

STPSC12H065C

650 V power Schottky silicon carbide diode

Datasheet - production data

Description

The SiC diode is an ultrahigh performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimized capacitive charge at turn-off behavior is independent of temperature.

Especially suited for use in interleaved or bridgeless topologies, this dual-diode rectifier will boost the performance in hard switching conditions. Its high forward surge capability ensures a good robustness during transient phases.

Table 1. Device summary

Symbol	Value
I _{F(AV)}	2 x 6 A
V _{RRM}	650 V
T _j (max)	175 °C

A1. A2. K A

Features

- No or negligible reverse recovery
- Switching behavior independent of temperature
- High forward surge capability
- ECOPACK[®]2 compliant component

1 Characteristics

Table 2. Absolute ratings (limiting values per diode at 25 °C unless otherwise specified)

Symbol	Parameter			Value	Unit
V _{RRM}	Repetitive peak reverse voltage			650	V
I _{F(RMS)}	Forward rms current			22	А
	Average ferward ourrent	$T_c = 135 \ ^{\circ}C^{(1)}, DC$	Per diode	6	А
'F(AV)	I _{F(AV)} Average forward current	$T_c = 135 \ ^{\circ}C^{(2)}, DC$	Per device	12	А
		t _p = 10 ms sinusoidal, T _c = 25 °C		60	
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms sinusoidal, T _c = 125 °C		52	А
		t_p = 10 µs square, T_c = 25 °C		400	
I _{FRM}	Repetitive peak forward current	prward current $T_c = 135 \ ^\circ C^{(1)}, T_j = 175 \ ^\circ C, \ \delta = 0.1$		25	А
T _{stg}	Storage temperature range			-65 to +175	°C
Tj	Operating junction temperature ⁽³⁾			-40 to +175	°C

1. Value based on $R_{th(j-c)}$ max (per diode)

2. Value based on $R_{th(j-c)}$ max (per device)

3. $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

Table 3. Thermal resistance parameters

Symbol	Parameter		Тур.	Max.	Unit
Р	lunction to appa	Per diode	1.6	2.4	
Kth(j-c)	R _{th(j-c)} Junction to case	Per device	0.875	1.275	°C/W
R _{th(c)}	Coupling		-	0.15	

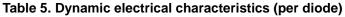
When the diodes 1 and 2 are used simultaneously:

 ΔT_{i} (diode 1) = P(diode1) x R_{th(i-c)}(Per diode) + P(diode2) x R_{th(c)}

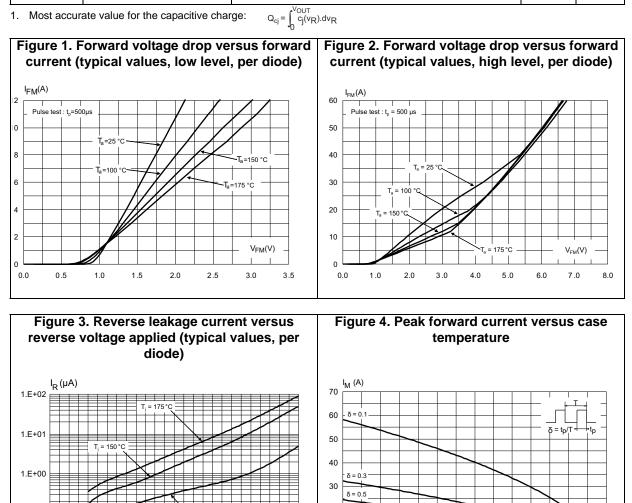
Table 4. Static electrica	I characteristics	(per diode)
---------------------------	-------------------	-------------

Symbol	Parameter	Tests conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Deveree leekege eurrent	T _j = 25 °C		-	5	60	
I _R ⁽¹⁾ Reverse leakage current	T _j = 150 °C	$V_R = V_{RRM}$	-	50	250	μA	
V_ (2)	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	– I _F = 6 A	-	1.56	1.75	V
v F (-/		T _j = 150 °C		-	1.98	2.5	v

1. $t_p = 10 \text{ ms}, \delta < 2\%$


2. t_p = 500 μs, δ < 2%

To evaluate the conduction losses use the following equation:


 $P = 1.35 \text{ x } I_{F(AV)} + 0.192 \text{ x } I_{F^{2}(RMS)}$

Symbol	Parameter	Test conditions	Тур.	Unit
Q _{cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	18	nC
C		$V_{R} = 0 V, T_{c} = 25 °C, F = 1 MHz$	300	pF
C _j Total capacitance	Total capacitance	$V_{R} = 400 \text{ V}, \text{ T}_{c} = 25 \text{ °C}, \text{ F} = 1 \text{ MHz}$	30	μr

1. Most accurate value for the capacitive charge:

20

0

0

δ= 10

|| = 0.

25

50

T_C(°C)

100

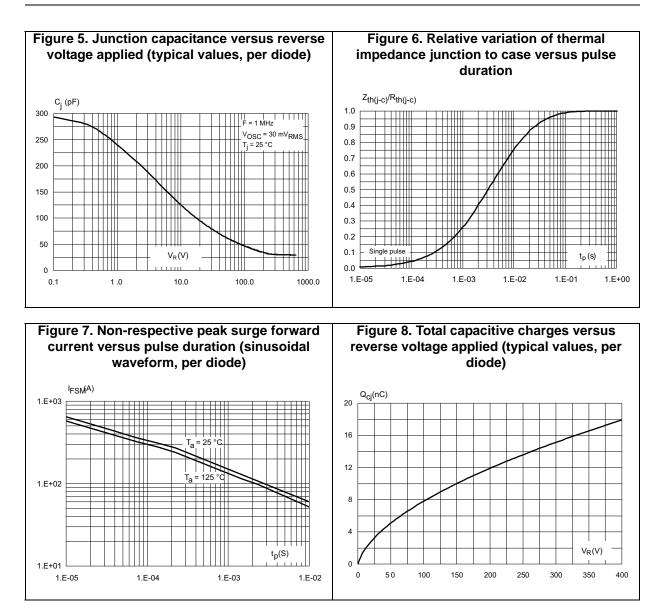
125

150

175

75

25


100 150 200 250 300 350 400 450 500 550 600 650

 $V_{R}(V)$

1.E-01

1.E-02

0 50

2 Package information

- Epoxy meets UL94, V0
- Cooling method: conduction (C)
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at:*www.st.com.* ECOPACK[®] is an ST trademark.

2.1 TO-220AB package information

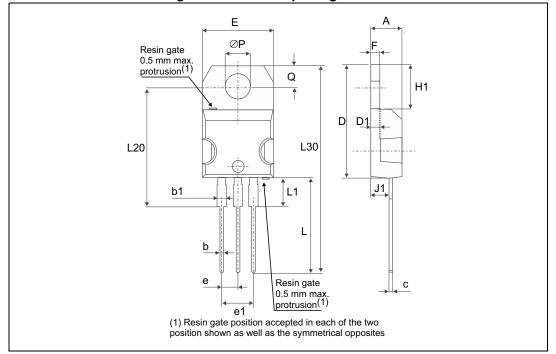


Figure 9. TO-220AB package outline

	Table 6. TO-220AB package mechanical data							
	Dimensions							
Ref.		Millimeters			Inches ⁽¹⁾			
	Тур.	Min.	Max.	Тур.	Min.	Max.		
А		4.40	4.60		0.17	0.18		
b		0.61	0.88		0.024	0.035		
b1		1.14	1.70		0.045	0.067		
С		0.48	0.70		0.019	0.027		
D		15.25	15.75		0.60	0.62		
D1	1.27			0.05				
Е		10	10.40		0.39	0.41		
е		2.40	2.70		0.094	0.106		
e1		4.95	5.15		0.19	0.20		
F		1.23	1.32		0.048	0.052		
H1		6.20	6.60		0.24	0.26		
J1		2.40	2.72		0.094	0.107		
L		13	14		0.51	0.55		
L1		3.50	3.93		0.137	0.154		
L20	16.40			0.64				
L30	28.90			1.13				
ØP		3.75	3.85		0.147	0.151		
Q		2.65	2.95		0.104	0.116		

1. Values in inches are converted from mm and rounded to 4 decimal digits.

3 Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPSC12H065CT	PSC12H065CT	TO-220AB	1.86 g	50	Tube

4 Revision history

Date	Revision	Changes
24-Jun-2013	1	First issue.
07-Nov-2013	2	Updated Figure 1 and Figure 2.
10-Dec-2015	3	Updated cover page and <i>Table 7</i> . Format updated to current standard.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STPSC12H065CT