

DGG OR DL PACKAGE

(TOP VIEW)

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005

FEATURES

- Member of the Texas Instruments Widebus™ Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25° C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

DESCRIPTION

This 16-bit transparent D-type latch is designed for 2.7-V to 3.6-V V_{CC} operation.

The SN74LVC16373 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

	(,	
	.	υ		h
1 0E	1		48	L 1LE
1Q1	2		47	1D1
1Q2			46	1D2
GND	4		45	l gnd
1Q3	5		44	1D3
1Q4 [6		43	1D4
v _{cc} [7		42	V _{cc}
1Q5	8		41	1D5
1Q6	9		40	1D6
GND [10		39] gnd
1Q7	11		38	1D7
1Q8	12		37	1D8
2Q1 [13		36	2D1
2Q2	14		35	2D2
GND [15		34] GND
2Q3	16		33	2D3
2Q4 [17		32	2D4
v _{cc} [18		31	V _{cc}
2Q5	19		30	2D5
2Q6	20		29	2D6
GND [21		28] GND
2Q7 [22		27	2D7
2Q8 [23		26	2D8
2 <u>0E</u>	24		25	2LE
				l

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

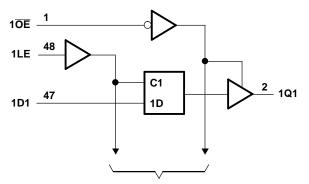
The SN74LVC16373 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

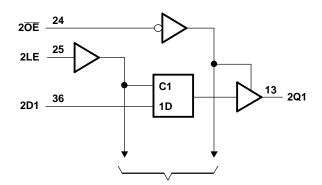
Widebus, EPIC are trademarks of Texas Instruments.

SN74LVC16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005


FUNCTION TABLE (EACH 8-BIT SECTION)

	INPUTS		OUTPUT
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	х	Q ₀
Н	Х	х	Z


LOGIC SYMBOL⁽¹⁾ 1 10E 1EN 48 1LE C3 24 2EN 20E 25 C4 2LE 47 2 1D1 3D 1 ▽ 1Q1 3 46 1D2 1Q2 44 5 1D3 1Q3 6 43 1D4 1Q4 41 8 1D5 1Q5 40 9 1D6 1Q6 38 11 1D7 1Q7 37 12 1D8 1Q8 36 13 2D1 4D 2 7 2Q1 35 14 2D2 2Q2 33 16 2D3 2Q3 32 17 2D4 2Q4 30 19 2D5 2Q5 29 20 2D6 2Q6 27 22 2D7 2Q7 26 23 2D8 2Q8

(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

To Seven Other Channels

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	$V_{CC} + 0.5$	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V_{O} < 0 or V_{O} > V_{CC}		±50	mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}		±50	mA
	Continuous current through V _{CC} or GND			±100	mA
	Movimum notice disciplation of T $= 55^{\circ}$ (in still cit) ⁽⁴⁾	DGG package		0.85	W
	Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) ⁽⁴⁾	DL package		1.2	VV
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. This value is limited to 4.6 V maximum. (2)

(3)

(4) The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	V
VIH	High-level input voltage	V_{CC} = 2.7 V to 3.6 V	2		V
VIL	Low-level input voltage	V_{CC} = 2.7 V to 3.6 V		0.8	V
VI	Input voltage		0	V_{CC}	V
Vo	Output voltage		0	V_{CC}	V
	High lovel output ourrent	V _{CC} = 2.7 V		-12	mA
IOH	High-level output current	V _{CC} = 3 V		-24	ША
	Low lovel output ourrent	$V_{CC} = 2.7 V$		12	mA
IOL	Low-level output current	$V_{CC} = 3 V$		24	ША
$\Delta t / \Delta V$	Input transition rise or fall rate		0	10	ns/V
T _A	Operating free-air temperature		-40	85	°C

(1) Unused control inputs must be held high or low to prevent them from floating.

SN74LVC16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005

TEXAS STRUMENTS www.ti.com

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CO	NDITIONS	V _{cc} ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
		I _{OH} = -100 μA		MIN to MAX	V _{CC} - 0.2			
V		1 40 40						V
V _{OH}		I _{OH} = -12 mA	3 V	2.4			v	
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		MIN to MAX			0.2	
V _{OL}		I _{OL} = 12 mA	2.7 V			0.4	V	
		I _{OL} = 24 mA		3 V			0.55	
l _l		V _I = V _{CC} or GND		3.6 V			±5	μA
	Data incuts	V _I = 0.8 V		0.1/	75			•
I _{I(hold)}	Data inputs	V ₁ = 2 V		3 V	-75			μA
I _{OZ}		V _O = V _{CC} or GND		3.6 V			±10	μΑ
I _{CC}		$V_{I} = V_{CC}$ or GND,	l _O = 0	3.6 V			40	μA
ΔI_{CC}		One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	3 V to 3.6 V			500	μA
Ci		V _I = V _{CC} or GND		3.3 V		3.5		pF
Co		$V_0 = V_{CC}$ or GND		3.3 V		7		pF

(1) For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions. (2) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

Timing Requirements

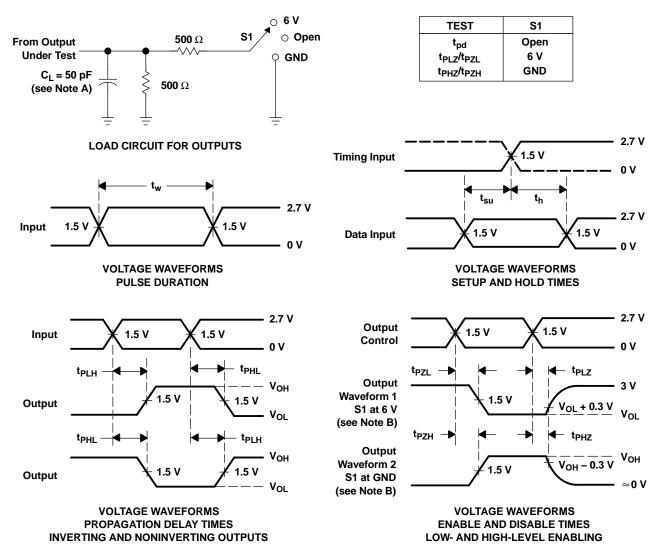
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V_{CC} = 3.3 V ± 0.3 V	V _{CC} = 2.7 V	UNIT	
		MIN MA	MIN MAX		
t _w	Pulse duration, LE high	4	4	ns	
t _{su}	Setup time, data before LE \downarrow	2	2	ns	
t _h	Hold time, data after LE \downarrow	2	2	ns	

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2 ± 0.3	3.3 V 3 V	V _{CC} = 2.7 V	UNIT	
	(INFOT)	(001F01)	MIN	MAX	MIN MAX		
	D	0	1.5	7	8	8	
чрd	LE	Q	2	8	9	ns	
t _{en}	ŌĒ	Q	1.5	8	9	ns	
t _{dis}	OE	Q	1.5	7	8	ns	


Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	ТҮР	UNIT	
C Dowor diag	Power dissinction econocitance per lateh	Outputs enabled	C = 50 pc f = 10 MHz	20	۶E
C _{pd}	Power dissipation capacitance per latch	Outputs disabled	$C_{L} = 50 \text{ pF}, \text{ f} = 10 \text{ MHz}$	4	рF

SCAS315B-NOVEMBER 1993-REVISED MARCH 2005

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the ouput is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns. D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(1)		J					(3)			
74LVC16373DGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16373	Samples
SN74LVC16373DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16373	Samples
SN74LVC16373DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16373	Samples
SN74LVC16373DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16373	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

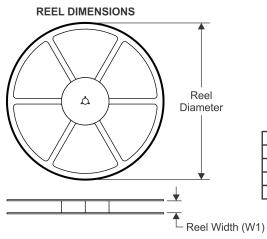
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

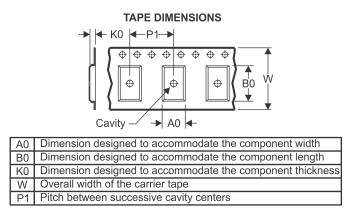
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

6-Feb-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

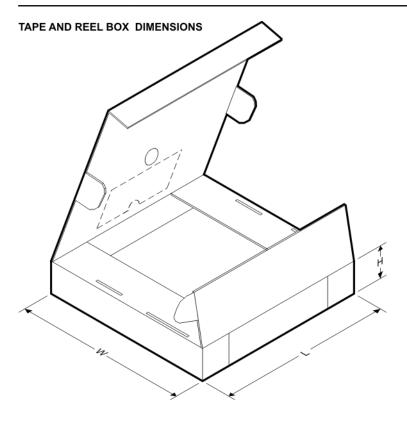

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC16373DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVC16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

TEXAS INSTRUMENTS

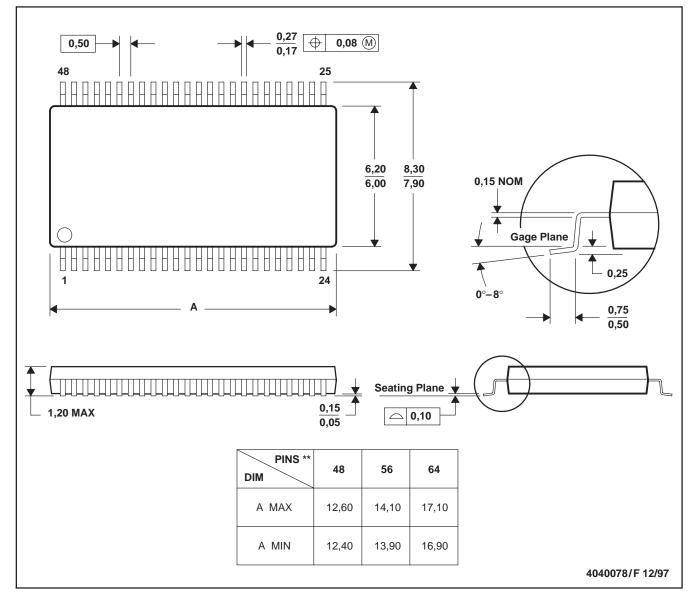
www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC16373DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74LVC16373DLR	SSOP	DL	48	1000	367.0	367.0	55.0

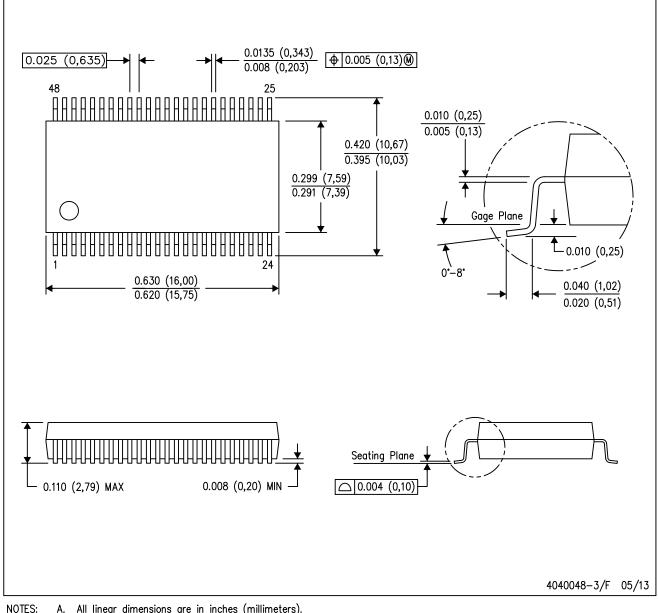

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated