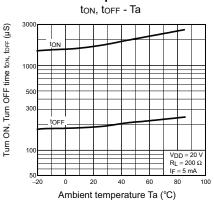
LED forward current vs. Ambient temperature

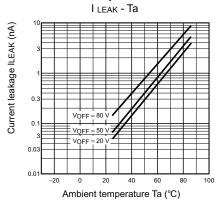

Continuous load current vs. Ambient temperature


LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Specifications subject to change without notice Printed in USA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron:

G3VM-81HR G3VM-81HR(TR)