J309, J310

Preferred Device

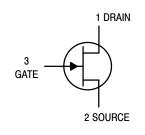
JFET VHF/UHF Amplifiers

N-Channel — Depletion

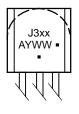
Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate-Source Voltage	V _{GS}	25	Vdc
Forward Gate Current	I _{GF}	10	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above = $25^{\circ}C$	P _D	350 2.8	mW mW/°C
Junction Temperature Range	TJ	-65 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

J3xx = Device Code xx = 09 or 10 A = Assembly Location Y = Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

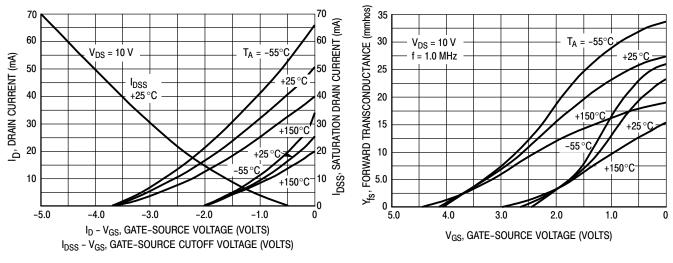
Preferred devices are recommended choices for future use and best overall value.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

J309, J310

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate – Source Breakdown Voltage ($I_G = -1.0 \ \mu Adc, \ V_{DS} = 0$)		V _{(BR)GSS}	-25	-	_	Vdc
Gate Reverse Current $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = 25^{\circ}\text{C})$ $(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0, T_A = +125^{\circ}\text{C})$		I _{GSS}			-1.0 -1.0	nAdc μAdc
Gate Source Cutoff Voltage (V _{DS} = 10 Vdc, I _D = 1.0 nAdc)	J309 J310	V _{GS(off)}	-1.0 -2.0		-4.0 -6.5	Vdc
ON CHARACTERISTICS	1					
Zero-Gate-Voltage Drain Current ⁽¹⁾ (V_{DS} = 10 Vdc, V_{GS} = 0)	J309 J310	I _{DSS}	12 24		30 60	mAdc
Gate-Source Forward Voltage $(V_{DS} = 0, I_G = 1.0 \text{ mAdc})$		V _{GS(f)}	-	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS						
Common–Source Input Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)	J309 J310	Re(y _{is})		0.7 0.5		mmhos
Common–Source Output Conductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 100 \text{ MHz})$		Re(y _{os})	-	0.25	_	mmhos
Common–Gate Power Gain (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		G _{pg}	-	16	_	dB
Common–Source Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 100 \text{ MHz})$		Re(y _{fs})	-	12	_	mmhos
Common–Gate Input Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 100 MHz)		Re(y _{ig})	-	12	_	mmhos
Common–Source Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	9 _{fs}	10000 8000		20000 18000	μmhos
Common–Source Output Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)		g _{os}	-	-	250	μmhos
Common–Gate Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	J309 J310	9 _{fg}		13000 12000		µmhos
Common–Gate Output Conductance (V _{DS} = 10 Vdc, I _D = 10 mAdc, f = 1.0 kHz)	J309 J310	g _{og}		100 150		μmhos
Gate–Drain Capacitance (V _{DS} = 0, V _{GS} = –10 Vdc, f = 1.0 MHz)		C _{gd}	-	1.8	2.5	pF
Gate–Source Capacitance (V _{DS} = 0, V _{GS} = –10 Vdc, f = 1.0 MHz)		C _{gs}	_	4.3	5.0	pF
FUNCTIONAL CHARACTERISTICS						
Equivalent Short-Circuit Input Noise Voltage		ēn	_	10	_	nV/ / H

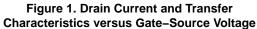
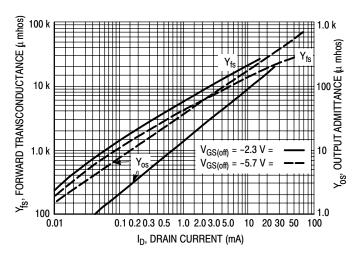
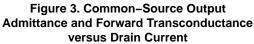
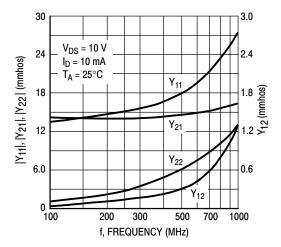

Equivalent Short-Circuit Input Noise Voltage
 $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 100 \text{ Hz})$ \overline{e}_n -10- nV/\sqrt{Hz}

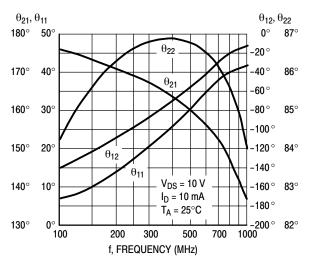
1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 3.0%.

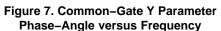
ORDERING INFORMATION

Device	Package	Shipping [†]		
J309	TO-92			
J309G	TO-92 (Pb-Free)	1000 Units / Bulk		
J310	TO-92			
J310G	TO-92 (Pb-Free)	1000 Units / Bulk		
J310RLRP	TO-92			
J310RLRPG	TO-92 (Pb-Free)	2000 Units / Tape & Ammo Box		
J310ZL1	TO-92			
J310ZL1G	TO-92 (Pb-Free)	2000 Units / Tape & Ammo Box		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Figure 2. Forward Transconductance versus Gate–Source Voltage



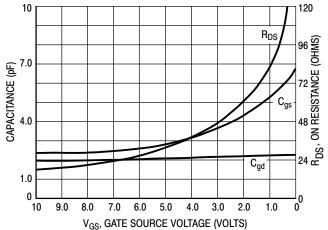
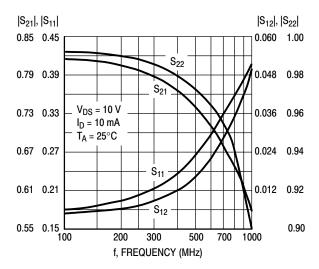
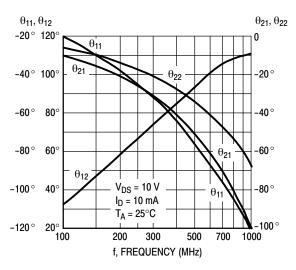
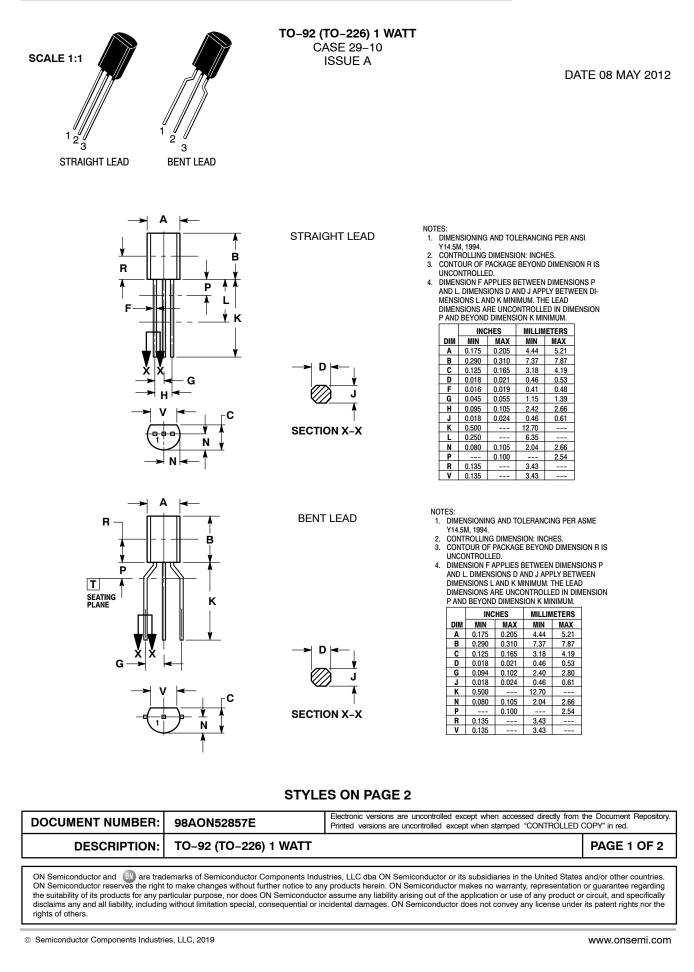




Figure 4. On Resistance and Junction Capacitance versus Gate–Source Voltage



MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE A

DATE 08 MAY 2012

	EMITTER BASE COLLECTOR								
	GATE SOURCE & SUBSTRATE DRAIN								
STYLE 11: PIN 1. 2. 3.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 Gate Main Terminal 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
STYLE 21: PIN 1. 2. 3.	COLLECTOR EMITTER BASE	STYLE 22: PIN 1. 2. 3.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	EMITTER Collector/Anode Cathode	STYLE 25: PIN 1. 2. 3.	MT 1 GATE MT 2
STYLE 26: PIN 1. 2. 3.	V _{CC} GROUND 2 OUTPUT	STYLE 27: PIN 1. 2. 3.	MT SUBSTRATE MT	STYLE 28: PIN 1. 2. 3.	CATHODE ANODE GATE	STYLE 29: PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	STYLE 30: PIN 1. 2. 3.	DRAIN GATE SOURCE
STYLE 31: PIN 1. 2. 3.	GATE DRAIN SOURCE	STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN INPUT OUTPUT	STYLE 34: PIN 1. 2. 3.	INPUT Ground Logic	STYLE 35: PIN 1. 2. 3.	GATE COLLECTOR EMITTER

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2			
ON Semiconductor and image trademarks of Semiconductor Components Industries 11C dia ON Semiconductor or its subsidiarias in the United States and/or other countries						

ON Semiconductor and u are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative