EP93XX
ARM®9 Embedded Processor Family

EP93xX

User’'s Guide

= CIRRUS LOCGIC® ©Copyright 2007 Cirrus Logic, Inc. SEP 2007
http:// i DS785UM1
p://Www.CITrus.com

EP93xx User’'s Guide

i

Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find the one nearest to you go to www.cirrus.com

Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information
is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of
liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any
items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants
no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns
the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your orga-
nization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general
distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WAR-
RANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT
PRODUCTS OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL
OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FUL-
LY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT
IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRIT-
ICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIB-
UTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE
IN CONNECTION WITH THESE USES.

Cirrus Logic, Cirrus, MaverickCrunch, MaverickKey, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product
names in this document may be trademarks or service marks of their respective owners.

Microsoft, Windows, and Windows CE are registered trademarks of Microsoft Corporation.

Microwire is a trademark of National Semiconductor Corp. National Semiconductor is a registered trademark of National Semiconductor Corp.
Texas Instruments is a registered trademark of Texas Instruments, Inc.

Motorola is a registered trademark of Motorola, Inc.

LINUX is a registered trademark of Linus Torvalds.

ARM and Thumb are registered trademarks of ARM Limited

Intel is a registered trademark of Intel Corporation

Hewlett-Packard is a registered trademark of Hewlett-Packard Corporation.

Compagq is a registered trademark of BV, a private Limited Liability Company in the Netherlands.

DS785UM1 ©Copyright 2007 Cirrus Logic, Inc.

—
——.

EP93xx User’s Guide
Contents
Chapter FIgUIES. . . oo Xiv
Chapter Tables XVii
ReVISION HiStOrY . . . e e XXii
o = = o = TP P-1
P.1 About the EP93xXX User’'s GUIde. e e P-1
P.2 Related Documents from Cirrus LOQIC oottt e e e P-3
P.3 Reference DOCUMEBNTS.ot e e e e P-3
P.4 Notational ConVeNntioNS e e e P-3
P.5 Register EXample. P-4
Chapter 1. INTrodUCTION ... e e e e 1-1
L INtrodUCHiON . e 1-1
1.2 EPOSXX FEAtUIES . .o 1-1
1.3 EP93xx Processor Applications e 1-7
1.4 EP93xx Processor Highlights 1-7
1.4.1 High-Performance ARMO20T COIEuuueiiiiiieieeiiiiiiee ettt eesnibaeae s 1-7
1.4.2 MaverickCrunch™ Co-processor for Ultra-Fast Math Processing................ccoevevvueenene. 1-7
1.4.3 MaverickKey™ Unique ID Secures Digital Content in OEM DeSIignsc.c.cccevurunen. 1-8
1.4.4 Integrated Multi-Port USB 2.0 Full Speed Hosts with Transceiversccccccceveeeeeininns 1-8
1.4.5 Integrated Ethernet MAC Reduces BOM COSESccooviiiiiiiiiiiiciieiers e 1-9
1.4.6 8x8 Keypad Interface Reduces BOM COSESuiiiiiiiiiiiiiiiiiiiieeeee e 1-9
1.4.7 Multiple Booting Mechanisms Increase FIEeXiDIlityocccoiiiiiiiiiiiiii e 1-9
1.4.8 Abundant General Purpose 1/0s Build Flexible SyStemscccccevviiieieiiiiiiee e 1-9
1.4.9 General-Purpose Memory Interface (SDRAM, SRAM, ROM, FLASH)ccccccevniiinnnnne 1-9
1.4.10 12-Bit Analog-to-Digital Converter (ADC) Provides an Integrated
Touch-Screen Interface or General ADC Functionalityccccceeeeiiiiiiiiiiiieeeeeeeceeceeeeeeiiins 1-10
1.4.11 Raster Analog / LCD CONLIOIETeveiiiiiiiiiiciiiie e e e e e e e e 1-10
1.4.12 GraphiCS ACCEIEIALONttt e e e e e e e e e bbb e e e e e e e e e e e s e nnees 1-10
e B = 1V [N [] 1= - Vo= SRR 1-10
Chapter 2. ARM920T Core and Advanced High-Speed Bus (AHB)................... 2-1
2.1 INtrodUCTHION . .o e e 2-1
2.20verview: ARMO20T GOl . . v vttt ittt e e e e e e 2-1
A R =T VLU | SRR 2-1
A A =1 (o o3 1q B = To [=10 H PSP PPPPPRPTP 2-2
AR H O] o1 - 11[o] o1 PP TP 2-2
2.2.3.1 ARMOTDMI COlE ...ceiiiitiiiiei ittt ettt e e 2-3
2.2.3.2 Memory Management UNitooeuuiiieiiiiiiin e e eeeeeeeeeeseeeeeeeeeeesannnnnnns 2-4
2.2.3.3 Cache and Write BUFFErociiiiiiiiie e 2-5
2.2.4 CO-ProCeSSOr INTEITACEcoi ittt a e e e e 2-6
2.2.5 AMBA AHB BUS INtEITACE OVEIVIEW........cvviiiiiiiiiii ittt 2-6
2.2.6 AHB Implementation DetailS.............iiiiiiiiie i 2-7
2.2.7 Memory and BUS ACCESS EITOISuiiiiiiiiiiee ittt ettt 2-9
A & T = 1§ TS AN 4 o1 = L4 [o P 2-9
2.2.8.1 Main AHB BUS AIDITErccoiiiiiiiieic e 2-10
2.2.8.2 SDRAM SIaVe ATIDITETeiiiiiiiiiee e 2-11
2.2.8.3 EBIBUS AIDITET ..o 2-11
2.3 AHB DECOET . . oot 2-11
2.3.1 AHB SIAVE ...ttt 2-11
DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. iii

EP93xx User’s Guide
2.3.2 AHB-TO-APB BIAQE .. .eeeiieiiiiii ettt 2-12
2.3.2.1 Function and Operation of the AHB-t0-APB Bridge.........ccccevveeieiiiiiiiiiiineen. 2-12
2.3.3 APB SIAVE ...ttt e e e e e e e e nnnaes 2-13
2.3.4 Register DEfiNItIONScoviiiiiiiii i e e e e 2-13
2.3.5 MEMOIY IMAPot r et e e e e e e e e e et et e et et eeee e bebebe bbb e e e e e r e e e e e e e aeaeaas 2-16
2.3.6 INternal REQISIEI IMAP ...veveieeie ittt e e e e e s e e e s e e e e e e e e s snsnnnbrnneeeeaeaeeas 2-17
2.3.6.1 MEeMOrY ACCESS RUIESuveiiiiieiei et e e e e 2-17
Chapter 3. MaverickCrunch Co-ProCeSSOrccccvvviiiiiiiieiii e 3-1
B L INtrodUCTION . ..o e 3-1
0t I ooV SRR 3-1
3.1.2 OPerationNal OVEIVIEWcouuuiiiieiieiiie ettt ettt ettt ettt et e e s bt e e e e s bbbb e e e s nbeeeees 3-1
3.1.3 PipeliNeS @Nnd LAENCYccciiiiiiiiiiiiiiiiee ettt e e e e e e e e anb e eeeee e 3-3
TN T B T = W =T £ (= PSSR 3-3
3.1.5 Integer Saturation ArtMETICcuueiiiiiiiee e 3-4
K R SR @] o o] o =T [<To] 4 LT PTPPPRPTP 3-6
3.2 Programming EXamples 3-8
I B = V1] o] L= e T PP PP PP UR PP 3-8
T I ST =1 (0] o 0o Lo = TP PP PPPPPUPT 3-8
N A O 0 oo [TP RPRTPPPR 3-8
3.2.1.3 Accessing MaverickCrunch with ARM Co-Processor Instructions................. 3-8
3.2.1.4 MaverickCrunch Assembly Language INStructions............ccccevvvvvvevnnnincnnnnnn. 3-8
B2 2 EXAMPIE 2.t e e e e e e e e e b e e e 3-9
i N O 0 o To [TSRO RPUTPPPR 3-9
3.2.2.2 MaverickCrunch Assembly Language INStructions............ccccvevvvvvveeninincnnnnnn. 3-9
3.3 DSPSC REGIS O . o vttt 3-10
3.4 ARM Co-Processor Instruction Format 3-14
3.5 Instruction Set for the MaverickCrunch Co-Processor, 3-17
3.5.1 Load and Store INStIUCHIONS.........uuuiiiiiieieeee ittt e e e e e e e e e e e e s s s s rareeeeaeeee s 3-21
3.5.2 MOVE INSITUCHIONSeeeiiiiiiiiiiiitt ettt ettt e e e e e e e e e e e s aabbbabeeeeaaaeeas 3-24
3.5.3 Accumulator and DSPSC MoVE INSIUCHIONSuuiiiiiiiiiiiiiiiiiee e 3-27
3.5.4 Copy and Conversion INSEIUCHIONS.oiiii ittt e e e e 3-31
3.5.5 Shift INSIUCHIONSvevieeiiei et e e e e e e e s e e e e e e e e e anennnrrnneeeeeeeeeas 3-35
3.5.6 COMPAre INSIFUCLIONSeiiiiiiiiiieiiieeee ettt ettt e e et e e e e s nbbe e e s e nnaeas 3-36
3.5.7 Floating Point Arithmetic INSLrUCHIONScoiiiiiiiiiiiii e 3-38
3.5.8 Integer Arithmetic INSIUCHONSuuuiiiii i e e e 3-41
3.5.9 Accumulator ArithmetiC INSTIUCLIONSoooiiiiiiiiiiiieee e 3-45
Chapter 4. BOOt ROMcooiiiiiiiiiiiiiieeeeeee e 4-1
A1 INtrodUCHION e 4-1
4.1.1 Boot ROM Hardware Operational OVEIVIEW.ccocuuuiiiiiieiiae et e e e 4-1
4.1.1.1 MEMOTY MBP . ciiiiiiiiiiiiittititet e e e e e e e e e e e et et et e e eeeeeesee e e bbbb e e e e e e a e e e e e eeas 4-1
4.1.2 Boot ROM Software Operational OVEIVIEWuuuuiiiiiiiaeeaai it 4-1
4.1.2.1 IMAQGE HEAUETciiiiiiie ettt ettt e st e et eeeeanes 4-2
4.1.2.2 BOOt AIGOITERM L..eiiiiiiiiee ettt et e e ee e e 4-2
2 3 011 - o USRS 4-3
4.2 BOOt OPLIONS .t 4-4
Nt R Y 8 I =TT | RSP 4-6
S | o = o T | SR URURPPPUPPPPRRPRPR 4-6
e B o I NS T = T To | SRR PSR 4-6
4.2.4 SDRAM 0OF SYNCFLASH BOOLcciiiiiiiieiiiiiiic ettt et e e nneeeas 4-7

iv ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

I

EP93xx User’s Guide

4.2.5 Synchronous Memory OPEIatiONc.ciiiuuiiiiiiiiiie ettt e 4-7

Chapter 5. System CoONtroller ... e 5-1

D L INtrOdUCTION . ..o e e 5-1

5.1.1 SYSEEIM STAIMUD ..cevttreeeieiiee ettt e e e e e e e r e r et e e e e e e e s e e eeeeeee s 5-1

5.1.2 SYSIEIM RESET ..uiuiiiiiiiiiiiie i e e e e e e e e e e 5-1

5.1.3 Hardware Configuration CONrol.........ccccooiiiiiiiiiii e e e 5-2

5.1.4 Software System Configuration OPLIONS..........occiuuiiiiiiiiiii e 5-4

L0 T T T 2 o o S 5-4

5.1.5.1 Oscillators and Programmable PLLScccvviiiiiiiieiiiee e 5-4

5.1.5.2 Bus and Peripheral CIock GENerationcccouvueeeeeiiiiire e 5-5

5.1.5.3 Steps for Clock ConfigUuIrationccueeeeiiiiiiii i 5-9

5.1.6 POWEI MANAGEIMENToiiiiiiiiii ittt e e e s e e et e e e e e s s e e eeeeas 5-9

5.1.6.1 CIOCK GALINGS ...ceouvtiieeiiiiiiee ettt ettt sttt e e e aeeee 5-9

5.1.6.2 SyStem POWET STAIESiiiiiiiiiii it e e e e aees 5-10

5.1.7 INLEITUPL GENEIALION ...eeeiiiiiiiiiiiiitee ettt e ettt e e e e e e e e et e e e e e e e e e s s aanbbabeeeeaaaeeas 5-12

D 2 REOIS IS . . oottt 5-13

Chapter 6. Vectored Interrupt Controller.............eeeeiiiiiiiiie e 6-1

6.1 INtrodUCTION . . . e 6-1

L I A (1 (=T (T o = o 1Y PSP UOOU PRI 6-2

6.1.2 INterrupt CoNfIQUIATIONc.oiiiii ittt e e e e e eeee e 6-3

B.1.3 INLEITUPL DELAIIS ...eeeiiieiiiee ettt s et e e e s sab bt e e s snneeeeas 6-4

8.2 REQISIBIS . o ot 6-8
Chapter 7. Raster Engine With Analog/LCD Integrated

TiMING @Nd INTEITACE ...uviiiiiii e 7-1

7. INtrodUCTION . .o 7-1

7 2 FRAUIES . .. e 7-3

7.3 Raster Engine Features OVEIVIEWttt e e e 7-3

7.3.1 Hardware BlINKINGeeeieiiiiiiiieiiiiee sttt e e eibb e e e e e e snnees 7-3

7.3.2 COlOr LOOK-UP TADIES....ceiiiiiiiieiieee ettt 7-4

7.3.3 Grayscale/Color Generation for Monochrome/Passive Low Color Displayscc......... 7-4

7.3.4 Frame Buffer Organization ..o e e e e e e e e e e e e 7-4

7.3.5 Frame BUffer MEMOIY SIZE.......uiiiiiiii it e e e e e e e e e e e e e e eaeeaans 7-6

7.3.6 Pulse Width Modulated BrightNessS.uviiiiiiiiiiie e 7-6

R T Al = 10 1YL= 1= T O o P 7-7

7.4 Functional Details e 7-7

7.4.1 VILOSATI (Video Image Line Output Scanner and Transfer Interface)cccccceeeeee. 7-8

TA2VIACO FIFO ..ottt ettt sbb e e sab e e s b e s srbe e e be e 7-9

T 4.3 VIAEO PIXEI MUX ...ttt ettt s et e e st e e be e e snnneen 7-10

A 2] a1 G U i 1T o SR 7-10

7.4.5 Color LOOK-UP-TADIES ...ccoiiiiiiiieeie e 7-11

A T o] [0 g = {1 = 0/ V3 OSSR 7-11

747 PIXEl SNt LOGIC .. tuteeitie ettt ettt ettt et e st e e s be e e s be e e snnneean 7-12

7.4.8 Grayscale/Color Generator for Monochrome/Passive Low Color Displays 7-15

7.4.8.1 HORZ_CNT3, HORZ_CNT4 COUNEIS ...cutvieiiiieiiiee s iiee et 7-16

7.4.8.2 VERT_CNT3, VERT_CNT4 COUNLEIS ...cceiuviieiiieeiiiee ettt 7-16

7.4.8.3 FRAME_CNT3, FRAME_CNT4 COUNLEIS ...ccevuvieiiiieiiiie et 7-16

7.4.8.4 HORZ_CNTX (PIXEI) tIMING ..eeiitriieiiiiieiiii et 7-16

7.4.8.5 VERT_CNTX (IIN€) tIMINGeeeiiiiiiiiiiiiiie ettt 7-16

DS785UM1 ©Copyright 2007 Cirrus Logic, Inc.

EP93xx User’s Guide
7.4.8.6 FRAME_CNTX tIMING ..vvviiiiiiiiiee ittt 7-16
7.4.8.7 Grayscale Look-Up Table (GrySCILUT) ...cueveiiiiiiiieiieee e 7-17
7.4.8.8 GryScILUT Timing DIagramccooiiiiieiiiiiiiee et 7-18
A eI = 10 1V 1= O] o T PP 7-24
7.4.9.1 Registers Used fOr CUISONccviiiiiiiieiiiiiiiie s s s ss s e e e e e e e e e e e e e ae e e e e eeeeeeeaeaenns 7-26
A 3 K0 YT (=T T o] Vo SRR 7-28
7.4.10.1 Setting the Video Memory Parameters.......ccooeeevevvieieeeii e 7-31
T.4.10.2 PIXEIMOE ...ttt et 7-32
T4 1L BIINK LOGIC 1ttt ettt ettt ettt sae e bt e e sab e e e sbn e e e snbe e s emnee s snbeeennneeaas 7-32
TA 111 BINKRALEeiiiiiieiiit ettt ettt e e e sane e e sabe e e eneee s 7-32
7.4.11.2 Defining BlINK PIXEIScooiiiiieieecii st 7-32
7.4.11.3 Types Of BIINKINGocueiiiiiiiieiee e 7-33
7.4.12 Color Mode Definitionveiiiiiiiieii et 7-35
7.4.12.1 Pixel LoOK-Up Table MOEccooiiiiiiiiiiiiie e 7-35
7.4.12.2 Triple 8-bit Color Definition MOAEoccuveiiiiiiiiiieiiee e 7-35
7.4.12.3 16-bit 565 Color Definition MOdec..evviiiiiiieeeee e 7-35
7.4.12.4 16-bit 555 Color Definition MOdec.cvvvviviiiieeeeee e 7-35
7D RIS . o o e e 7-36
Chapter 8. Graphics ACCelerator.........couuuii i e 8-1
8. OV VI W .« oottt e e 8-1
8.2 Block Processing Modes. 8-1
S T2 A O o] o) PP PR PPPPPPPPPRP 8-2
8.2.1.1 TIANSPAIEICY ... ceeeeeiieiieeeeeeeeete ettt e r e e e e e e e e e e e e e aeeeeeeeeeeeseseaesbbbebannnann e e es 8-2
S B N I To [o= | 1, = Y] 8-2
8.2.1.3 Logical DeSHINALIONuuuuiiiiiiiiii e e a e e e e 8-2
8.2.1.4 Operation PreCeUBNCEoocuiiiiiiie ettt a e 8-2
I =T 0 =Y o] o] 1 [o [PUU PP UP ORI 8-3
8.2.3 BIOCK FlIS ...ttt e e e ettt e se e e e nbe e e sbe e areeeaa 8-3
8.2.4 Packed MemOIY TranSTEruuuueiiiiiciiii e e e e e e e e e e e e e e 8-3
8.3 LiNE DraW s . . e e 8-3
8.3.1 Breshenham LiNE DIAWSccccuuiiiiiiieiieeeis ittt eer e e e e e e e sss st ee e e aeeesessennannrnneeaneeeeens 8-4
8.3.2 PIXEl STEP LIiNE DIAWS ...eeiiiiiiiiiieiitiiee e sttt sttt et ettt e e st e e e e bbn e e e e nbaee e e e nnbeeas 8-4
8.4 Memory Organization for Graphics Accelerator. 8-4
8.4.1 Memory Organization for 1 Bit Per Pixel (DPP) ... vuvveeeiiiiiiiiiiiiieee e 8-5
8.4.2 Memory Organization for 4-Bits Per PiXel ... 8-5
8.4.3 Memory Organization for 8-BitS Per PiXelcoiiiiiiiiiiiiiii e 8-5
8.4.4 Memory Organization for 16-BitS Per PiXel ... 8-6
8.4.5 Memory Organization for 24-BitS Per PiXelccooiiiiiiiiiiiiec e 8-7
8.4.6 MEMOIY MAP ACCESSceiiiiiiiiiiiititit e e e e e e e e e e e e e e e e teteeeeeteeeessaeseeababnb e a s e e e e e e e e aaeaaeeeaas 8-8
8.5 Register Programming 8-8
LSS T AT Lo] o [@0 ¥ || SO PPPPPRPPP 8-8
8.5.1.1 Example: 8 BPP MOUE.......ccoiiiiiiiiiiiiiiie ettt 8-8
8.5.1.2 Example: 24 BPP (packed) MOde.........ccooviiiiiiiiiiiie e 8-9
TS (= = T = U o RS = o PP 8-9
8.5.2.1 4 BPP WOIM LAYOUL ...ccoiiitiiiiiiiiiiiee ettt ee e 8-10
8.5.2.2 8 BPP WOIA LAYOUL ...ccciiiiiiiiiiiiiiee sttt et ee e 8-11
8.5.2.3 16 BPP WORD LAYOULeeeiiiiiiiiiieiisiiiie ettt ee e 8-11
8.5.2.4 24 BPP MOUE.....uuiiiiiiee ettt a e e 8-12
8.6 RegISIEr USAge. . . ottt 8-13
8.6.1 Breshenham’s Algorithm LINE DIAWeeeiiiiiiiieiiiiie ettt 8-13
8.6.2 Example of Breshenham’s Algorithm Line Drawccooiiiiiiiiieiieiieen e 8-15
8.6.3 BIOCK Fill FUNCHION ...ttt st 8-16

Vi ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

I

EP93xx User’s Guide
8.6.4 BIOCK COPY FUNCHION.....cciiiiiiiiiiiiit ittt ettt et e e 8-18
8.6.4.1 Example Of BIOCK COPY....coiuuiiiiiiiiieiie ettt e e e e 8-21
8.7 REOISIEIS i e 8-22
Chapter 9. 1/10/100 Mbps Ethernet LAN Controllercccccoeeiiiiiiiiiiiiiiiiieee, 9-1
0. L INtrodUCHION . .ot e 9-1
9.1.1 Detailed DESCHIPLIONcciieiiiiiiiiee ettt ettt e e e e e e e bbbt e e e e e e e e e s e bbb e e eeeeeaaeeas 9-1
9.1.1.1 Host Interface and Descriptor PrOCESSOruuviiiiiiiiieaieaiiiiiiieeeee e e e 9-1
9.1.1.2 Reset and INItIaliZatiON...........ocveeieiiiiiee e e 9-2
9.1.1.3 POWET-AOWN MOUES ...ttt 9-2
9.1.1.4 AAAIESS SPACEeveeiiiieeeeaiei ittt e ettt e e e e e e e e s bb e e e e e e aaeeeasaaannaes 9-2
9.1.2 MAC ENQINEeeeieiieiteeeee ettt e s et e e st et e e ss et e e e s et e e s s e s 9-3
9.1.2.1 Data ENCAPSUIALION.......ceeiiiiiiiiieeie ettt e e e e e e e e sanaes 9-3
9.1.3 Packet TranSmiSSION PrOCESScciiiiiiiiiiiiiiieeie ettt 9-5
9.1.3.1 Carrier DEfEIENCE ...ovvie e ettt e e e e e e e e e e e 9-5
9.1.4 TranSMit BACK-Off.......cciiieiiiiiiii e e e e e e e e s e eaeeeaees 9-7
Lo T I R I = £ 113 o PSSR 9-7
9.1.4.2 ThEe FCS FIIU....ieiiiie et 9-7
Lo T B 2 1] (o =T PSSR 9-8
9.1.4.4 Destination Address (DA) Filter ... 9-8
9.1.4.5 Perfect AdAress FilteriNgooueeiiiiiiiiie e 9-8
e T I G o = 1] T (T PSR 9-9
9.1.4.7 FIOW CONLIOL....uutiiiieiiiee ettt e e e e e e e s e e reeaeae e e s e e ennes 9-10
9.1.4.8 ReCeiVe FIOW CONMIOL.......ccciiiiiiiiiiiee et aer e e e e e e e e e e ennes 9-10
9.1.4.9 Transmit FIOW CONMIOL........ccociiiiiiiiii e r e r e e e e e e 9-10
9.1.4.10 Rx Missed and TX ColliSiON COUNLEIS........uuveieriiiiieeeeiiiiieessiieee e e eiieeee e 9-11
9.1.4.11 AcCeSSING the MIIcoiiiiiiiiiiiiii e 9-11
9.2 DESCIIPIOr PrOCESSOr. o o ottt et e e e e e e e 9-13
9.2.1 Receive Descriptor ProcesSSOr QUEUESccoivvieeiiuiiiiiiniiieiisssssseeeasaeeeaeaesaaaaaaseenees 9-13
9.2.2 ReCeivVe DESCHPIOr QUEUEuuuiiiiieieie i e e e e e e e ee e ettt e a e e e e e e e e aaaaaeaaaaeas 9-13
9.2.3 RECEIVE STALUS QUEBUE. .. .uutiuiiiiiiiiii et e ie i e e e e e e e e e e e e e ee et e et e e e e e s s s e a e e e e e e aaaaaeeaaeaes 9-16
9.2.3.1 ReceiVe Status FOMMALccooiiiiiiiiiiiiiie et 9-18
9.2.3.2 RECEIVE FIOWvveiieiiiee ettt e e an e e e a e e e e e s nnnes 9-21
9.2.3.3 RECEIVE EITOIS ..uiiiiiiiiee e e e ieece ettt s e e e e s s eee e an e e e e e e s s e sneareaaeeaeaeeseenannnes 9-22
9.2.3.4 Receive Descriptor Data/Status FIOWc...eeeiiiiiieeiiiiiiieeiiee e 9-23
9.2.3.5 Receive Descriptor EXampleoooiiiiiiiiiii e 9-24
9.2.3.6 Receive Frame Pre-ProCESSINGicuuiiiiiiiiiieeiiiiiie e eriieeeeessiireee e enireeee e 9-25
9.2.3.7 Transmit Descriptor Processor QUEUES..........eeeeiiiiieeeriiiiiee e niiiee e siieeeee e 9-26
9.2.3.8 Transmit DeSCriptor QUEUE..........uiieiiiiieiee ittt 9-26
9.2.3.9 Transmit DesCriptor FOMMALcoiiiiiiiiiiiiiiiie e 9-28
9.2.3.10 Transmit StatuS QUEUEuuuiiriieiieeeeeeieiieiieieeeereeeeeess s snnnreenereeeeaeessaennnes 9-30
9.2.3.11 Transmit StatusS FOIMALcueviiiiiiiiiiie e 9-32
9.2.3.12 TranSMIt FIOWuveiiiiieiiee i e e e e e e e e e e e e e e e e e s 9-34
9.2.3. 13 TraNSMIt EITOIS ..uviiiieieeeiieeccciiieitie e et e e e e s e e st e e e e e e e e s s e s anaereeeaeeeseeannnes 9-35
9.2.3.14 Transmit Descriptor Data/Status FIOWccovviiiiiiiiiiiieiiee e 9-36
O.2.4 INEEITUPLS ..eeeii ittt ettt e e e e e ettt e e e e e s s e e bbb e e et e e e e e e s e e e e aneeeeeeeeens 9-37
9.2.4.1 INLEITUPE PrOCESSING . ..cciiitiiiieiiieiiee ettt e e e sbr e e e ane 9-37
1S I ST [1= 2= 4o) o PP 9-37
9.2.5.1 INLEITUPE PrOCESSING . ..cciiiutiiieiiititiee ettt ettt e e e 9-38
9.2.5.2 Receive QUEUE PrOCESSING ...cciivvriiiiiiiiiieei ittt ettt ee e 9-38
9.2.5.3 Transmit QUEUE PrOCESSINGuvvviieiiiiiiiee ittt 9-38
9.2.5.4 Other PrOCESSINGeeeiiiiiiiiieiiiiiiee ettt ettt et e e e e e s nireeeeeees 9-38
9.2.5.5 Transmit RESIArt PrOCESScoiuiiiiiiiiiiiiie ettt 9-39
0.8 REOI SIS . . oot 9-40
DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. Vi

EP93xx User’s Guide
Chapter 10. DMA CONtrOllEr ... e 10-1
10,1 INtrodUCHION . .. e 10-1
10.1.1 DMA FEALUIES LiSt.....iiiiiiiiiieiiiiie e e e e s se sttt e et e e e e s e e s s e e e e e e e e e s s s s ssnnaesareeeaeeeesseannnes 10-1
10.1.2 Managing Data Transfers Using a DMA Channelccccccoviiiiiiic i, 10-2
10.1.3 DMA OPEIALIONS ..cceeieeieiiiiteett et e e e ettt e e e e e e e e e st bbbb e e bt e e ae e e e e e s e sbbbesaeaeaaaaeeaaaannnes 10-3
10.1.3.1 Memory-to-Memory Channelsoooovvvvviiiiiiiiiii e 10-3
10.1.3.2 Memory-to-Peripheral Channels ... 10-4
10.1.4 Internal M2P or P2M AHB Master Interface Functional Description............cccccceeeeeenn. 10-4
10.1.5 M2M AHB Master Interface Functional Description...............ccceeeeiiiiiiiiiiieeieeeee e 10-5
10.1.5.1 Software Trigger MOUAEcooiiiiiiiiiiiiice e 10-5
10.1.5.2 Hardware Trigger Mode for Internal Peripherals (SSP and IDE) and
for External Peripherals without Handshaking Signals...........cccovviiiiniiiiieiniinenn, 10-6
10.1.5.3 Hardware Trigger Mode for External Peripherals with
HanNdshaking SIgNAISoiiiiiiiii e 10-6
10.1.6 AHB Slave Interface LIMItatioNScoocviiiiiiiiiie e e e e e e e e 10-6
10.2.7 INEEITUPL INTEITACE ...eeiiiiiiiiie ettt e e ee s 10-6
10.1.8 Internal M2P/P2M Data Unpacker/Packer Functional Descriptioncccccceeevvennnee 10-6
10.1.9 Internal M2P/P2M DMA Functional DeSCrPLioNccoiuviiiiiiieeieeei e 10-7
10.1.9.1 Internal M2P/P2M DMA Buffer Control Finite State Machine..................... 10-7
10.1.9.2 Data Transfer Initiation and Terminationcccceeceveerririere e 10-9
10.1.20 M2M DMA Functional DeSCHIPLIONcccuuuiiiiiiiiiie et 10-10
10.1.10.1 M2M DMA Control Finite State Machinecccccvveevieeeeei e, 10-10
10.1.10.2 M2M Buffer Control Finite State Machine...........ccccccccvvvveeei e, 10-12
10.1.10.3 Data Transfer INItIationooocciiiiiiiieieeee e 10-13
10.1.10.4 Data Transfer Termination..........ccccvveeiiirieeeee e 10-15
10.1.10.5 Memory BIocK Transfer........coiiiiiii e 10-16
10.1.20.6 Bandwidth CONrolccoveviieiiiiiiiieee e 10-16
10.1.10.7 External DMA Request (DREQ) MOUEccevvveiiiiiieeiiiiieee e 10-16
10.1.11 DMA Data Transfer Size DeterminNationcccccceeeiiiieciiiiiiireeeeeeeessssesieeeeereeeee s 10-17
10.1.11.1 Software Initiated M2M and M2P/P2M Transfers.......ccccccceevvieevivvennnnn. 10-17
10.1.11.2 Hardware-Initiated M2M Transferscccccccviviiiciiiiiiiniiee e 10-18
10.1.12 BUFfEr DESCIIPIOIS ...ciiiiiittiiee ittt ettt e s e e e ibe e e e e aabeas 10-18
10.1.12.1 Internal M2P/P2M Channel Rx Buffer Descriptorsccccevvivveeennnnnn 10-19
10.1.12.2 Internal M2P/P2M Channel Tx Buffer Descriptors..........ccceeevivveeeennnne. 10-19
10.1.12.3 M2M Channel Buffer DESCHPIOIS.ccuvviieeiiiiieeiiee e 10-19
00 e 3 = 10 LS o 11 =V o) SRR 10-19
10,2 REGIS OIS . . ottt 10-20
10.2.1 DMA Controller MEmMOIY Mapuuuuuuuruiiiiiiiiisee e e ee e e e e eeeee e e e et et e e e eeeeee e s 10-20
10.2.2 Internal M2P/P2M Channel Register Mapccccooieeeiieiiiiiie e 10-21
Chapter 11. Universal Serial Bus Host Controller..........ccccccoiviiiiiiiiiiiiiiineee, 11-1
12,2 INtrodUCTION . ..ot 11-1
L1111 FRATUIMES ...ttt e et e e e e e s st e e 11-1
L 2 OV IV BW . o ottt et e e e e 11-1
11.2.1 Data TranSTer TYPES ...coueeeii ettt ettt ettt et e e et e e e seabreees 11-2
11.2.2 HOSt CONtroller INtErfaCE.uuviiiiieei e e e e e e e e e e nnnes 11-3
11.2.2.1 Communication ChanNEIS...........ccuviiiiiiiiiie e 11-3
11.2.2.2 DAta STTUCLUIEScuiiiiiiiiie i 11-4
11.2.3 Host Controller Driver ReSponSibilitieseeiiiiiiiiiiiiiii e 11-6
11.2.3.1 Host Controller Management............ocoevvviieiviiiiiiiiiiiiiisesesese e e e e e e aeeeaeeaaeaens 11-6
11.2.3.2 Bandwidth AHIOCALIONc.vvieiiiiiiiee e 11-6
11.2.3.3 LISt MANAGEMENT ... e s e e e e e e e e e e e e e e aaaees 11-7
11.2.3.4 ROOE HUD ..ot 11-7

viii ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

I

EP93xx User’s Guide
11.2.4 Host Controller ReSPONSIDIlILIES.cuuuiiiiiiiiii i 11-8
11.2.4. 1 USB StAES ...eeiiiiiiieiiieeeie ettt ettt ettt e e s nbeeeae 11-8
11.2.4.2 Frame ManagemMENTuuiiiiiiiiiiiieeeieiiiis e e s esi s s e e e aann e e s eeaban e e e e e s anranns 11-8
11.2.4.3 LISt PrOCESSING ..vuvuuuiiieiiie i ei ettt s n e e e e e e e e aaaaaas 11-8
11.2.5 USB HoSt CoNtroller BIOCKS.cciiiiiiiiiiiiiiie et 11-9
11.2.5.1 AHB SIBVE ...eeeiiiiiieeiiie ettt ettt 11-9
11.2.5.2 AHB MASEENeiiiiiiiiiiee ettt ettt st e 11-9
11.2.5.3 HCI SIQVE BIOCK......couiiiiiiiiiiiieeieee ettt 11-9
11.2.5.4 HCI MASEI BIOCK.......ceiiiiiiiiiiic ittt 11-10
11.2.5.5 USB State CONMIOlceeiiiiiiiieiiiiiee ettt 11-10
11.2.5.6 DAtA FIFO ...ttt 11-10
11.2.5.7 LISE PTOCESSON ...eeeeiiiiieiiee ittt 11-10
11.2.5.8 Root Hub @and HOSt SIEcoiiiiiiiiiiie e 11-10
10 8 RIS IS . . ettt 11-11
Chapter 12. Static Memory CONErolleruuuiiiiiiiiiiiiiii 12-1
12. 2 INtrodUCTION . ..ot 12-1
12.2 Static Memory Controller Operation e 12-2
12.3 PCMCIA Interface (EP9315 Processor Only) 12-5
12.4 PC Card Memory-Mode Enable Signals. 12-8
12.5 PC Card Memory Mapping . ..ottt e e e 12-8
12,6 REGIS OIS . . ot 12-10
12.6.1 Bank Configuration REQISIEISuuuuuuiiiiiiii e 12-10
12.6.2 PCMCIA Configuration Registers (EP9315 Processor Only)vvvvvvvvvvevneennn. 12-13
Chapter 13. SDRAM, SyncROM, and SyncFLASH Controller...............cccoeeen. 13-1
13. 2 INtrodUCTIONt 13-1
13.2 Booting from SyncROM or SyncFLASH 13-1
13.3 Address Pin USage oot e e 13-3
13.4 SDRAM Initialization e 13-4
13.5 Programming Mode Register: SDRAM Or SyncROM Device....................... 13-6
13.6 SDRAM Self Refresh 13-8
13.6.1 Entering Self RefreSN MOAEoooviiiiiiiiiie e 13-8
13.6.2 Exiting Self RefreSh MOuuveeiiiiiiciciie e 13-8
13.7 Programming Registers: SyncFLASH Device. i 13-8
13.8 External Synchronous Memory SyStem 13-9
13.8.1 Chip Select SDCSN[3:0] DECOUINGeeiiiuriiiiiiiiiiiie it ee e seaiaee s 13-9
13.8.2 Address/Data/Control Required by Memory SyStemccccccvveeeriiiiiiiiiiiiiieeeeeeen 13-10
13,0 REGIS OIS . . . it 13-17
Chapter 14. UART1 With HDLC and Modem Control Signals..............ccoeeee. 14-1
14,2 INtrodUCTIONot e 14-1
142 UART OVEIVIBW . o ottt ettt e et e et e e e e e e e e e e e e e 14-1
14.2.1 UART FUNCHIONAl DESCHPLIONeiiiiieiiiiiiiitiiieie ettt e e e e e e e e 14-2
14.2.1.1 AMBA APB INtEITACE ...uviiiiiieeeie it e e 14-2
I A 1V N = o o] PR 14-2
14.2.1.3 REQISLEN BIOCK.....cciiiiiiiiieiiiiiie e 14-2
14.2.1.4 Baud RaAte GENEIALON.....ccciiieeeiieiiiiiieieieeee e e e e s s e e e e e e e e e e s s snnrennaneeeaaeeeas 14-4
I I I -V] o L 1 P 14-4
14.2.1.6 RECEIVE FIFOttt e e e e e e e e s e eeeeeee s 14-4
14.2. 1.7 TranSMIt LOGIC ...eeviiiiiiiiieiiiiiie ettt 14-4
14.2.1.8 RECEIVE LOGIC ...vveiiiiiiiiiie ettt 14-4

DS785UM1 ©Copyright 2007 Cirrus Logic, Inc.

EP93xx User’s Guide
14.2.1.9 Interrupt GeNEration LOGICcceeirurrieeiiiiiiee ettt 14-4
14.2.1.10 Synchronizing Registers and LOGICccovviiiieiniiiiie e 14-5
N N o @] oT=T =1 (o] o B P PP PPU PP 14-5
14.2. 2.1 EITON BIIS..iiiiiiiiiiii ettt 14-6
14.2.2.2 Disabling the FIFOScuiiiiiiiiiiie e 14-6
14.2.2.3 System/diagnostic Loopback TeStNGcccoovvviiiiiiiiiiiiiieieeeiiiiiieee e 14-6
14.2.2.4 UART Character Frame.........ccoovuuieieiiiiiiee et 14-6
R 4 (=11 U] o] £ T O P TP TP 14-7
14.2.3. 1 UARTMSINTR .ottt sree e snnne e 14-7
14.2.3. 2 UARTRXINTR ..ottt ettt ettt nbe e 14-7
14.2.3.3 UARTTXINTR .ottt ettt ettt ettt e e e 14-7
14.2.3.4 UARTRTINTR ..ottt ettt sttt sn e 14-8
14.2.3.5 UARTINTR .ttt ettt ens 14-8
14,3 MOOBM. . o 14-8
LA AHDLC . . .o 14-8
14.4.1 Overview Of HDLC MOAESuuiviiiieiiiieciieiieiee et e e e e e e e e s s aee e e e e e e e s s ennnnes 14-9
14.4.2 Selecting HDLC MOUESoiiiiiiiiiieiieie ettt ettt e e nananeae s 14-9
14.4.3 HDLC TTANSIMIE. ...eeiitiieitieeeeite e ettt sttt sttt ettt et e st e e s sbb e e sabe e e sabb e e sbeeesnnbeesanneeans 14-11
L14.4.4 HDLC RECEIVE.....ceiuiiiiiiitie ettt ettt bttt ettt ettt e st e e sabbe e s neeeans 14-11
I SN O = (O S TSRO P PP PU PP RPUPPRPRPRO 14-12
14.4.6 AAAreSS MALCNINGceiiiiiiiiiee et e e anaeeas 14-12
I 1Y o To 4 £ SR ST RORR 14-13
I PSSP 14-14
14.4.9 Writing Configuration REQISEIS........uuuuiiiiiiiiiii e 14-14
14.5 UART1 Package DependencCyottt e e e e e 14-14
14.5.1 CIOCKING REQUITEIMENTSuiiiiiiiiiiieeeie ettt e e e e e e e e e e bbb eereeaaeeeeeas 14-15
14.5.2 Bus Bandwidth REQUIFEMENESccciiiiiiiiiiiiii ettt 14-16
L4, REGIS OIS .ttt 14-17
(@ =T o =T gt TR 1N I 15-1
15, L INtrodUCHION . . e 15-1
15.21IrDA SIR BIOCK . .o oo 15-1
15.2.1 IrDA SIR Encoder/decoder Functional DeSCrptionccccceeviivieeeniiiieeeeeiiiee e 15-1
15.2.1.1 IrDA SIR Transmit ENCOUETcuviiiiiiiiiie e 15-2
15.2.1.2 IrDA SIR RECEIVE DECOUETceiiiiiiieiiiiie ettt 15-2
15.2.2 IrDA SIR OPEIALION. ...ttt ettt e e e e e e e e e e e e e e s e sabbebareeeaeaeeeseaaanes 15-3
15.2.2.1 System/diagnostic Loopback TeStNGcccoouviiiiiiiiiiiiiieieeeeiiiiieeee e 15-4
15.2.3 IrDA Data MOAUIALIONvviieiiiiiieie ittt 15-4
15.2.4 Enabling Infrared (IF) MOAES.........cuvuiiiiiiiiiiciie e s 15-5
15.3 UART2 Package DependencCyottt e e e e 15-5
15.3.1 ClOCKING REQUITEIMENTSeiiiiiiiiieieiieiiee sttt ettt ettt e et e e s st e e s sabb e e e s snnnneee s 15-5
15.3.2 Bus Bandwidth REQUIFEMENESccoiiiiiiiiiiiiiii ettt 15-6
15,4 REOIS OIS . . oot 15-7
Chapter 16. UART3 With HDLC ENCOENuuuiiiiiiiiiiiiiiiieiiae e 16-1
16. L INtrodUCHION . .. e 16-1
16.2 Implementation Details e 16-1
16.2.1 UART3 Package DePENUENCYcccuiiiiiiiiiiiiiiiete ettt et ee e e e e e e e e nnees 16-1
16.2.2 CIOCKING REQUIFEIMENTSuiiiiiiiieiieii ittt e e e e e e e e e bbb ee e e e e e e e e e s e aeaes 16-2
16.2.3 Bus Bandwidth REQUIFEMENESccoiiiiiiiiiiiiiii et 16-2
16,3 REGIS OIS . . . ot 16-3

X ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

|

EP93xx User’s Guide

(@ =T o =T gt 0 | 15 17-1
17, L INtrodUCHION . .. e 17-1
17, 2 IrDA INterfaCeS . . oo 17-1
17.3 Shared IrDA Interface Feature i e e e 17-2
L17.3. 1 OVEIVIEBW......eieeiee ettt ettt s et e s e et e e e e e e s e aab e e e s ann e e e nnrne s 17-2
17.3.2 FUNCLIONAI DESCHIPLION ...ttt ettt e e e e e e e e e e e e e s e e aaaes 17-2
17.3.2.1 General ConfiguratioN..........ccooeeiiiiiiiiii e e 17-3
17.3.2.2 TransSMitting Datacccooeieeiiiiiic e 17-3
17.3.2.3 RECEIVING DAL ...vvuveiiiiiii e e 17-5
17.3.2.4 Special CONAITIONSuueiiiiiiieei ettt e e e e e 17-7
17.3.3 Control Information BUffering.............ueeiiiiiii e 17-8
17.4 Medium IrDA Specific Features 17-8
A 1 1 0T [o 1o U 17-8
17.4. 1.1 Bit ENCOTING.....eeeiiieiiiiiiie ittt ettt 17-8
17.4.1.2 Frame FOMMAaL........cccviiiiiiiiiicie e 17-9
17.4.2 FUNCLIONAI DESCHPLION ...ttt e e e e e e e s et eeeeaaa e e e e s 17-11
17.4.2.1 Baud Rate GENEIatioNeevieeiiiriiiee et 17-11
17.4.2.2 RECEIVE OPEIALIONuuutiiiiiiiieeie ittt e e e e e ee s 17-11
17.4.2.3 TranSMIt OPEIrAtIONeeeiiiiiiiiiiiiiiitiei it e e e e e e ee s 17-13
17.5 Fast IrDA Specific Features e e 17-13
17.5. 1 INEFOAUCTIONeeites ittt e s e e s e e e e e e e e e ennnns 17-14
17.5.1.1 APPM MOUIALIONvvviiieiiiiiiie ettt 17-14
17.5.1.2 4.0 Mbps FIR Frame FOrmMatcccoviuiiiieiiiiiieieiiiiee e 17-15
17.5.2 FUNCHONAI DESCIIPLIONvviieeiiiiieee ettt ettt e e e e e e aebeas 17-17
17.5.2.1 Baud Rate GENEIAtIONvueivieeeeeiieeiiiiiieeereeee e e e e s s e e e e e e e e s e ennneeeees 17-17
17.5.2.2 RECEIVE OPEIAtIONeeiiiiiiiiiie ettt ettt 17-18
17.5.2.3 TranSMit OPEIatioNccovuriiieiiiiiiie ettt 17-19
17.5.3 IrDA CONNECLIVILYveeiieeiiiiie ettt e et e s bbeee e e e bbb e e s nees 17-20
17.5.4 IrDA Integration INFOrMAaLIONcooiiiiiiiiiiiiii e 17-21
17.5.4.1 Enabling Infrared MOAES...........ccoooiiiiiiieee e 17-21
17.5.4.2 Clocking ReqQUIFEMENTS.......ccoiiiiiiiiiiiie ettt 17-21
17.5.4.3 Bus Bandwidth REQUIFEMENTSuuiiiiiiiiiieiiiiiiiieeee e 17-22
17,6 REGIS IS . . . oo e 17-23
Chapter 18. TIMEIS ..o e e e e e e e e eas 18-1
18. L INtrodUCHION . .. e 18-1
L18.1.1 FRAUIMES ...ttt r et e e s 18-1
18.1.2 16 and 32-bit TiMer OPEratiON.........ccuiiiiiiiiiiiii ettt e e e e e e e e e 18-1
18.1.2.1 Free RUNNING MOEcciiiiiiii i 18-2
18.1.2.2 Pre-10ad MOEcooueiiiieiiiee et 18-2
18.1.3 40-bit TIMEr OPEIALION.uuutiiiiiiieeeie ittt e e e e e e e e e eeeeeaaeeesaanaaaneees 18-2
18 2 REGIS OIS . . . i 18-2
Chapter 19. WatCchdog TIMer ... oo e s 19-1
19,2 INtrodUCTIONot 19-1
19.1.1 WatChdOg ACHVALIONvveiiie ittt ettt ettt e e e abee s 19-2
19.1.2 ClOCKING REQUITEIMENTSeiiiiiiiiieieiiiiiee sttt ettt ettt e et e e sbb e e e s snbaeee e s snnnneee s 19-2
19.1.3 RESEt REQUITEMENTS ...ttt ettt reb e e e nanaaeee s 19-2
19.1.4 WatChdOg SEAtUScoiiiiiiiieieeeeee s e r e e ararar e e ns 19-2
19,1 REQISIEIS .ot 19-3

DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. Xi

EP93xx User’s Guide
Chapter 20. Real Time Clock With Software Trimcccccoeeviiiiiiievviee e, 20-1
20,1 INtrodUCHION . ..o e 20-1
b0 T S T 4117 1 = I 1o o SR 20-1
20.1.1.1 Software COMPENSALIONeeiieiiiiiiiei ittt 20-2
20.1.1.2 Oscillator Frequency Calibration.............cccceiiiiiieiiniiie e 20-2
20.1.1.3 RTCSWComp Value Determinationccccoovveeeeiniiiee e 20-2
20.1.1.4 Example - Measured Value Split Into Integer and Fractional Component.20-3
20.1.1.5 Maximum Error Calculation vs. Real Time Clock Accuracy...........ccccue.... 20-3
20.1.1.6 Real-Time INTEITUPL......ueeiiiiiieee ettt 20-3
b O R =Y A o] o] 1o) PP 20-4
20,1 REOISIEIS .\t e 20-4
Chapter 21. 12S CONLIOIETvcvevieeeeeeeeeeeeeeeeeee e 21-1
2L, L INtrodUCHION . ..o e 21-1
21.2 1°S Transmitter Channel OVeIVIEWttt et e e 21-2
21.3 1°S Receiver Channel OVEIVIEWurr et 21-5
b T T I =T o TN T | PPPR 21-6
21.4 12S Master Clock GeNeration. 21-7
21.5 12S Bit Clock Rate Generation.uuure ettt e 219
21.5.1 Example of the Bit CloCK GENEratioN...........ccuuuiiiiiiiiieee e 21-9
21.5.2 Example of Right Justified LRCK formatccueeveiiiiiiiiiiieeeee e 21-10
2L B INEEITUPTS oo et 21-10
2.7 RIS IS . ottt 21-12
21.7.1 12S TX REGISIEIScevvveeeeeees e s et s st en e ene e aan e eanen e 21-12
21.7.2 1S RX REQISIETScvvveeeeeeeeeeeeeeeevsesesesee s es e ees et an st as s sees s sanenenenanens 21-19
21.7.31°S Configuration and Status ReQISIErS........uuuiiiiiiiiiieie e 21-25
21.7.4 1S Global Status REGISIEIS .ttt 21-29
Chapter 22. AC'97 CONTIOIEIoviiiiiiieiii e 22-1
22.1 INtrodUCTIONot e e 22-1
22, 2 NI TUPES ottt e 22-3
22.2.1 Channel INTEITUPES ...coeiiiiiiiiite ettt ettt e e e e e e e e e ba e baeeaaeaae e as 22-3
22.2. 0.1 RIS ettt ettt e e et e e eree e e anaee s anaeeennneeans 22-3
L O I 1 TSRS 22-3
A N T = I 1 TSRS 22-4
L S O 1 USSR 22-4
22.2.2 GlODAl INTEITUPDLS ...ttt e e st e e e e e 22-4
22.2.2.1 CODECREADYuiiiiiiieiiit sttt e et e ettt ettt e ntee e e ssteeasnteeesnteesanaeessnneeannseeans 22-4
22.2.2.2 WINT ..ttt ettt ettt e ettt e et e e et e e e stee e e seeeeaneeesanaeesanaeeanneeeans 22-4
W €] = (@ 1N SRR 22-4
22.2.2.4 GPIOTXCOMPLETE ..o oottt a e e e e e e e e e e e e e eeeeeeereneees 22-5
22.2.2.5 SLOT2INT ceiieiiiie ittt ettt et e ettt e et e e et e e e stteeaaseee s sseeesanaeessreeeanneeeans 22-5
22.2.2.6 SLOTLITXCOMPLETEcoeiiiiiettiiiii et eeeeeaennnnes 22-5
22.2.2.7 SLOT2TXCOMPLETEcieeiiieeiiiiie e eeeeeaennnes 22-5
22.3 System Loopback Testing.t 22-5
22 4 RIS OIS . ottt 22-5
Chapter 23. Synchronous Serial POrt ... 23-1
23. L INtrodUCHION . ..o e 23-1
23 2 FRAtUI S . ot i e 23-1
23.3 SSP Functionality. o e 23-2
23.4 SSP Pin MUIIPIEX. . . oo 23-2

Xii ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

I

EP93xx User’s Guide
23.5 Configuring the SSP 23-2
23.5.1 ENAbIliNg SSP OPEIAtiON.....ccii ittt eee ettt e e e e e e e e s rabbbereeaeaaaeeas 23-2
23.5.2 MASEEI/SIAVE MOUE.......cciiiiiiieiiie ettt ennes 23-3
23.5.3 Serial Bit RAte GENEIALIONcocuviiiiiiiiiie et 23-3
23.5.4 Frame FOIMMAL.........ooiiiiiii it eeeaee st ebn b s e e a e e e e e e e e eaaeeens 23-3
23.5.5 Texas Instruments® Synchronous Serial Frame FOrmMat............c.ccvovvevreierereeseenenen. 23-4
23.5.6 MOtOrola® SPI FIame FOIMALc.oeeeeeeeeeseeeeeeeeeeeeeeeeeeee oo ee e s eeeeen s 23-5
23.5.6.1 SPO CIOCK POIAILYvveiiiiiiiiiiiesieie ettt 23-5
23.5.6.2 SPH CIOCK PRASEcuviiiiiiiiiiiee et 23-5
23.5.7 Motorola SPI Format with SPO=0, SPH=0.........cccooiiiiiiiiiiiiie e 23-5
23.5.8 Motorola SPI Format with SPO=0, SPH=1........cccccoiiiiiiiiie e 23-7
23.5.9 Motorola SPI Format with SPO=1, SPH=0.........cccoiiiiiiiiiiiiieiee e 23-8
23.5.10 Motorola SPI Format with SPO=1, SPH=1......coooiiiie e 23-9
23.5.11 National Semiconductor® Microwire ™ Frame FOrMALcccoveeverevevereeeesesns 23-10
23.5.11.1 Setup and Hold Time Requirements on SFRMIN with

Respect to SCLKIN in MiCrowire MOdeccuuuiiiiiiiiiiiiiiiiiiieee e 23-12
23,6 REOIS OIS, . ottt 23-13
Chapter 24. Pulse Width MOAUIALOTuviiiiiiiiiiiii e 24-1
24, L INtrodUCTION . ..o e 24-1
24.2 Theory of Operation. 24-1
24.2.1 PWM Programming EXAmMPIEScoiiiiiiiiiiiiiiiiie ittt 24-2
24.2. 1.0 EXAMPIE ...ttt e e e e e e e 24-2
24.2.1.2 Static Programming (PWM is Not Running) Examplecccccoviiiinnneen. 24-2
24.2.1.3 Dynamic Programming (PWM is Running) Exampleccccconniinnneen. 24-3
24.2.2 Programming RUIES..........uuiiiiiii it n e e e e e e aaaeeas 24-3
24, 3 RIS S . o it e 24-3
Chapter 25. Analog Touch Screen Interface........ccccceevevieiiiie i, 25-1
25. 1 INtrodUCTIONot 25-1
25.2 Touch Screen Controller Operation. e 25-1
25.2.1 Touch Screen Scanning: Four-wire and Eight-wire Operationcccceevvvieeenninn. 25-4
25.2.2 Five-wire and Seven-wire OPErationcocuuuieiiiiiiien et 25-10
25.2.3 DIFECE OPEIALION ...teeeiiiiieeee ettt e ettt e e e e e e e e s s s ibb bbb e e et e e e e e e e e e aanbbbeeneeas 25-12
25.2.4 Measuring Analog Input with the Touch Screen Controls Disabled 25-13
25.2.5 Measuring Touch Screen RESISTANCE..........cccoeviiiiiiiiiieeeeeeee e 25-15
25.2.6 Polled and Interrupt-Driven MOAEScoooiiiiiiiiiiiiie et 25-16
25.2.7 Touch Screen Package DEPeNdENCYcoocuviiiiiiiiiiee et 25-16
2. 3 RIS IS . ot 25-17
Chapter 26. Keypad INterfacCeouoiiiieiiii e 26-1
26. L INtrodUCHION e 26-1
26.2 Theory of Operation. e 26-2
26.2.1 Apparent Key DeECHION.ttt e e e e r e e e e e e as 26-3
26.2.2 SCAN N0 DEDOUNCE ..ottt ittt 26-5
26.2.3 INLEITUPL GENEIALION ...eeiieiiiiiiitee ettt e e e e e e e e e e s anb b areeeeaaae s 26-5
26.2.4 LOW POWEN MOE......cueiiieeiee e e ittt e s ettt e e e e e e e e s s s et e e eaeaeeeeesnnnnnsrnnnaneees 26-6
26.2.5 Thre@-KEY RESEL......eeiiiiiteie ettt e 26-6
26.3 REGIS IS . ottt 26-6

DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. Xiii

EP93xx User’s Guide
Chapter 27. IDE INTEITACEcoeee e e 27-1
27, L INtrodUCTION . ..o e 27-1
27.2 Theory of Operation. i e 27-1
27.2.1 Diagrams and State MAChINESccoiiuiiiiiiiiii e 27-2
27.2.2 PlO OPBIALIONSttteetiieeeee ettt e e e e e e ettt et e e e e e e s s e e ab s bebe e e eeeaeeeesaannbareaaeaaaeaeaaas 27-3
27.2.3 MIDMA OPEIALIONS ...ceiieieeeeieiiittie ettt ettt ettt e e e e e e s e bbbttt e e e e e e e e e s bbbebaneeeeaaeeeas 27-4
27.2.4 UDMA OPEIALIONS ...eeiiiiiiieiiiittie et ete e e e e e e ettt et e e e e e s e s e bbb e e eeeaaea e e e e s bbbebaneaaaaaeaess 27-5
27.2.5 Performance COoNSIAEratiONSuuuiiiieiiiiiiiiiiiiie e e e e s s e er e e e e e e s s s aereeeeeeeeens 27-5
27.2.6 UDMA EXAMPIE ...ttt ettt e et e e 27-6
27.2.7 DMA REQUESE LAIENCY ...ttt e e e e 27-7
27.2.7.1 DMA ReqUESt DEASSEITIONccceiiiiiiiiiiiiiiiee et ettt 27-7
27.2.7.2 DMA Request LatenCy OVEIVIEWuuuuiiiiiiiieaeieaiiiiieeie e e e e e 27-7
27.2.7.3 IDE DMA Programming Considerationsccccceeveeeeeeeeeieeeieieeeeeeeeeeiiiees 27-8
27.2.8 IDE Package DEPENAENCYuuueiiiiiiiaiaiiiaiiiiiitie et e e e e et e e e e e e e e aaaebaeeeeeaaaeeas 27-9
27.2.8.1 System Configuration CONStraintsccceeieiiiiieiiiiie e 27-9
27.2.8.2 Bus Bandwidth ReqQUIrEMENLScccuiiiiiiiiiiie e 27-9
27 3 RIS B S . ottt 27-10
Chapter 28. GPIO INTEITACEccuviiiiiiiiiiiiiiit e 28-1
28.1 INtrodUCTiON . ..o 28-1
28.1.1 MEMOIY IMAP.....ciieiiiieiitiiettt e e e e e e e e e e e ettt et e et et ee e tebte e bbb s e e e e e e e e e e eeaaaaaaaaeeaaes 28-3
28.1.2 FUNCLIONAl DESCHIPLION ...ttt e e s e e e e 28-3
P TR G B o= SRR 28-5
28.1.4 GPIO PN AP ceeeiiiiieiiti ettt ettt et e s e e e st e e s e e nenes 28-6
28,2 REOISIEIS. . o it 28-9
Chapter 29. SECUTNITY ...ciiiiiiiiiiiiieeie e e e e 29-1
20. L INtrodUCHION . ..o e 29-1
20,2 FRAUIBS . o o e e 29-1
29.3 Contact Information 29-1
29,4 REQISIEIS. . o i 29-2
Chapter 30. GIOSSAIYccuiiiiiiiiiiiiiiiiie it a e e e e e eas 30-1
Chapter 31. EP93XX RegISter LiSt.......ccoiiiiiiiiiiiiiiiiiiie e 31-1

Figures

Figure 1-1. EP9301 BIOCK DIAQIamM.........ccciiiiiiiieieeiiiiieieesis i e e e s e e e e e e e e e e e e e eeeeeeeetaaeresaenae s s e s e s eeeaeeaaaaaaaees 1-2
Figure 1-2. EP9302 BIOCK DIAQIAMccciiiiiiiiiieiiiiiiiiiiisesasss e e e e e e e e aeaeeeeeeeeaeeeestatereeaassa s s e s aaeeaaeaaaaaaaaees 1-3
Figure 1-3. EP9307 BIOCK DIAQIaMccciiiiiiiiiieeiiiiietsssas s e e e s e e e e e e ae et et e e e e eeeeetateaesaeare e s e s e s eeaaeaaaaaaaaees 1-3
Figure 1-4. EP9312 BIOCK DIAQIaMccciiiiiiiieieeieiiieisesas s s e e e e e e e e e e e et et e e e e eeeeetarereesenes e a e s e s e e eaeaaaaaaaaees 1-4
Figure 1-5. EP9315 BIOCK DIAQIaMccciiiiiiiieieiiiiiietisesss i e e e e e e e e e e e et e e e e e eeeee e taaeae e naaa s e s e s e s eeeaeaaaaaaaaees 1-4
Figure 2-1. ARMO20T BIOCK DIAQIAMcoeiiiiiiiieiiiiiiiiiii s s e s e s e e e e e e e e e aeee e et e e e e eaeaeeeaeateraraeara s e s aaaaeeaaaeas 2-2
Figure 2-2. Typical AMBA AHB SYSEIMttt e e e e e e e e e e e e e s e aaabbeee e 2-7
Figure 2-3. Main Data PathSccooiiiiiii e e e e e e e e e e e e e e et e e e e e e st aeaaa e e e e e aaaaaaaeaes 2-8

Xiv ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

I

EP93xx User’s Guide
Figure 4-1. Flow Chart of BOOt ROM SOftWEAIE........ccciiiiiiiiiiiii et 4-4
Figure 4-2. Flow chart of Boot Sequence for 16-bit SDRAM DEVICESc.coeeviiiiiieiiiiiiiie et 4-7
Figure 5-1. Phase Locked LOOP (PLL) STIUCTUIEcoiuiiiie ittt 5-4
Figure 5-2. CloCK GENETAtiON SYSIEIM ...cciiiiiiiiiiiiiiie ettt s et e e s bbb e e e s sbbe e e e e nannns 5-6
Figure 5-3. BUS ClOCK GENETALIONeiiiiiiiiiii ittt eb et e e st e e s e anbbe e e e e aneeee 5-7
Figure 5-4. Power States and TranSItIONScoiiueiiie ittt e e e e bt e e s sbbaeeesesrbeeeeesnnes 5-11
Figure 6-1. Vectored Interrupt Controller BIOCK DIagramcoooiiiiiiieiiiiiiiie et 6-2
Figure 7-1. Raster ENgine BIOCK DIAGIAMcoiiuiiiiiiiiiiiee ettt ettt s e e e et e e s sb b e e e e sanenes 7-8
Figure 7-2. Video BUFEr DIAGIAMuiii ittt ettt e et e e s e rab e e e e et b e e e s aabbe e e e e sabnes 7-9
Figure 7-3. Graphics MatriX for 50% DULY CYCIEcoiuuiiiiiiiiiii i 7-20
Figure 7-4. Sample Matrix Causing FIICKEINGuuuiiiiiiiiie i e 7-21
Figure 7-5.. Sample Matrix That AVOidS FIICKEINGuuuuiiiiiiii i e 7-21
Figure 7-6. Programming for One-third LUMINOUS INtENSILYccooiiiiiiiiiiceeee e 7-22
Figure 7-7. Creating Bit Patterns that Move to the Right..............oooi e, 7-23
Figure 7-8. Three and FOUN COUNE AXIS......iiiiiiiiiieeiiieiiieiiirrss s s s se e e e e e e e e e e e e et et e e e aeaeeee s e e taar e aeeaaeaaaaens 7-24
Figure 7-9. Progressive/Dual Scan Video SIgNaAlScoooiiiiiiiiiiiii e e 7-29
Figure 7-10. Interlaced VIide0 SIGNAIScoeviuiiiiiiiiiiiiiii s is i e e e et e e e e e e e e e e e eeeaas 7-30
Figure 9-1. 1/10/100 Mbps Ethernet LAN Controller BIOCK Diagram..............covvevviiriiiiiiiiiiiiiiisiiiineeeeeeeeeeeeeens 9-1
Figure 9-2. Ethernet Frame / Packet Format (TYPe H ONIY)oiiiiii i e 9-4
Figure 9-3. Packet TranSMISSION PrOCESS.........cuuuiuuiiiiiiiiiiiiiisis s e ie s e e e e e e e aeeeaeeeeeeeeeaeaeee sttt saseaaeeeeaeaas 9-5
Figure 9-4. Carrier Deference State DIAQramMuuuuuuiiiiiiiiiie e e e e e e e e aaaaae e 9-6
Figure 9-5. Data Bit TranSmMISSION OFAEN...........uvuiiiiiiiiiiie s e e et e e e e e e e et e e e e e e e aeaeaaaaaaaaaeees 9-8
[To [U TSI R T @ = O o T [PPSR 9-9
Figure 9-7. Receive Descriptor Format and Data Fragmentscooooiiiiiiiiiiiiieieee e 9-14
Figure 9-8. ReCeiVe StatuS QUEUEccoiiiiiiiieeeeieieei s s s s e e e e e e e e e e e e ae e e e e e eeeeeaeaaree s e et aaaeseaaaaaeaaaaes 9-17
Figure 9-9. ReceivVe FIOW DIAQramccooiiiiiiiiiiiiiiieirrrs s e s e e e e e e e e e e e e e e e et e e e aa e ae e et s s e e s e aaaaaaaaaaeas 9-21
Figure 9-10. Receive Descriptor Data/Status FIOWeiiiiiiiiiii i 9-23
Figure 9-11. Receive DeSCIPIOr EXAMPIE.....coouiiiiiiiiiiiii e e e e e et e e e e e e e e e e as 9-24
Figure 9-12. ReceiVe Frame Pre-PrOoCESSINGuuuuuiuiuiuuuiiiiiiiseeeieieeasaeaaaeaeateteesaeaareasrererannn e saaaaaaaas 9-25
Figure 9-13. Transmit Descriptor Format and Data Fragments ..o e 9-27
Figure 9-14. Multiple Fragments Per TranSmit FIamEcccociiiiiiiiii e s a e e e e e 9-28
Figure 9-15. Transmit StatuUS QUEUEcoeieiiiiieeiiieiet e ee e e ee e e e e e e e e e e e e et et et e teeeee e taret e s e s e s eaeaaaaaaaaeas 9-31
Figure 9-16. Transmit FIOW DIAQIram...........cooviiiiiiiiiiiiiiie e e e e e e e e e e e e et e e e e e e e et a e s e s e aeaaaeaaaaeas 9-34
Figure 9-17. Transmit Descriptor Data/Status FIOWiiiiiiiiiii i a e 9-36
Figure 10-1. DMA M2P/P2M Finite State MacChinegcccoiiiiiiiiii s 10-7
Figure 10-2. M2M DMA Control Finite State MacChinNe..........cccooeiiiiiiiie i 10-10
Figure 10-3. M2M DMA Buffer Finite State MacChinNe.........ccccooiiiiiiiiiiii e 10-12
DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. XV

EP93xx User’'s Guide

Figure 10-4.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 15-1.
Figure 15-2.
Figure 17-1.
Figure 17-2.
Figure 17-3.
Figure 17-4.
Figure 21-1.
Figure 21-2.
Figure 21-3.
Figure 23-1.
Figure 23-2.
Figure 23-3.
Figure 23-4.

Edge-triggered DREQ MOEuuiiiiiiiiiie ettt et 10-17
USB FOCUS ATBAS ...ttt e e ettt e e et e ettt e e e e e s e e e bbb e e et e e e e e e e e e b rnreeeeeeeeens 11-2
CommuUuNICAtIoN ChANNEISooiiiiiiiii e s 11-3
TYPICAI LIST STIUCTUIE .ottt ettt e st e e et e e e sanneeee s 11-4
Interrupt ENdpoint DESCHPLOr SIFUCTUIEcoiiiiiiiiiiiitieie ettt 11-5
Sample Interrupt ENdpoint SCheUIEouiiiiiiiii e 11-6
USB Host Controller BIOCK DIGQIAIMuuiiiiiiiiie ittt e 11-9
32-bit Read, 32-bit Memory, 0 Wait Cycles, RBLE = 1, WAITh Inactive..........cccocoeveeiniinenenn. 12-3
32-bit Write, 32-bit Memory, 0 Wait Cycles, RBLE = 1, WAITN Inactive............cccceeeevniieeeenns 12-3
16-bit Read, 16-bit Memory, RBLE = 1, WAITN ACHVEcovvveeiiiieciieeeeee e e e 12-4
16-bit Write, 16-bit Memory, RBLE = 1, WAITN ACLIVEcooiriiiiieeeee e 12-4
SiNgle PC Card INEITACEccooo i e e e e e e e e s 12-7
07 I =] (o Ted QBT T= Vo | =y o 14-3
UART CharacCter FIAMEciiiiiiiiieiiiiiiiee ettt e e st e e e s nr e e s 14-6
UART CharacCter FIAIMEoeiiiiiiiiie ittt ettt et e s e s nne e e s nnns 14-6
IrDA SIR Encoder/decoder BIOCK Diagramcoooiiiiiiiiiiiiciiiie s e e ae e 15-2
IrDA Data Modulation (3/16)uuiiiiiiiiii et e e e e e e e e e e aaaaaaaaaaaae 15-4
RZ1/NRZ Bit ENCOAING EXAMPIE......ceiiiiiiiiieiciiie et e e e e e e e e e 17-9
P o Y 1Y oo (U] = i o o I =t Yoo o {1 T T 17-14
T o Y Y oo (U] = i o I = Vg] o[17-15
IrDA (4.0 Mbps) TranSmMISSION FOIMAL..........uiiiiiiiii i e 17-15
Architectural Overview of the 12S COMIOIETcooveveveeeeeeeeeeeeeeeeeeeees s 211
Bit Clock Generation EXamPIE ..ot 21-10
Frame Format for Right Justified Data........ccccooeiiiiiiiiii e 21-10
Texas Instruments Synchronous Serial Frame Format (Single Transfer).........cccccocvivcciieinnn. 23-4
TI1 Synchronous Serial Frame Format (Continuous Transfer).........cccccoovvvvriiicccceeen, 23-4
Motorola SPI Frame Format (Single Transfer) with SPO=0 and SPH=0........................eeeel 23-5

Motorola SPI Frame Format (Continuous Transfer)

WIth SPOZ0 QN0 SPHTO ..ottt s e e s e e e e e e e e e b e e e e s nrr e e e e e annns 23-6

Figure 23-5.
Figure 23-6.
Figure 23-7.

Motorola SPI Frame Format with SPO=0 and SPH=1.............oiiiiiiiiiiiiiiii e 23-7
Motorola SPI Frame Format (Single Transfer) with SPO=1 and SPH=0.........................eeol 23-8

Motorola SPI Frame Format (Continuous Transfer)

WIth SPOZ1 ANA SPHZ0 ...ttt e e e e et e et e e e e e e e s e ettt b e e eeeaeeaeeeassannbebnneeas 23-8
Figure 23-8. Motorola SPI Frame Format with SPO=1 and SPH=1..............ccorrriririrrc e 23-9
Figure 23-9. Microwire Frame Format (Single Transfer) ... 23-10
Figure 23-10. Microwire Frame Format (Continuous Transfers) ... 23-12
Figure 23-11. Microwire Frame Format, SFRMIN Input Setup and Hold Requirements........................... 23-12

Figure 24-1.

PWM_INV EXGIMPIE ..ottt s s s s e s s e e e e e e et et et et e e e e e aa ettt a s se s e e e e e e aaeaeaeaaaaaaeennenes 24-6

XVi

©Copyright 2007 Cirrus Logic, Inc. DS785UM1

I

EP93xx User’s Guide

Figure 25-1. Different Types Of TOUCN SCIEENSccciiiiiiiiiiiiiii et 25-2
Figure 25-2. 8-Wire Resistive Interface SWitching Diagramcccceeeiiiiiieiiiiiiie e 25-5
Figure 25-3. 4-Wire Analog Resistive Interface Switching Diagram..........cccccooviiieiiiniiie i 25-6
Figure 25-4. Analog Resistive Touch Screen Scan FIOW Chartcoooiiiiiiiiiiiiiiee e 25-9
Figure 25-5. 5-Wire Analog Resistive Interface Switching Diagramcccceviiiiiieniiiiieee e 25-11
Figure 25-6. 5-Wire Feedback (7-Wire) Analog Resistive Interface Switching Diagram...........c.cocceeeenee 25-12
Figure 25-7. Power Down Detect Press SwitChing DIagramccuueeeeiiiiieieniiiiieeen e 25-13
Figure 25-8. Other SWItChING DIAGIAIMScciiiiiiiiiiie ittt e et e e e e s sbe e e e s s sabeeeeeaaes 25-14
Figure 25-9. Measure Resistance SWItChing DIAgramcueeiiiiiiiiie it 25-15
Figure 26-1. Key Array BIOCK DIQQIamM ..eeoiiiiiiiiiee ettt ettt et e e st e e e e nbbee e e e aees 26-1
Figure 26-2. 8 X 8 Key Array DIAQIamoooiiiiiiiiiiiiiiiie i e e e e e e e e e e e et e e e e e e e e e e e e et e s e s e s e e eaaaeaaaaens 26-3
Figure 26-3. Apparent KEY OOH.... ... et et e e r s e e e aeaeaeaaaaaaeas 26-4
Figure 27-1. IDE Interface Signal CONNECHIONSuuuuiiiiiiii e e e e e e e e e e e aaaaaas 27-2
Figure 28-1. System Level GPIO CONNECHVILYuuuuiieiiiiiiiiii i ie e e e e e e e 28-2
Figure 28-2. Signal Connections Within the Standard GPIO Port Control Logic

(POTES €, D, B,y Gy H) oottt et et et e et ettt e et et et et et e e e et e et et e e et en et e et e e eee e et en et eneneneneees 28-4
Figure 28-3. Signal Connections Within the Enhanced GPIO Port Control Logic

(POTES A, B,) oottt ee ettt ettt et et et et et et e e e et et et et et et et et ettt et e et e et et et et ettt ee e e et ettt er e 28-5

Tables
Table P-1. Frequency, Package, Applicable EP93XX PrOCESSOuuuiiiiiiiiiiiiiiiiiee ettt P-1
Table P-2. Chapter Number and Function, Applicable EP93XX ProCeSSOruuviiiiiiieiiiiiiiiiiieeeee e P-1
Table 1-1. EP93xx Maximum Clock Rates, Package Type and Number of Balls ..., 1-1
Table 1-2. EP93XX FEAUIES SUMIMAIYcvvviuiiiiiiiiiiiiiiiieeseieieeeeeeeteseaeeerereeaeeaestarers e s e s aaeeaaaaaaaeaeeees 1-2
Table 2-1. AHB Arbiter Priority SCREMEuuuiiiciiiei e e a e e e e e e e aaaaas 2-10
Table 2-2. AHB Peripheral AddreSs RANGE...........uuuiiiiiiiiiai et e e 2-11
Table 2-3. APB Peripheral ADAreSS RANGEc.uuuiiiiiiiiiaae ettt e e e e s eaeaaaeeas 2-12
Table 2-4. ARMO920T Core Operating MOGES.........uuuiiiiiiiaaiaiii ettt e e e s bbb e e e e aaaeeas 2-13
Table 2-5. Register Organization SUMMIAIYuu.eiiiiiieeeieieeeeeeeieeeeererereeeeeees e e aaaaaeaaaaes 2-14
Table 2-6. CP15 ARMO920T RegiSter DESCHPLION.uui i i et e e e e e e e e aaaa e 2-15
Table 2-7. Global Memory Map for the TWO BOOt MOAES.........ccccooiiiiiiii e 2-16
Table 2-8. Internal REQISIEr MAPcoovvviiiiiiiiiiii e e et s e e e s e e e e e aaaeaaaeaaaaaaaeeeeees 2-17
Table 3-1. Saturation for Non-accumulator INSIIUCTIONScoovvriieiiiriie et 3-5
Table 3-2. Accumulator Bit FOrmats for SatUrationooceeeiiiiiiiiee e 3-5
Table 3-3. Comparison Relationships and Their RESUILS ... 3-7
Table 3-4. ARM® Condition Codes and Crunch Compare RESUILS...........coovvviiiiiiiiiiiiiciriie e 3-7
Table 3-5. Condition Code DEfiNItIONS.........icuiiiiiiiiei et e e 3-15
DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. XVii

EP93xx User’s Guide
Table 3-6. LDC/STC OPCOUE MAP ...uviiiiieiiiiiie ettt e ittt et e e ettt e e st bt e e e e abbe e e e e anbbbeeeeeaabbeeeeeanes 3-16
Table 3-7. CDP OPCOUE IMAPeeeiiiiiiiiiee ettt e ettt e st e et e sttt e e s skt et e e e sbbba e e e s bbeeeaeesnbnneeeens 3-16
Table 3-8. MCR OPCOUE MEP ...eeiiiiiiiiiieei ittt ettt ettt e e sttt e e e st bttt e e s bttt e e e anbbeeeeeanbbbeeeeeaabbeeeeeanes 3-17
Table 3-9. MRC OPCOUE MEP ...eeiiiiiiiiiie ettt ettt e e st e e e e st bttt e e st b e e e e e anbbeeeeeanbbaeeeeeaabbeeeeenne 3-17
Table 3-10. MaverickCrunch INSIIUCLION SETc.uiiiiiiiiieie e e e 3-18
Table 3-11. Mnemonic Codes for Loading Floating Point Value from Memory...........cocouveeiiiieneiniiieneens 3-21
Table 3-12. Mnemonic Codes for Loading Integer Value from MemoOry..........ccooiiiieiiiiiieeiiiiiiee e 3-22
Table 3-13. Mnemonic Codes for Storing Floating Point Values to MemOry..........cccvvveiiieeniniieece e, 3-23
Table 3-14. Mnemonic Codes for Storing Integer Values to MEeMOIYccuvveiiiiiiieeei i 3-23
Table 4-1. Boot Configuration OPLIONSc.ueiiiiiiiiiee ettt ettt e e et b e e e s e sbbe e e e e sanene 4-5
Table 5-1. Hardware Configuration Control Latched PiNS.............cooiiiiiiics i 5-2
Table 5-2. BoOt CONfiguration OPLIONSuuuviiiiiiii i i s e s et e e e e e e et e e e e et e e e e e e ee e e e et araaeeeaeaaaaaaaeees 5-3
Table 5-3. CIOCK SPEEAS @NU SOUICEScuviiiiriiiii i aies e e e e ee e e e e e e ee e e e e et et e e e e e eee et r e s e e aaeeeaeaaaaaaaaees 5-8
Table 5-4. Peripherals With PCLK GaliNg.......uuuuuiuiuiiiiiiii e ee e s n e s e e e e e e e aaaa e 5-10
Table 5-5. SYSCON REQISIEN LISt iiiiiiiiiiiiiiiiiiii s i s e e e a s s e s e e e e e eeaaaeaeaaeaaeaseeeees 5-13
Table 5-6. Priority Order for AHB ADItE.........ueiie e e a e e 5-23
Table 5-7. Audio Interfaces Pin ASSIGNMENTuuuiuii i e e e e e e aaaa e 5-26
Table 6-1. Interrupt CONfIQUIALIONoiiiiiiiiie i e e e e e e e e e e et e e e e e e et ar e e s e e e e e eeeaeaaaaaaaaees 6-3
Table 6-2. VICX REQISIEr SUMIMIAIYoiiiiiiieeiiiiieiieiii i s e s e s s e e e e e e e aaaaaetetetetateeeetararsesrarn e aaaaeaeaeaaaaaaeaees 6-8
Table 7-1. Raster Engine Video Mode Output EXamPIES...........coooiiiiiiiiiiiiiieeeirs s e e e e e e e e 7-2
Table 7-2. Byte Oriented Frame Buffer Organization..............cocoooiiiiiiiiiiie e 7-5
Table 7-3. Output PiXel TranSfer MOUESevuuieiii it e a e e e e e aaaaeas 7-13
Table 7-4. Grayscale Lookup Table (GrySCILUT) ... s a e a e e e 7-17
Table 7-5. Grayscale TimiNg DIAQIam..........uuuuuuuiiiiiiis e ee e e e e e e e et e e e e e e e e e aa s e e e aaaaaeaaaeaeaaeeeeeeeees 7-18
Table 7-6. Programming FOMMALooiiiiiiiiiiiii s s e e e e e e e e e e et et e e et e e et e s e e e s eaeaeaeaaaaeas 7-19
Table 7-7. Programming 50% Duty Cycle Into LOOKUP Tableccooiiiiiiiiiieeess e 7-22
Table 7-8. Programming 33% Duty Cycle into the Lookup Table ..., 7-23
Table 7-9. Programming 33% Duty Cycle into the Lookup Table ..., 7-24
Table 7-10. Cursor Memory OrganiZAtIONeieieie e e e e e ee et ee et s s s e s e e e e e e e aaaaaeaaaaaaaaaeeees 7-25
Table 7-11. Bits P[2:0] in the PiXelMOdE REQISIEr.......cccoiiiii e a e e e e e 7-32
Table 7-12. Raster ENQiNg REQISLEI LIStuvuiiiiiiiiiiiiiiiii st s a e e e e e aaaa e 7-36
Table 7-13. Color Mode Definition TabIe...........ooiiiiiiii e 7-58
Table 7-14. Blink Mode Definition Tableooiiiiiiiiiiie e 7-58
Table 7-15. Output Shift MOAE TabBIEvvvieeiiie e e e e e e e aaaa e 7-59
Table 7-16. Bits per PiXel SCANNEA QULuuuiuiiiuiiiiiiii e e e ee et s e e e e e aeaaaaeas 7-59
Table 7-17. Grayscale LOOK-UpP-Table (LUT)uuuuiuiiiiiiiiiiieiee e e s e e e et s s e e e e e e e e e aaaa e 7-75
TaDIE 8-1. SCIrEEN PIXEIS ...eei ittt ettt e e e s e e e e s e e e e s e ar e e e e aannes 8-4

Xviii ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

I

EP93xx User’s Guide
Table 8-2. BPP MEMOIY OFGANIZALIONc.iitiiiieiitiiee ettt ettt e et e s e st be e e e s sbbee e e e e abbe e e e e anneee 8-5
Table 8-3. 4 bpp MemOry OrganiZatioN..........coeoiiiuiiieiiiiiie ettt ettt e e st e e s e sbbee e e e aanene 8-5
Table 8-4. 8 bpp MemOry OrganiZatioN..........cccoiiuueiieiiiiiie ettt ettt e e s bbb e e e e sbbe e e e e saneee 8-6
Table 8-5. 16 bpp Memory OrganiZatioN...........coicuueieeiiiiiie ettt et e e s sbb e e s sbbee e e e sanene 8-6
Table 8-6. 24 bpp Packed Memory Organization (4 pixel/ 3 WOIdS)occveiiiiiiiiieiiiiiiee e 8-7
Table 8-7. 24 bpp Unpacked Memory Organization (1 pixel/ 1 WOrd)cceeeeiiiiiieriiiiiiie e 8-7
Table 8-8. Transfer EXAMPIE L... ..ottt et e e e et e e e s bb e e e e e anneee 8-8
Table 8-9. Transfer EXAMPIE 2... ..ottt e et b e e 8-9
Table 8-10. Transfer EXAMPIE 3. st e e st e e et e e e eaneee 8-9
Table 8-11. Transfer EXAMPIE 4 ...t e ettt be e e e e eaneee 8-9
Table 8-12. Transfer EXAmMPIE 5.... .ottt et e e e e e e e e e e e e e e aaaaaeees 8-9
Table 8-13. 4 BPP Memory Layout for SOUICE IMage.....cccceviiiiii e e e 8-10
Table 8-14. 4 BPP Memory Layout for Destination IMageccooviiiiiiiiiiie s e e 8-10
Table 8-15. 8 BPP Memory Layout for SOUICE IMaQE.....cccooiiiiii i e s e e 8-11
Table 8-16. 8 BPP Memory Layout for Destination IMagecccooviiiiiiiiiieeeee s 8-11
Table 8-17. 16 BPP Memory Layout for SOUICE IMagE.........ccooiiiiiiiiieeeeeee s e e e e e e e e aaaaaaaaaees 8-11
Table 8-18. 16 BPP Memory Layout for Destination IMageccoooriiiiiiiieieeeee e 8-12
Table 8-19. 24 BPP Memory Layout for SOUICe IMage..........cooiiiiiiiiiieeeeeee s s e e e e e e aaaeaaaaae e 8-12
Table 8-20. 24 BPP Memory Layout for Destination IMagecooviiiiiiiieieeeee s 8-13
Table 8-21. Words Needed for SiX 24-Bit PiXeISciiiiiiiiiiiii e 8-19
Table 8-22. Graphics ACCEIErator REQISIEISuuuuiuiiiiiiiiiii et e a e e e e e aaaaeas 8-22
Table 8-23. PiXel MOUE ENCOGINGcovveiiiiiiiiieiiiietesse s e e e e s e e e e e e e e e e e e e e et et et e ee e e e aaaaaae s et aa s eaeeaaeaaaeeas 8-30
Table 9-1. FIFO RAM AdAreSS MaAPcciiiiiiiiiiiiieiieiiis e s s e st e e e e e e e e e e et et et et e e e ettt e a s e e e s eaeeaaeaaaaaaaaees 9-3
Table 9-2. RXCtl.MA and RXCtl.IAHA[O] RelatioNShipScccooiiiiiiiieccccee e 9-10
Table 9-3. EtherNet REQISIEI LIST.........ccciiiiiiiiieiiiiei e e s e e e e e e e e e e e et e e e e e e s e e e e s e aeaeaeaaaaens 9-40
Table 9-4. Individual Accept, RxFlow Control Enable and Pause AcCept BitS.........uvuuiiiiiiiiiiiiiiiieeieeeeee, 9-42
Table 9-5. ADAresSs Filter POINTET..........eii ettt e e et e e s e e e s nnreeeee e 9-52
Table 10-1. Data TraNSTEI SIZEcociriiiii ittt e e e e eee s 10-18
Table 10-2. M2P DMA BUS AIDITTATIONooveiiiiiiiiiiie ottt 10-19
Table 10-3. DMA MEMOIY MaAPccciiiiiiiieiieieee et r s e e e s e s e e e e e e e e e e e aeteeeeeeeaeaee e e be b ae s aa e e e e e eaeaaaaaaaaeas 10-20
Table 10-4. Internal M2P/P2M Channel RegISIEr Map........ccooiiiiiiiiiieeeeeeeeeeet e e e e e e e e 10-21
Table 10-5. PPALLOC Register Bits Decode for a Transmit Channelcccccviiiiiiiiiiiiiiieeeeeeee, 10-24
Table 10-6. PPALLOC Register Bits Decode for a Receive Channelcccociiiiiiiiiiiiiiiieeeeeeeeeeeee, 10-24
Table 10-7. PPALLOC Register RESEL VAlUBS......cccciiii i a e e e e e e e e 10-24
Table 10-8. PPALLOC Register RESEL VAlUBS......ccccoiii i a e e e e e e e 10-30
Table 10-9. BWC DECOUE VAIUESocoiiiiiiiiieiitiiite ittt ettt e sin et e s e e e eee s 10-33
Table 10-10. DMA Global Interrupt (DMAGIINt) REQISIENccooii e e 10-45

DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. XiX

EP93xx User’s Guide
Table 11-1. Frame Bandwidth AIOCALIONcoiuiiiiiiiiiiie e e e e 11-7
Table 11-2. OpenHCI REQISIEr AUUIESSESuiiiiiiiiiie ittt ettt ettt e e e abbe e e st bbbt e e e s naneeeee s 11-11
Table 12-1. PCMCIA Address MemOry RANGES.ciii ittt ee ettt e ettt e e e ssiebee e s sebbeee e e sbaeeeeees 12-5
Table 12-2. PCMCIA PiN USAQE......o ittt ettt ettt ettt e ettt e e sttt e e e e abb et e e e anbbbeeeeeaabbeeeeeanes 12-5
Table 12-3. SUPPOITEA 8-Bit ACCESSES.....ciiiuieiiieitiiiee ettt ettt et e e e bbbt e e e s abe e e e e s abe bt e e e snbbeeeeaabbeeeeeaae 12-8
Table 12-4. SUPPOITEU L6-Bit ACCESSES.......uuiiiieitiiiee ettt e e ate e ettt e e e sbe e e s s rtbe e e e e s st et e e e s stbbeeeeessabeeeeeane 12-8
Table 12-5. PCMCIA LEJACY USAUEeeeiiiiiiiiieiiitiiie e itiete ettt e ettt e e e sttt e e sttt e e e e abbeeeeeanbbbeeeeeanbbeeeeeane 12-8
Table 12-6. Accesses to 8-Bit Attribute / Common /10 MEMOIY.......uueviiiiiiiieeiiiieie e 12-9
Table 12-7. Accesses to 16-Bit Attribute / Common / 10O MEMOIY........cceiiiiiiiiiiiiiiee e 12-9
Table 12-8. Static Memory Controller (SMC) RegISter Mapuuieiiuiiiiiiiiiiieie i 12-10
Table 13-1. BOOt DEVICE SEIECHONueiiiiiiiieiei ittt ettt et e e e e e s s n e e e e e sanreeeeennns 13-2
Table 13-2. Address Decoding for Synchronous Memory DOMAINSccuvvviiviiiiiimiiiiiiiiinen e eeeeeeeaeens 13-3
Table 13-3. Synchronous Memory Address DeCOUING.........cccoeiiiiiiiiiiiii s e e e e e e aaaa e 13-4
Table 13-4. General SDRAM Initialization SEQUENCEccooiiiii i e e 13-4
Table 13-5. Mode Register Command Decoding for 32-bit Wide Memory BUSccccvvciiiiiiiiieeeeiiieeeennn. 13-6
Table 13-6. SYNC MEMOIY CASo et e e e e e e e e e e e e e tetete e e et e e e e et aree s et et s e aasaeaeaeaeaaeaes 13-7
Table 13-7. Sync Memory RAS, Burst Type, and Write Burst Length................oiiiiiiiiiiiiieeeeeeeeee, 13-7
Table 13-8. BUISt LENQGLN ...t e e e e e e et et et et et e et e e e et e e e e s e e eeaaeaaaaans 13-7
Table 13-9. Chip SeleCt DECOUING.........coiiviiiieeiiiiii e e e s e e e e e e e e e e e e et et et et e ee e e e e e s aaaseaaaaaaaaaaes 13-9
Table 13-10. Memory Addressing EXamMPIEuuuuiiiiiiiii e e 13-11
Table 13-11. EP93xx SDRAM Address Ranges (16-Bit Wide Data SyStems)........cccccciviiiiiiiiiiieeeeeeeenn. 13-12
Table 13-12. Address Bits Used for Chip SEIECE.........uiiiiii i e a e 13-17
Table 13-13. Synchronous Memory Controller REQISIEISccooeiiiiiiiiiceeeeeeeeee e 13-17
Table 13-14. Synchronous Memory Command ENCOAING..........ccoeiiiiiiiiiiiiiieeeeee e 13-20
Table 14-1. ReceiVe FIFO Bit FUNCLONScccoiiiiiiiiiiiiiee et e st e e rre e e s s nnreeeeenaes 14-6
Table 14-2. Legal HDLC Mode CONfigUIALIONSuuuiiiiiiii e ettt n e n e e e e aeaaa s 14-10
Table 14-3. HDLC Receive Address MatChing MOUES.........ccoooiiiiiiiiiiieeee e e e 14-13
Table 14-4. UARTL Pin FUNCHONAIILYcevvviiiiiiiiiiie s e e ettt e e n e n e e e e e e e aaeas 14-15
Table 14-5. DeviceCfg Register Bit FUNCHONSoiiiiiiiii i e e e e e e e e e e e e 14-15
Table 15-1. UARTZ2 / ITDA MOAESooeiiiiiiiiiiiiiittete ettt e e ettt ettt e e e e e e e e s bbbt b e reeeaaaee s 15-5
Table 15-2. 10NU2 PiN FUNCHON. ...ttt ettt e et e e e st e e e s nnreeeee e 15-5
Table 16-1. UART3 Pin FUNCHONAIILYevvviiiiiiiiiiiiie s sttt e e e e e e e e e e e e aaaaaas 16-1
Table 16-2. DeviceCfg Register Bit FUNCHONScooiiiiiiiiic s e e e e e e e e e e e e e e e e aaaaneeees 16-2
Table 17-1. Bit Values to SeIECt I MOAUIEcuuiiiiiiiiiie e 17-3
Table 17-2. Address Offsets for ENd-0f-Frame Data..............ocvuiiiiiiiiiieeiiiieiec e 17-5
Table 17-3. MIR Frame FOIMMAL.c.uuiiiii ittt ettt e e e st et e e e sn e e e e sn e e e e e snnreeeeenans 17-9
Table 17-4. DeviceCfg.lonU2 Pin FUNCHIONuuuiiiiiie e e et s an e e e e e e eaaeas 17-20

XX

©Copyright 2007 Cirrus Logic, Inc. DS785UM1

I

EP93xx User’s Guide
Table 17-5. UART2 / IFDA MOAESueiiiiiiiiiit ettt bttt ettt e ettt e e e snbe e e e st e e e e snneeee s 17-21
Table 17-6. IrDA Service Memory ACCESSES / SECONMueiiiiiiiiiieiiiiiiiee ittt e e eeaaeas 17-22
Table 18-1. TIMErS REGISIEN IMAPDciuuuiiieiiiiie ittt et e e e s bt e e s sb bt e e e s sbb e e e s snnaaeeeens 18-2
Table 19-1. Watchdog Timer Register MEmOry Mapcoooiiiiiiiiiiiiiie ettt nibeeee e 19-3
Table 20-1. Real Time Clock Register MEmMOrY Mapcoooiiiiiiiiiiiiiie ettt sraee e 20-4
Table 21-1. 1S Controller Input and OULPUE SIGNAISc.c.veeveveerereeeeeeeeeeeeesesieee s esese s eeeereseeneneeens 21-2
Table 21-2. Audio Interfaces Pin ASSIGNMENTuuiiiiiiiiie ittt e et e e sbeeeeeeanes 21-2
Table 21-3. TranSMILIEr FIFO'S ...oiiiiiiiiii ettt e ettt e e sttt e e e st bt e e e e anbbbeeeeesnbbeeeeeanes 21-3
Table 21-4. 12SCIkDiv SYSCON Register Effect on 12S Clock GENEration..............oveeceeeeeeeverereennen. 21-8
Table 21-5. Bit ClOCK RaAte GENEIALION.........ueiiiii ittt sttt e et e e e e s nbbeeeeeaaes 21-9
TabIE 21-6. FIFO FIAGS .. .coo oottt et e e e e e e e s bbb bt b et e e e e e e e e e e e aaabbbbbeeseeaaeeaaeas 21-12
Table 21-7. 1°S TX REGISTEIS ..ttt ettt et e e e e e e e e e bbb e b e e e e e e e e e e e anrenneeee 21-12
Table 21-8. 1°S RX T o 1S3 =] £ TP TP TR OPUPPPPP 21-19
Table 21-9. I°S Configuration and Status REQISIEISuuiuiiiiiiiiiii e 21-25
Table 22-1. AC’97 Input and OULPUL SIGN@ISuvuiiiiiiiiieae et e e e e e bbb reeeaaaeeeas 22-1
Table 22-2. AC’97 RegiSter MEMOIY Mapcoiiieiiiiiiieieie ettt e et e e e e e e s e e e s bbb e e e e e e e aaaeeeaas 22-5
Table 22-3. Interaction Between RSIZE aNd CMocoiiiiiiiiiiiic et 22-9
Table 22-4. Interaction Between RSIZE and CM BitScoiiiiiiiiiiiiiiiciie e 22-11
Table 23-1. SSP Register Memory Map DeSCHPLION.ccoiiiiiiiiiieeiiee et e e e e e 23-13
Table 24-1. Static Programming STEPScoeeeiiiiiiiiiiii ittt e e e e e s e et e e e e e e s e e nbbbsaereeaaaaeeens 24-2
Table 24-2. Dynamic Programming STEPScooeiiuuuuiiiiiieie e e ettt et e e e e e s abb e e e et e e e e e e s e asnbbbeseeeaaaaaaeeas 24-3
Table 24-3. PWM REQISIEIS IMAPccovviiiiiiiiiiiiiiiit i e ssie e e e e e e e e aeaeeteteeeaeeeaesaaetessesaaee s aaa s s eseaeeeeaaaaaeneees 24-3
Table 25-1. Switch Definitions and Logical Safeguards to Prevent Physical Damage...............cccceeeeeeeee.. 25-3
Table 25-2. Touch Screen Switch Register Configurations...............oooiiviiiiiiii e e e e e e e aeeees 25-7
Table 25-3. External Signal FUNCHIONSouiiiiiiiicicces e e et e s e e e e e e e aaeas 25-16
Table 25-4. Analog Touch Screen Register MemOry Mapcoooiviiiiiiiiiiiiieiiii s e e e e e e aaaeaeeees 25-17
Table 26-1. Keypad Interface Register MEMOIY Map......ccooeiiiiiiiee i s a e e e e 26-6
Table 27-1. IDE Host to IDE Interface Definitionccvviiiiiiiiieiiieicc et 27-2
Table 27-2. IDE Cycle Times and Data Transfer RAteScccooiiiiiiiiiiiiii e 27-7
Table 27-3. Wait State Value for the DMA M2M Register Control.PWSCcocviiiiiiiiii e 27-8
Table 27-4. HCLK Cycles to De-assert DMA REQUEST.......ccoiiiiii it s a e e e 27-8
Table 27-5. Maximum Theoretical Bandwidths for Various Operating Modesccccceeeviiiiiiiiiieieeieneeeenn, 27-9
Table 27-6. IDE Interface REQISIEr MAPcuiuiiiiiiiiiii e e et e e e e e e e e aaaaaeas 27-10
Table 28-1. EP9301 and EP9302 GPIO PoOrt t0 PiN Mapccuuuiiiiiiiieieee e 28-6
Table 28-2. EP9307 GPIO POIt tO Pin Map......uiuieiii i it e ettt s nenaaeaaaa e 28-6
Table 28-3. EP9312 GPIO POIt tO Pil Map......uuuieiiiiiieie e et e ettt s n e n e e e aaaa e 28-7
Table 28-4. EP9315 GPIO POrt tO Pil Map......uuuiiiiiiiieie e ie ettt s e aenaaeaaaa e 28-8
DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. XXi

EP93xx User’s Guide
Table 28-5. GPIO RegiSter AQUIESS IMaAP.... ..ottt e st e et e e s saibe e e e e s sabeeeeeaaes 28-9
Table 29-1. SECUNLY REGISTE LIStuuiiiiiiiiiie ittt ettt e e st e e e e sbb b et e e e e sabbeeeeeanes 29-2
TADIE B0-1. GIOSSAIY ..ceeiiitiiie ettt ettt e e sttt e e e bbbt e e s e ab bttt e e e abb b et e e s e abbe e e e e eabbbeeeesanbbeeeeeaabbeeeeene 30-1
Table 31-1. EPO3XX REGISIEN LIST.....ciuuiiiiiiiiiiiie ittt ettt et e et e e e s snnnaeeeeas 31-1

Revision History

Revision Date Changes

This is the Initial Release of the EP93xx User's Guide. This manual covers all products in the
EP93xx product family. This manual is based on the content of previous User’s Guides for
each of the individual products in the EP93xx family. New content has been added, formatting
improved, and all known documentation errors fixed. Please discard previous User’s Guides
and rely on this manual for your future reference needs.

September 14,

UM1 2007

XXil ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

Preface ﬂ

P.1 About the EP93xx User’s Guide

This EP93xx User’s Guide describes the architecture, hardware, and operation of the Cirrus
Logic EP9301, EP9302, EP9307, EP9312, and EP9315 processors. It is intended to be used

in conjunction with the respective EP93xx Data Sheets, which contain the full electrical
specifications for the EP93xx processors.

The EP9301, EP9302, EP9307, EP9312 processors are functional subsets of the EP9315
processor. All chapters in this Guide apply to the EP9315 processor. Most, but not all,
chapters apply to the EP9301, EP9302, EP9307, EP9312 processors. Table P-1 shows the
maximum core frequency and the maximum high-speed bus frequency as well as humber of
package balls and package type for the EP93xx processors. Table P-2 shows chapter
numbers and function, and which EP93xx processors include the function (or not).

Table P-1. Frequency, Package, Applicable EP93xx Processor

EP9301 EP9302 EP9307 EP9312 EP9315
Maximum Core 166 200 200 200 200
Frequency - MHz
Maximum High-Speed
Bus Frequency - MHz 66 100 100 100 100
Package Type 208 LQFP 208 LQFP 272 TFBGA 352 PBGA 352 PBGA
Table P-2. Chapter Number and Function, Applicable EP93xx Processor
Chapter Number and Function Applicable EP93xx Processor
EP9301 EP9302 EP9307 EP9312 EP9315
0: Preface X X X X X
1: Introduction X X X X X
2: ARM920T Core and Advanced High-Speed Bus X X X X X
3: MaverickCrunch Co-processor X X X X
4: Boot ROM X X X X X
5: System Controller X X X X X
DS785UM1 P-1

Copyright 2007 Cirrus Logic

Preface
EP93xx User’s Guide

il

Table P-2. Chapter Number and Function, Applicable EP93xx Processor (Continued)

Chapter Number and Function

Applicable EP93xx Processor

EP9301 EP9302 EP9307 EP9312 EP9315
6: Vectored Interrupt Controller X X X X X
7: Raster Engine with Analog and LCD Integrated
Timing and Interface i i X X X
8: Graphics Accelerator - - X - X
9: 1/10/100 Mbps Ethernet LAN Controller X X X X X
10: DMA Controller X X X X X
11: Universal Serial Bus Host Controllers 2 2 3 3 3
12: Static Memory Controller X X X X -
Static Memory Controller with PCMCIA - - - - X
13: SDRAM, SyncROM, SyncFLASH Controllers X X X X X
14: UART1 with Modem Control Signals and HDLC X X X X X
15: UART2 with IrDA X X X X X
16: UART3 with HDLC - - X X X
17: IrDA X X X X X
18: Timers 4 4 4 4 4
19: Watchdog Timer X X X X X
20: Real Time Clock with Software Trim X X X X X
21: 1S Controller 3 3 3 3 3
22: AC'97 Controller 1 1 1 1 1
23: Synchronous Serial Port 1 1 1 1 1
24: Pulse Width Modulators 2 2 1 2 2
25: Analog Touch Screen Interface/ADC 5-ADC 5-ADC 8-Wire TS| 8-Wire TS| 8-Wire TS
26: Keypad Interface - - X X X
27: IDE Interface - - - 2 Devices | 2 Devices
28: GPIO Interface X X X X X
29: Security X X X X X
30: Glossary X X X X X
P-2 DS785UM1

Copyright 2007 Cirrus Logic

Preface
EP93xx User’s Guide

I

Note: “X” means Function is included; “-” means Function is not included

P.2 Related Documents from Cirrus Logic ﬂ
1. EP9301 Data Sheet, Document Number - DS636PP5
2. EP9302 Data Sheet, Document Number - DS653PP3
3. EP9307 Data Sheet, Document Number - DS667PP4
4. EP9312 Data Sheet, Document Number - DS515PP7
5. EP9315 Data Sheet, Document Number - DS638PP1

P.3 Reference Documents

1. ARM®920T Technical Reference Manual, ARM Limited

2. AMBA Specification (Rev. 2.0), ARM IHI 0011A, ARM Limited

3. AHB Example AMBA System (Addendum 01), ARM DDI 0170A, ARM Limited
4

. The co-processor instruction assembler notation can be referenced from ARM
programming manuals or the Quick Reference Card, document number ARM QRC
0001D, ARM Limited

5. The MAC engine is compliant with the requirements of ISO/IEC 8802-3 (1993), Sections 3
and 4

6. OpenHCI - Open Host Controller interface Specification for USB, Release 1.0a;

Compaq®, Microsoft®, National Semiconductor®

7. ARM Co-processor Quick Reference Card, document number ARM QRC 0001D, ARM
Limited

8. Information Technology, AT Attachment with Packet Interface - 5 (ATA/ATAPI-5) ANSI
NCITS document T13 1321D, Revision 3, 29 February 2000

9. ARM PrimeCell PL190-Rellvl Revision 1.7 Technical Reference Manual DDI0181C,
ARM Limited

10.Audio Codec ‘97, Revision 2.3, April 2002, Intel® Corporation

P.4 Notational Conventions
This document uses the following conventions:

 Internal and external Signal Names, and Pin Names use mixed upper and lower case
alphanumeric, and are shown in bold font, for example, RDLED

» Register Bit Fields are named using upper and lower case alphanumeric: for example,
SBOOT, LCSn1l

DS785UM1 P-3
Copyright 2007 Cirrus Logic

Preface
EP93xx User’s Guide

il

» Registers are named using mixed upper and lower case alphanumeric, for example,
SysCfg or PXxDDR. Where there are multiple registers with the same names, a lower case
“X" is used as a place holder. For example, in the PXDDR registers, x represents a letter

from A to H, indicating the specific port being discussed

CAUTION:In the Internal Register Map in “Internal Register Map” on page 2-17 some
memory locations are listed as Reserved. These memory locations should not
be used. Reading from these memory locations will yield invalid data. Writing to
these memory locations may cause unpredictable results.

(An example register description is shown below. This description is used for the following

examples.)
A specific bit may be specified in one of three ways:

1. Register name[bit number], for example, SysCfg[29]

2. Register name.bit field[bit number], for example, SysCfg.REV[1]

3. Register name.bit field[bit name], for example, SysCfg.SBOOT
Hexidecimal numbers are referred to as 0x0000_0000.

Binary numbers are referred to as 0000_0000b.

P.5 Register Example

Note: This is only an example. For actual SysCfg register information, see “SysCfg” on page 5-

34 .
SysCifg
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
REV RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD SBOOT LCSn7 LCSn6 LASDO | LEEDA |LEECLK RSVD LCSn2 LCSn1
Address: _
0x8093_009C - Read/Write, Software locked
Default:
0x0000_0000
Definition:
System Configuration Register. Provides various system configuration
options.
Bit Descriptions:
RSVD: Reserved. Unknown During Read.

P-4
Copyright 2007 Cirrus Logic

DS785UM1

I

REV:

SBOOT:

LCSn7, LCSnG:

LASDO:

LEEDA:
LEECLK:

LCSn1, LCSn2:

DS785UM1

Preface
EP93xx User’s Guide

Revision, reads chip Version number: 0 - Rev A, 1 - Rev B,
2-Rev(C, 3-RevD.

Serial Boot Flag. This bit is read-only.
1 hardware detected Serial Boot selection
0 hardware detected Normal Boot

Latched version of CSn7 and CSn6 respectively. These
are used to define the external bus width for the boot code
boot.

Latched version of ASDO pin. Used to select synchronous
versus asynchronous boot device.

Latched version of EEDAT pin.

Define Internal or external boot:
1 Internal
0 External

Define Watchdog startup action:

0 Watchdog disabled, Reset duration disabled
1 Watchdog disabled, Reset duration active

0 Watchdog active, Reset duration disabled

1 Watchdog active, Reset duration active

= OO

P-5

Copyright 2007 Cirrus Logic

Preface
EP93xx User’s Guide

P-6

Copyright 2007 Cirrus Logic

il

DS785UM1

Chapter 1

Introduction

1.1 Introduction

The EP93xx processors are highly integrated systems-on-a-chip that pave the way for a
multitude of next-generation consumer and industrial electronic products. Designers of digital
media servers and jukeboxes, telematic control systems, thin clients, set-top boxes, point-of-
sale terminals, industrial controls, biometric security systems, and GPS devices will benefit
from the EP93x processors’ integrated architecture and advanced features. In fact, with
amazingly agile performance provided by a 166 or 200 MHz ARM920T Core, and featuring
an incredibly wide breadth of peripheral interfaces, the EP93xx processors are well suited to
an even broader range of high volume applications. Furthermore, by enabling or disabling the
EP93xx processor’s peripherals and their interfaces, designers can throttle power
consumption and reduce development costs and accelerate time-to-market by creating a
single platform that can be easily modified to deliver a variety of differentiated end products.

1.2 EP93xx Features

Maximum clock rates plus package types and number of balls for EP93xx processors are
shown in Table 1-1.

Table 1-1. EP93xx Maximum Clock Rates, Package Type and Number of Balls

Processor Max Core Clock Rate Max High-Speed Bus Package
Clock Rate

EP9301 166 MHz 66 MHz 208 LQFP

EP9302 200 MHz 100 MHz 208 LQFP

EP9307 200 MHz 100 MHz 272 TFBGA

EP9312 200 MHz 100 MHz 352 PBGA

EP9315 200 MHz 100 MHz 352 PBGA

Features of the EP93xx processors are summarized in Table 1-2. Block diagrams are shown
in Figure 1-1 EP9301, Figure 1-2 EP9302, Figure 1-3 EP9307, Figure 1-4 EP9312, and
Figure 1-5 EP9315.

DS785UM1 1-1
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

———..
——fER.
—r
——
—r
—
—
Table 1-2. EP93xx Features Summary
16-Bit 32-Bit Raster 2-D Touch
Processor | External | External P’\:Ic?g:escfsoo-r Analog / Graphics Et’clirget IDE Uaiszt.o UART | Screen | GPIO cZ?d
Bus Bus LCD Accelerator / ADC
EP9301 X - - - - X - 2 2 5-ADC 37 -
EP9302 X - X - - X - 2 2 5-ADC | 37 -
8-Wire/
EP9307 - X X X X X - 3 3 12- 48 -
ADC
8-Wire/
EP9312 - X X X - X 1 3 3 12- 47 -
ADC
8-Wire/
EP9315 - X X X X X 1 3 3 12- 55 X
ADC

Note:“X” means that the function is included; “-” means that the function is not included.

UART2 with IrDA UART1 with HDLC

System Control —
2PLLs

5-Channel ADC

SRAM, FLASH,
ROM Enhanced GPIO,
ARMO920T 2-wire, 2 LED
I’s
1/10/100 Ethernet
MAC I-Cache D-Cache SPI
Memory Management Unit
o —
Boot ROM
Inerrupts
AHB/APB Bridge : 4 Timers I
Peripheral Bus (APB)
Figure 1-1. EP9301 Block Diagram
1-2 DS785UM1

Copyright 2007 Cirrus Logic

I

DS785UM1

Introduction

EP93xx User’s Guide

SDRAM

SRAM, FLASH,

ROM

12 Channel DMA

1/10/100 Ethernet

MAC

JTAG

0 FS Host

Boot ROM

N
C
%]
m@

UART2 with IrDA

UART1 with HDLC

System Control —

2PLLs

5-Channel ADC

MaverickCrunc

hTM

Coprocessor

ARM920T

2 PWMs

Enhanced GPIO,

I-Cache
16 KB

D-Cache
16 KB

Memory Man

agement Unit

Vectored

Inerrupts

High-Speed Bus (AHB)

AHB/AP

2-wire, 2 LED

AC'97

RTC with SW Trim

Watchdog Timer

%) =
III E Ur)u

B Bridge

Peripheral Bus (APB)

4 Timers

Figure 1-2. EP9302 Block Diagram

2D Graphics

18-bit Raster LCD

plus CCITT656
Video

SDRAM

SRAM, FLASH,

ROM

12 Channel DMA

1/10/100 Ethernet

MAC

JTAG

3 USB 2.0 FS Host

Boot ROM

il

UART1 with HDLC

| UART2 with IrDA :

UART3 with HDLC

|l

System Control —

2PLLs

8-Wire

MaverickCrunc

hTM

Coprocessor

ARM

920T

Touchscreen ADC

8x8 Matrix Keypad

1PWM

Enhanced GPIO

I-Cache
16 KB

D-Cache
16 KB

Memory Management Unit

Vectored

Inerrupts

High-Speed Bus (AHB)

AHB/APB Bridge

EEPROM, 2 LED

1’s

AC'97

RTC with SW Trim

Watchdog Timer

(%)
i

4 Timers

Peripheral Bus (APB)

H

Figure 1-3. EP9307 Block Diagram

Copyright 2007

Cirrus Logic

Introduction
EP93xx User’s Guide

il

UART1 with HDLC

UART2 with IrDA

System Control —

UART3 with HDLC 2PLLs
18-bit Raster LCD
plus CCITT656 8-Wire
Video Touchscreen ADC
MaverickCrunch™ Coprocessor
ARM920T
Enhanced GPIO,
1/10/100 Ethernet 12s
MAC I-Cache D-Cache
16 KB 16 KB
Memory Management Unit
High-Speed Bus (AHB
Vectored AHB/APB Bridge : 4 Timers I
Inerrupts Peripheral Bus (APB)

Figure 1-4. EP9312 Block Diagram

UART2 with IrDA

UART1 with HDLC

2D Graphics —
UART3 with HDLC SySteZmPEE'S'”O'
18-bit Raster LCD
plus CCITT656 8-Wire
Video Touchscreen ADC
MaverickCrunch™ Coprocessor
SRAM, FLASH,
ROM, PCMCIA 2 PWMs
ARM920T
12 Channel DMA Egt'vii"rceeg f:,ljo’
1/10/100 Ethernet 12s
MAC
I-Cache D-Cache
16 KB 16 KB

JTAG

3 USB 2.0 FS Host

2 IDE

Memory Man

agement Unit

Boot ROM

Vectored

Inerrupts

High-Speed Bus (AHB)

AHB/APB Bridge

(2]

P

AC'97

RTC with SW Trim

Watchdog Timer

4 Timers

Peripheral Bus (APB)

H

Figure 1-5. EP9315 Block Diagram

Copyright 2007 Cirrus Logic

DS785UM1

Introduction
EP93xx User’s Guide

I

Features of the EP93xx processors are:
* ARMO920T Core:

* 200 MHz maximum run frequency and 100 MHz maximum high-speed bus frequency
for EP9302, 9307, 9312, and 9315 only

e 166 MHz maximum run frequency and 66 MHz maximum high-speed bus frequency for
EP9301 only

» 16 KByte instruction cache and 16 KByte data cache

* Memory Management Unit (MMU) with 64-entry Translation-Lookaside-Buffers (TLBS)
enable Linux® and Windows® CE®
« MaverickCrunch" Co-processor in EP9302, 9307, 9312, and 9315 only:
* Floating point, integer and signal processing instructions
» Optimized for digital music compression algorithms

» Hardware interlocks allow in-line coding

« MaverickKey " IDs for Digital Rights Management or Design IP Security:
» 32-bit unique ID
e 128-bit random ID
» Integrated Peripherals and Interfaces:
» EIDE, up to 2 devices in EP9312 and 9315 only
e 1/10/100 Mbps Ethernet MAC
» Two-port USB 2.0 Full Speed host (OHCI) in EP9301 and 9302 only
* Three-port USB 2.0 Full Speed host (OHCI) in EP9307, 9312, and 9315 only
* |rDA controller, slow and fast mode
» Two UARTs (16550 Type) in EP9301 and 9302 only:
* - UARTL1 (optionally supports on-chip handling of HDLC)
» - UART2 (optionally provides interface for IrDA controller)
» Three UARTs (16550 Type) in EP9307, 9312, and 9315 only:
- UART1 and UARTS3 (optionally support on-chip handling of HDLC)
- UART?2 (optionally provides interface for IrDA controller)
- UART3 implements both a UART and an HDLC interface identical to that of UART1Z,

* LCD and Analog Raster Interface in EP9307, 9312, and 9315 only
» 2D Graphics Accelerator in EP9307and 9315 only

- Line Draw

DS785UM1 1-5
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

il

- Block Copy

- Block Fill
1 Touch Screen interface

- 5-ADC in EP9301 and 9302 only

- 8-Wire Touch Screen/ADC in EP9307, 9312, and 9315 only
« SPI port
* AC '97 interface

« 1%S interface with up to 6 channels
» 8x8 Matrix keypad scanner (in EP9307, EP9312, and EP9315 only)
» PCMCIA Interface supporting 8-bit or 16-bit PCMCIA (PC Card) devices in EP9315 only
» External Memory Options
» 16-bit SDRAM interface (up to 4 banks) in EP9301 and 9302 only
» 32-bit SDRAM interface (up to 4 banks) in EP9307, 9312, and 9315 only
» 16/8-bit SRAM/Flash/ROM interface in EP9301 and 9302 only
» 32/16/8-bit SRAM/Flash/ROM interface in EP9307, 9312, and 9315 only
» Serial Flash interface
* Internal Peripherals
» Real-Time clock with software trim
» 12 DMA channels for data transfer to maximize system performance
* Boot ROM
* Dual PLLs
» Watchdog timer
* Two general purpose 16-bit timers
» General purpose 32-bit timer
* 40-bit debug timer
» Standard General-Purpose I/0s (GPIOs), no interrupts:
e 18in EP9301 and 9302 only
e 30in EP9307 only
e 31in EP9312 and 9315 only
» Enhanced General-Purpose I/0Os (EGPIOSs) plus Port F GPIOs can generate interrupts:
e 19in EP9301, 9302 only
» 18in EP9307 only

1-6 DS785UM1
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

16 in EP9312 only
24 in EP9315 only

b

1.3 EP93xx Processor Applications
The EP93xx processors can be used in a variety of applications, such as:

+ Digital media servers
 Integrated home media gateways
 Digital audio jukeboxes

» Streaming audio/video players

» Telematic control systems

» Set-top boxes

» Point-of-sale terminals

» Thin clients

* Internet TVs

» Biometric security systems

* Industrial controls

* GPS & fleet management systems
» Educational toys

» Voting machines

» Medical equipment

1.4 EP93xx Processor Highlights

1.4.1 High-Performance ARM920T Core

The EP93xx Processors feature an advanced ARM920T Core design with an MMU that
supports Linux®, windows® CE®, and many other embedded operating systems. The
ARMO920T’s 32-bit microcontroller architecture, with a five-stage pipeline, delivers impressive
performance at very low power. The included 16 KByte instruction cache and 16 KByte data
cache provide zero-cycle latency to the current program and data, or can be locked to
provide guaranteed no-latency access to critical instructions and data. For applications with
instruction memory size restrictions, the ARM920T’s compressed Thumb® instruction set
provides a space-efficient design that maximizes external instruction memory usage.

1.4.2 MaverickCrunch™ Co-processor for Ultra-Fast Math Processing

The EP9302, EP9307, EP9312, and EP9315 processors include an advanced
MaverickCrunch co-processor that provides mixed-mode math functions to greatly accelerate
the floating-point processing capabilities of the ARM920T Core. The MaverickCrunch co-

DS785UM1 1-7
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

il

processor simplifies the end-user’s programming task by using predefined co-processor
instructions, utilizing standard ARM compiler tools, and by requiring just one debugger
1 session for the entire system. Furthermore, the integrated design provides a single
instruction stream and the advantage of zero latency for cached instructions. To emulate this
capability, competitors’ solutions add a DSP to the system, which requires separate
compiler/linker/debugger tool sets. This additional DSP requires programmers to write two
separate programs and debug them simultaneously, which can result in frustration and costly
delays.

1.4.3 MaverickKey ™ Unique ID Secures Digital Content in OEM Designs

The EP93xx processors include MaverickKey unigue hardware programmed IDs that provide
an excellent solution to the growing concern over secure Web content and commerce. With
Internet security playing an important role in the delivery of digital media such as books or
music, traditional software methods are quickly becoming unreliable. The MaverickKey
unique IDs provide OEMs with a method of utilizing specific hardware IDs for DRM (Digital
Rights Management) and other authentication mechanisms.

MaverickKey uses a specific 32-bit ID and a 128-bit random ID that are programmed into the
EP93xx processors through the use of laser probing technology. These IDs can then be used
to match secure copyrighted content with the ID of the target device that the EP93xx
processor is powering, and then deliver the copyrighted information over a secure
connection. In addition, secure transactions can benefit by matching device IDs to server IDs.

MaverickKey IDs can also be used by OEMs and design houses to protect against design
piracy by presetting ranges for unique IDs. For more information on securing your design
using MaverickKey, please contact your Cirrus Logic sales representative.

1.4.4 Integrated Multi-Port USB 2.0 Full Speed Hosts with Transceivers

The EP9307, EP9312, and EP9315 processors integrate three USB 2.0 Full Speed Host
ports while the EP9301 and EP9302 integrate two of the ports. Fully compliant to the OHCI
USB 2.0 Full Speed specification (12 Mbps), the host ports can be used to provide
connections to a number of external devices including mass storage devices, external
portable devices such as audio players or cameras, printers, or USB hubs. Naturally, the USB
host ports support the USB 2.0 Low Speed standard as well. This provides the opportunity to
create a wide array of flexible system configurations.

1-8 DS785UM1
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

i

1.4.5 Integrated Ethernet MAC Reduces BOM Costs

The EP93xx processors integrate a 1/10/100 Mbps Ethernet Media Access Controller (MAC).
With a simple connection to Mll-based external PHYs (such as the Cirrus Logic CS8952 PHY
Transceiver), an EP93xx processor-based system has easy, high-performance, cost-effective
Internet capability.

1.4.6 8x8 Keypad Interface Reduces BOM Costs

The EP9307, 9312, and 9315 processors include a matrix keypad controller that scans an
8x8 array of 64 normally open, single pole switches. Any one or two keys depressed will be
de-bounced and decoded. An interrupt is generated whenever a stable set of depressed keys
is detected. If the keypad is not utilized, the 16 column/row pins may be used as general-
purpose 1/Os.

1.4.7 Multiple Booting Mechanisms Increase Flexibility

The EP93xx processors include a 16 KByte Boot ROM to set up standard configurations. The
Boot ROM controls booting from either FLASH memory, the SPI serial interface, or a UART.
This boot flexibility makes it easy to design user-controlled, field-upgradable systems. See
Chapter 4 on page 4-1, for additional details. The EP93xx processors can also boot directly
from CSnO, bypassing the Boot ROM.

1.4.8 Abundant General Purpose I/Os Build Flexible Systems

The EP93xx processors include both enhanced and standard general-purpose 1/O pins
(GPI10s). The enhanced GPIOs may individually be configured as inputs, outputs, or
interrupt-enabled inputs. Nineteen enhanced GPIOs are in EP9301 and 9302 processors, 18
are in the EP9307 processor, and 16 are in EP9312 processor, and 24 are in the EP9315
processor.

The standard GPIOs may individually be used as inputs, outputs, or (in some cases) open-
drain pins. The standard GPIOs are multiplexed with peripheral function pins, so the number
available depends on the utilization of peripherals. Eighteen standard GPIOs are in EP9301
and 9302 processors, 30 are in the EP9307 processor, 31 are in the EP9312 and EP9315
processors.

Together, the enhanced and standard GPIOs facilitate easy system design with external
peripherals not integrated on the EP93xx processors.

1.4.9 General-Purpose Memory Interface (SDRAM, SRAM, ROM, FLASH)

The EP93xx processors feature a unified memory address model in which all memory
devices are accessed over a common address/data bus. In the EP9301 and 9302
processors, the common address/data bus is 16-bits wide, the Static Memory Controller
(SMC) supports 8-bit and 16-bit devices and the SDRAM, SyncROM, and SyncFLASH
synchronous memory controller supports 16-bit devices. In the EP9307, EP9312, and
EP9315 processors, the common address/data bus is programmable to either 16-bits or 32-

DS785UM1 1-9
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

i

bits wide, the SMC supports 8-bit, 16-bit, and 32-bit devices, and the SDRAM, SyncROM,
and SyncFLASH synchronous memory controller supports 16-bit and 32-bit devices. In the

1 EP9307, EP9312, and EP9315 processors, a separate internal bus to the dynamic memory
controller is dedicated to the read-only Raster/Display refresh engine.

1.4.10 12-Bit Analog-to-Digital Converter (ADC) Provides an Integrated
Touch-Screen Interface or General ADC Functionality

The EP9301 and EP9302 processors include a 5-channel ADC. The EP9307, EP9212, and
EP9315 processors include a 12-bit ADC, which can be utilized either as an 8-wire touch-
screen interface or for general ADC functionality. The touch-screen interface performs all
sampling, averaging, ADC range checking, and control for a wide variety of analog-resistive
touch screens. To improve system performance, the controller only interrupts the ARM Core
when a meaningful change occurs. The touch screen hardware may be disabled, and the
switch matrix and ADC controlled directly for general ADC usage if desired.

1.4.11 Raster Analog / LCD Controller

The EP9307, EP9312, and EP9315 processors include a raster/LCD controller that features
fully programmable video interface timing for either non-interlaced or dual scan color and
grayscale flat panel displays. Resolutions up to 1024x768 pixels are supported from a unified
SDRAM-based frame buffer with pixel depths of 4, 8, 16, or 18 bits. A 256x18 color lookup
table, a hardware blinking cursor with up to 64x64 pixels, and an interface to smart panel
displays is also included.

1.4.12 Graphics Accelerator

The EP9307 and EP9315 processors include a hardware graphics acceleration engine that
improves graphic performance by handling block copy, block fill and hardware line draw

operations. The graphics accelerator is used to off load graphics operations from the ARM
Core.

1.4.13 PCMCIA Interface

The EP9315 processor (only) provides a PCMCIA interface that supports 8-bit or 16-bit
PCMCIA PC Cards. These PCMCIA cards are credit card sized peripherals that add memory,
mass storage and I/O capabilities to computer systems, and can be used to further broaden
the options of a designer’s platform.

1-10 DS785UM1
Copyright 2007 Cirrus Logic

Chapter 2
ARMO920T Core and Advanced High-Speed Bus (AHB)

2.1 Introduction
This chapter describes the ARM920T Core and the Advanced High-Speed Bus (AHB).

2.2 Overview: ARM920T Core

The ARM920T is a Harvard architecture core with separate 16 kbyte instruction and data
caches with an 8-word line length. The ARM Core utilizes a five-stage pipeline consisting of
fetch, decode, execute, data memory access, and write stages.

2.2.1 Features

Key features include:
¢ ARM VAT (32-bit) and Thumb (16-bit compressed) instruction sets
« 32-bit Advanced Micro-Controller Bus Architecture (AMBA)
« 16 kbyte Instruction Cache with lockdown
« 16 kbyte Data Cache (programmable write-through or write-back) with lockdown
» Write Buffer
« MMU for Microsoft Windows CE and Linux operating systems
« Translation Look-aside Buffers (TLB) with 64 Data and 64 Instruction Entries
« Programmable Page Sizes of 64 kbyte, 4 kbyte, and 1 kbyte
* Independent lockdown of TLB Entries
» JTAG Interface for Debug Control

» Co-processor Interface

DS785UM1 2-1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

2.2.2 Block Diagram

Co-Proc Instruction Instruction
Interface cache MMU
t ff 1
«
R13
avisa |A78
(Integral CP15 Bus
—»| EmbeddedICE) A Int.
\ 4 ’ v v> Write Y
< Buffer
R13
>
h 4
v Write Back
JTAG | pata cache Data MMU P PATAG |
RAM

?

Figure 2-1. ARM920T Block Diagram
2.2.3 Operations

The ARM920T core follows a Harvard architecture and consists of an ARM9TDMI core,

MMU, instruction and data cache. The core supports both the 32-bit ARM and 16-bit Thumb
instruction sets.

The internal bus structure (AMBA) includes both a high speed and low speed bus. The high
speed bus AHB (Advanced High-performance Bus) contains a high speed internal bus clock
to synchronize co-processor, MMU, cache, DMA controller, and memory modules. AMBA
includes a AHB/APB bridge to the lower speed APB (Advanced Peripheral Bus). The APB
bus connects to lower speed peripheral devices such as UARTs and GPIOs.

The MMU provides memory address translation for all memory and peripherals designed to
remap memory devices and peripheral address locations. Sections, large, small and tiny
pages are programmable to map memory in 1 Mbyte, 64 kbyte, 4 kbyte, 1 kbyte size blocks.

To increase system performance, a 64-entry translation look-aside buffer will cache 64
address locations before a TLB miss occurs.

2-2

DS785UM1
Copyright 2007 Cirrus Logic

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

i

A 16 kbyte instruction and a 16 kbyte data cache are included to increase performance for
cache-enabled memory regions. The 64-way associative cache also has lock-down
capability. A 16-word Write Buffer allows cached instructions to be fetched and decoded while 2
the Write Buffer sends data to external memory.

The ARM920T Core supports a number of co-processors, including the MaverickCrunch co-
processor by means of a specific pipeline architecture interface.

2.2.3.1 ARM9TDMI Core

ARMO9TDMI core is responsible for executing both 32-bit ARM and 16-bit Thumb instructions.
Each provides a unique advantage to a system design. Internally, the instructions enter a 5-
stage pipeline. These stages are:

* Instruction Fetch

¢ Instruction Decode

* Execute

» Data Memory Access
* Register Write

All instructions are fully interlocked. This mechanism will delay the execution stage of a
instruction if data in that instruction comes from a previous instruction that is not available yet.
This simply insures that software will function identically across different implementations.

For memory access instructions, the base register used for the access will be restored by the
ARM Core in the event of an Abort exception. The base register will be restored to the value
contained in it immediately before execution of the instruction.

The ARM9TDMI core memory interface includes a separate instruction and data interface to
allow concurrent access of instructions and data to reduce the number of CPI (cycles per
instruction). Both interfaces use pipeline addressing. The core can operate in big and little
endian mode. Endianess affects both the address and the data interfaces.

The memory interface executes four types of memory transfers: sequential, non-sequential,
internal, and co-processor. It will also support uni- and bi-directional transfer modes.

The core provides a debug interface called JTAG (Joint Testing Action Group). This interface
provides debug capability with five external control signals:

e TDO - Test Data Out

e TDI - Test Data In

* TMS - Test Mode Select
e TCK - Test Clock

* NTRST - Test Reset

There are six scan chains (0 through 5) in the ARM9TDMI controlled by the JTAG Test
Access Port (TAP) controller. Details on the individual scan chain function and bit order can
be found in the ARM920T Technical Reference Manual.

DS785UM1 2-3
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

il

2.2.3.2 Memory Management Unit

The MMU provides the translation and access permissions for the address and data ports for
2 the ARM9TDMI core. The MMU is controlled by page tables stored in system memory and
accessed using the CP15 register 1. The main features of the MMU are as follows:

* Address Translation
* Access Permissions and Domains
« MMU Cache and Write Buffer Access

2.2.3.2.1 Address Translation

The virtual address from the ARM920T core is modified by R13 internally to create a modified
virtual address. The MMU then translates the modified virtual address from R13 by the CP15
register 3 into a physical address to access external memory or a device. The MMU looks for
the physical address from the Translation Table Base (TTB) in system memory. It will also
update the TLB cache.

The TLB is two 64-entry caches, one for data and one for instruction. If the physical address
for the current virtual address is not found in the TLB (miss), the ARM Core will go to external
memory and look for the TTB in system memory. The internal translation table walks
hardware steps through the page table setup in external memory for the appropriate physical
address.

When the physical address is acquired, the TLB is updated. When the address is found in the
TLB, system performance will increase since additional cycles to access memory and update
the TLB are avoided.

Translation of system memory is done by breaking up the memory into different size blocks
called sections, large pages, small pages, and tiny pages. System memory and registers can
be remapped by the MMU. The block sizes are as follows:

e Section - 1 Mbyte
« Large Page - 64 kbyte
« Small Page - 16 kbyte
« Tiny Page - 1 kbyte
2.2.3.2.2 Access Permission and Domains

Access to any section or page of memory is dependent on its domain. The page table in
external memory also contains access permissions for all sub-divisions of external memory.
Access to specific instructions or data has three possible states:

« Client: Access permissions based on the section or page table descriptor
« Manager: Ignore access permissions in the section or page table descriptor

* No access: any attempted access generates a domain fault

2-4 DS785UM1
Copyright 2007 Cirrus Logic

I

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

2.2.3.2.3 MMU Enable

Enabling the MMU allows system memory control, but is also required if the Data Cache and
the Write Buffer are to be used. Features are enabled for specific memory regions, as defined
in the system page table. MMU enablement is done via CP15 register 1. The procedure is as
follows:

1. Program the Translation Table Base (TTB) and domain access control registers

2. Create level 1 and level 2 pages for the system, and enable the Data Cache and the

Write Buffer

3. Enable the MMU via bit 0 of CP15 register 1.

2.2.3.3 Cache and Write Buffer

Cache configuration is 64-way set associative. There is a 16 kbyte instruction cache and a 16
kbyte data cache. The caches have the following characteristics:

22331

DS785UM1

8 words per line, with 1 valid bit and 2 dirty bits per line to allow half-line write-backs

Write-through or write-back capability, selectable per memory region defined by the
MMU

Pseudo random or round robin replacement algorithms for cache misses. This is
determined by the RR bit (bit 14) in CP15 register 1. On a cache miss (instruction or data
not in the respective cache), an 8-word line is fetched from memory and loaded into the
cache

Independent cache lock-down with granularity of 1/64th of total cache size or 256 bytes
for both instructions and data. Lock-down of the cache will prevent an eight-word cache
line fill into that region of the cache

For compatibility with Windows CE and to reduce latency, physical addresses for data
cache entries are stored in the PA TAG RAM, which is used for cache line write-back
operations without need of the MMU. This prevents a possible TLB miss that would
degrade performance

The Write Buffer has a depth of 16 data words. If enabled, writes are sent to the Write
Buffer directly from the Data Cache or from the CPU (in the event of a cache miss or if
the cache is not enabled).

Instruction Cache Enable

At reset, the Instruction Cache is disabled

A write to bit 12 of CP15 register 1 will enable or disable the Instruction Cache. If the
Instruction Cache (I-Cache) is enabled without the MMU enabled, all accesses are
treated as cacheable

If the I-Cache is disabled, current contents are ignored. If re-enabled before a reset,
contents will be unchanged, but may not be coherent with eternal memory. If so,
contents must be flushed before re-enabling.

2-5
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

i

2.2.3.3.2 Data Cache Enable

« A write to bit 2 of CP15 register 1 will enable or disable the Data Cache (D-Cache)/Write
Buffer

* The D-Cache may only be enabled when the MMU is enabled. All data accesses are
subject to MMU and permission checks

« If disabled, current contents are ignored. If re-enabled before a reset, contents will be
unchanged, but may not be coherent with external memory. Depending on system
software, a clean and invalidate action may be required before re-enabling.

2.2.3.3.3 Write Buffer Enable

» The Write Buffer is enabled via the page table entries in the MMU. The Write buffer
cannot be enabled unless the MMU is enabled.

2.2.4 Co-processor Interface

The MaverickCrunch co-processor is explained in detail in Chapter 3 on page 3-1. The
relationship between the ARM co-processor instructions and MaverickCrunch co-processor
is also explained in Chapter 3.

The ARM co-processor instruction set includes:
e LDC - Load co-processor from memory
e STC - Store co-processor register from memory
« MRC - Move to ARM register from co-processor register
« MCR - Move to co-processor register from ARM register

The ARM co-processor has sixteen (CO through C15) 64-bit registers for data transfer and
data manipulation. See Chapter 3, Section 3.2 on page 3-8 for a code example.

2.2.5 AMBA AHB Bus Interface Overview

2-6

The AHB (Advanced High-Performance Bus) is the high-performance system backbone bus.
Figure 2-2 on page 2-7 shows a typical AMBA AHB System.

The AHB connects devices that require high bandwidth, such as DMA controllers, external
memory, and co-processors. The AHB supports:

* Burst Transactions
« Split Transactions

» Bus Master hand-over to devices such as the MaverickCrunch co-processor or DMA
controller

¢ Single clock edge operations

The APB (Advanced Peripheral Bus) is a lower bandwidth, but lower power, bus that
provides:

DS785UM1
Copyright 2007 Cirrus Logic

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

I

+ Latched address and control

« A simple Interface to on-chip peripherals such as UARTs and AC'97.

ARM9TDMI usB
AHB/ UART SPI
APB
External AHB B APB I I
Memory r
Interface | ! I I
d
9 GPIO AC97
DMA e
Controller

Figure 2-2. Typical AMBA AHB System

2.2.6 AHB Implementation Details

Peripherals or the external memory interface that have high bandwidth and low latency
requirements are connected to the CPU using the AHB bus. The peripherals include the
Vectored Interrupt Controllers (VIC1, VIC2), DMA, LCD/Raster registers, USB host, IDE,
Ethernet MAC and the bridge to the APB interface. The AHB/APB Bridge transparently
converts the AHB accesses into the slower speed APB accesses. All of the control registers
for the APB peripherals are programmed using the AHB/APB bridge interface. The main AHB
data and address lines are configured using a multiplexed bus. This removes the need for
three state buffers and bus holders, and simplifies bus arbitration. Figure 2-3 on page 2-8
shows the main data paths in the processor's AHB implementation.

DS785UM1 2-7
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

il

| vici |
4——p| Ethernet |¢—p APB
€ ARM920T
| e kg [Tmes e
» LCDIF [«
= [aneiars -
I "1 bridge
., soram 4—»| Boot ROM | 8x8 Key Mtx/ 41
Controller —E RTC
E GPIOs =
B
<+ ; Static Watchdog
of Memoy! ¢ >
PCMCIA Test
Support SPI —>
T3 DE - ~lES —
< > ———
«—> DMA [q
5 nir<THY
T3 us |, - | DA &>
< » Host AA
PLL1 | PLL2
AHB Clock & State
I v v Control >
| UARTs | | Aco7 |
A A

v

Figure 2-3. Main Data Paths

Before an AMBA-to-AHB transfer can commence, the bus master must be granted access to
the bus. This process is started by the master asserting a request signal to the Arbiter. The
Arbiter then indicates when the master will be granted use of the bus. A granted bus master
starts an AMBA-to-AHB transfer by driving the address and control signals. These signals
provide information on the address, direction and width of the transfer, as well as indicating
whether the transfer is part of a burst.

Two different forms of burst transfers are allowed:
« Incrementing bursts, which do not wrap at address boundaries

« Wrapping bursts, which wrap at particular address boundaries.

2-8 DS785UM1
Copyright 2007 Cirrus Logic

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

i

A write data bus is used to move data from the master to a slave, while a read data bus is
used to move data from a slave to the master. Every transfer consists of:

« An address and control cycle

« One or more cycles for the data.

In normal operation a master is allowed to complete all the transfers in a particular burst
before the arbiter grants another master access to the bus. However, in order to avoid
excessive arbitration latencies, it is possible for the arbiter to break up a burst, and, in such
cases, the master must re-arbitrate for the bus in order to complete the remaining transfers in
the burst.

2.2.7 Memory and Bus Access Errors

There are several possible sources of access errors:

* Reads to reserved or undefined register memory addresses will return indeterminate
data. Writes to reserved or undefined memory addresses are generally ignored, but this
behavior is not guaranteed. Many register addresses are not fully decoded, so aliasing
may occur. Addresses and memory ranges listed as Reserved should not be accessed;
access behavior to these regions is not defined

« Access to non-existent registers or memory may result in a bus error

« Any access to the APB control register space will complete normally, as these devices
have no means of signaling an error

« Access to non-existent AHB or APB registers may result in a bus error, depending on the
device and nature of the error. Device specific access rules are defined in the device
descriptions

« External memory access is controlled by the Static Memory Controller (SMC) or the
Synchronous Dynamic RAM (SDRAM) controller. In general, access to non-existent
external memory will complete normally, with reads returning random false data.

2.2.8 Bus Arbitration

The arbitration mechanism is used to ensure that only one master has access to the bus that
it controls at any one time. The Arbiter performs this function by observing a number of
different requests to use the bus, and then deciding which is currently the highest priority
master requesting the bus.

The arbitration scheme can be broken down into three main areas:
e The main AHB system bus Arbiter
* The SDRAM slave interface Arbiter
* The EBI bus Arbiter

DS785UM1 2-9
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

i

2.2.8.1 Main AHB Bus Arbiter

2-10

This Main AHB Bus Arbiter controls bus master arbitration for the AHB bus. The AHB bus has
eight master interfaces:

e ARMO920T

« DMA controller

« USB hosts (USB1, 2, 3)
* Ethernet MAC

* LCD/Raster

* Raster Hardware Cursor.

These interfaces have an order of priority that is linked closely with the power saving modes
Halt and Standby. These power saving modes force the Arbiter to grant the default bus
master, in this case, the ARM920T.

The order of priority of the bus masters, from highest to lowest, is shown in Table 2-1.

Table 2-1. AHB Arbiter Priority Scheme

Priority PRIORITY 00 | poi0RITY 01 | PRIORITY 10 | PRIORITY 11
Number (Reset value)

1 Raster Cursor Raster Raster Raster

2 MAC Raster Cursor Raster Cursor DMA

3 USB MAC DMA MAC

4 DMA UsSB UsSB UsSB

5 ARM920T ARM920T MAC Raster Cursor

6 Raster DMA ARM920T ARM920T

The priority of the arbiter may be programmed via the BusMstrArb register in the Clock and
State Controller. The arbiter can also be programmed to degrant one of these masters: DMA,
USB Host or Ethernet MAC if an interrupt (IRQ or FIQ) is pending or being serviced. This
prevents one of these masters from blocking important interrupt service routines. These
masters are thereby prevented from accessing the bus, that is, their bus requests are
masked until the IRQ/FIQ is removed (by the Interrupt Service Routine). After the IRQ/FIQ is
removed, their bus requests will again be recognized. The default is to program the arbiter so
that it does not degrant any of these masters.

In normal operation, when the ARM920T is granted the bus and a request to enter Halt mode
is received, the ARM920T is de-granted from the AHB bus. Any other master requesting the
bus during Halt mode (according to it's priority) will be granted the bus. In the case of entry
into Standby mode, the dummy master will be granted the bus, which simply performs IDLE
transfers. In this way, all the masters except the ARM920T can be used during Halt mode, but
are shutdown upon entry into Standby mode.

DS785UM1
Copyright 2007 Cirrus Logic

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

!

2.2.8.2 SDRAM Slave Arbiter

The SDRAM Slave Arbiter prioritizes between accesses from the AHB bus and the Raster
DMA bus. If an access request from the AHB arrives at the same time as an access request 2
from the Raster DMA, the Raster DMA will be given access while the AHB request is queued.

2.2.8.3 EBI Bus Arbiter

The EBI Bus Arbiter is used to arbitrate between accesses from the SDRAM controller and
the Static Memory controller, where priority is given to accesses from the SDRAM controller.

2.3 AHB Decoder

The AHB Decoder contains the device memory map for all of the AHB masters/slaves and for
the APB bridge. When a particular address range is selected, the appropriate signal is
generated as defined in Table 2-2.

(For additional information, see 17, “Reference Documents” on page P-3.

Table 2-2. AHB Peripheral Address Range

Address Range Register Width | Peripheral Type Peripheral
0x800D_0000 - 0x800F_FFFF - - Reserved
0x800C_0000 - 0x800C_FFFF 32 AHB VIC2
0x800B_0000 - 0x800B_FFFF 32 AHB VIC1
0x800A_0000 - Ox800A_FFFF 32 AHB IDE
0x8009_0000 - 0x8009_FFFF 32 AHB Boot ROM physical address
0x8008_0000 - 0x8008_FFFF 32 AHB SRAM Controller/ PCMCIA
0x8007_0000 - 0x8007_FFFF - - Reserved
0x8006_0000 - 0x8006_FFFF 32 AHB SDRAM Controller
0x8005_0000 - 0x8005_FFFF - - Reserved
0x8004_0000 - 0x8004_FFFF - - Reserved
0x8003_0000 - 0x8003_FFFF 32 AHB Raster
0x8002_0000 - 0x8002_FFFF 32 AHB USB Host
0x8001_0000 - 0x8001_FFFF 32 AHB Ethernet MAC
0x8000_0000 - 0x8000_FFFF 32 AHB DMA

Note: Due to decoding optimization, the AHB peripheral registers are aliased throughout each
peripherals register bank. Do not attempt to access an unspecified register within the
bank.

2.3.1 AHB Slave

An AHB Slave responds to transfers initiated by bus masters. The slave uses signals from
the decoder to determine when it should respond to a bus transfer. All other signals required
for the transfer, such as the address and control information, are generated by the bus
master.

DS785UM1 2-11
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

il

2.3.2 AHB-t0-APB Bridge

The AHB-to-APB Bridge is an AHB slave that provides an interface between the high-speed
AHB and the low-power APB. Read and write transfers on the AHB are converted into
equivalent transfers on the APB. As the APB is not pipelined. Wait states are added during
transfers to and from the APB when the AHB is required to wait for the APB.

The main sections of this bridge are:
« AHB slave bus interface
« APB transfer state machine, which is independent of the device memory map

< APB output signal generation.

2.3.2.1 Function and Operation of the AHB-to-APB Bridge

The AHB-to-APB Bridge responds to access requests from the currently granted AHB
master. The AHB accesses are then converted into APB accesses.

If an undefined location is accessed, operation of the system continues as normal, but no
peripherals are selected. The APB bridge acts as the only master on the APB.

The APB memory map is shown in Table 2-3.

Table 2-3. APB Peripheral Address Range

Address Range R\t,e\%stther Petll_)pl);:ral Peripheral
0x8095_0000 - 0x9000_FFFF - - Reserved
0x8094_0000 - 0x8094_FFFF 16 APB Watchdog Timer
0x8093_0000 - 0x8093_FFFF 32 APB Syscon
0x8092_0000 - 0x8092_FFFF 32 APB Real time clock
0x8091_0000 - 0x8091_FFFF 16 APB Pulse Width Modulation
0x8090_0000 - 0x8090_FFFF 32 APB Touchscreen
0x808F_0000 - 0x808F_FFFF 16 APB Key Matrix
0xB808E_0000 - Ox808E_FFFF 32 APB UART3
0x808D_0000 - 0x808D_FFFF 8 APB UART2
0x808C_0000 - 0x808C_FFFF 32 APB UART1
0x808B_0000 - 0x808B_FFFF 32 APB IrDA
0x808A_0000 - 0x808A_FFFF 16 APB SPI
0x8089_0000 - 0x8089_FFFF - - Reserved
0x8088_0000 - 0x8088_FFFF 32 APB AAC
0x8087_0000 - 0x8087_FFFF - - Reserved
0x8086_0000 - 0x8086_FFFF - - Reserved
0x8085_0000 - 0x8085_FFFF - - Reserved
0x8084_0000 - 0x8084_FFFF 16 APB GPIO
0x8083_0000 - 0x8083_FFFF 32 APB Security
0x8082_0000 - 0x8082_FFFF 32 APB 12S
0x8081_0000 - 0x8081_FFFF 32 APB Timers
0x8080_0000 - 0x8080_FFFF - - Reserved
0x8010_0000 - 0x807F_FFFF - - Reserved

2-12 DS785UM1

Copyright 2007 Cirrus Logic

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

I

Note: Due to decoding optimization, the APB peripheral registers are aliased throughout each
peripherals register bank. Do not attemp to access an unspecified register within the bank.

2.3.3 APB Slave

An APB Slave responds to accesses initiated by bus masters. The slave uses signals from
the decoder to determine when it should respond to a bus access. All other signals required
for the access, such as the address and control information, are generated by the AHB-to-
APB Bridge.

2.3.4 Register Definitions

The ARM920T Core has thirty seven 32-bit internal registers, where some are modal and
some are banked. If operating in Thumb instructions state, the ARM Core must switch to
ARM instructions state before taking an exception. The return instruction will restore the ARM
Core to the Thumb state. Most tasks are executed out of User mode. The ARM920T Core’s
operating modes are shown in Table 2-4.

Table 2-4. ARM920T Core Operating Modes

Mode Description
User Unprivileged normal operating mode
FIQ Fast interrupt (high priority) mode when FIQ is
asserted
IRQ Interrupt request (normal) mode when IRQ is
asserted
Supervisor Software interrupt instruction (SWI) or reset will

cause entry into this mode.
Memory access violation will cause entry into this

Abort:

mode.
Undef Undefined instructions mode

Privileged mode. Uses same registers as User
System mode

Table 2-5 illustrates the use of all registers for the ARM920T Core’s operating modes. Each
will bank or store a specific number of registers. Banked register information is not shared
between modes. FIQs bank the largest number of registers, and increase performance by
reducing the need to push/pop registers from the stack.

DS785UM1 2-13
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

il

Table 2-5. Register Organization Summary

Privileged Modes
Exception Modes
User | System | Supervisor Abort Undefined IRQ FIQ
ro ro ro ro ro ro ro
rl rl rl rl rl rl rl
r2 r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3 r3 Thumb
state low
r4 r4 r4 r4 r4 r4 r4 registers
r5 r5 r5 r5 r5 r5 r5
ré ré ré ré ré ré ré
r7 r7 r7 r7 r7 r7 r7
r8 r8 r8 r8 r8 r8 r8_fiq
r9 r9 r9 r9 r9 r9 r9_fiq
ri0 rl0 r10 r10 rl0 rl0 r10_fiq
ri1 ri1 ri1 ri1 ri1 ri1 ri1_fiq Thumb
state high
ri2 ri2 ri2 ri2 ri2 ri2 r12_fiq registers
r13(sp) rl3 rl3_svc rl3_abt rl3_und r13_irq r13_fiq
r14(lr) rl4 rl4_svc rl4_abt rl4 _und rl4_irq rl4_fiq
r15(pc) pc pc pc pc pc pc
cpsr cpsr cpsr cpsr cpsr cpsr cpsr
SpSr_svc spsr_abt spsr_und spsr_irg | spsr_fiq

Note: Colored areas represent banked registers.

User mode in Thumb state limits access to the low registers rO-r7. To access to the high
registers, the ARM Core must first revert to the ARM state. The high registers are:

e r0-r12: General purpose read/write 32-bit registers
r13 (sp): Stack Pointer

r14 (Ir): Link Register

r15 (pc): Program Counter

e cpsr: Current Program Status Register containing condition codes and operating modes

2-14 DS785UM1
Copyright 2007 Cirrus Logic

N

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

spsr: Saved Program Status Register contains CPSR after occurrence of an exception

CP15 has 16 registers that control the core as described in Table 2-6.

DS785UM1

Table 2-6. CP15 ARM920T Register Description

Register

Description

ID Code: (Read/Only) This register returns a 32-bit device ID code. ID Code data includes
the core type, revision, part number etc. Access to this register is via the instruction

MRC p15 0, Rd, c0, c0, 0.

Cache Code: This register will return cache type, size and length of both I-Cache and D-
Cache, and associativity. Access to this register is via the instruction

MRC p15 0, Rd, c0, c0, 1.

Control Register: (Read/Write) This register is used to enable: MMU, instruction and data
cache, round robin replacement ‘RR’-bit, system protection, ROM protection, and clocking
mode. Read/Write Instructions are:

MRC p15, 0, Rd, c1, c0, 0 - Read control register - value stored in Rd

MCR p15, 0, Rd, c1, c0, 0 - Write control register - value first loaded into Rd

Translation Base Table: (Read/Write) This register contains the start address of the first
level translation table. The upper 18 bits represent the pointer to the table base. The lower
14 bits should be all zeroes for a write, unpredictable if read.

MRC p15, 0, Rd, c2, c0, 0 - Read TTB

MCR p15, 0, Rd, c2, c0, 0 - Write TTB

Domain Access Control: (Read/Write) This register specifies permissions for each of the
16 domains. Read/Write Instructions are:

MRC p15, 0, Rd, c3, c0, 0

MCR p15, 0, Rd, c3, c0, 0

Reserved: Do not access. Unpredictable behavior may result.

Fault Status: (Read/Write) This register indicates the type of fault and the domain of the
most recent data abort. Read/Write Instructions are:

MRC p15, 0, Rd, c5, c0, 0 - read data FSR value

MCR p15, 0, Rd, c5, c0, 0 - write data FSR value

Fault Address: (Read/Write) This register contains the address of the last data access
abort. Read/Write Instructions are:

MRC p15, 0, Rd, c6, c0, 0 - read FAR data

MCR p15, 0, Rd, c6, c0, 0 - write FAR data

Cache Operation: (Write/Only) This register configures, or performs a clean (flush) of, the
cache and write buffer when written to. Example:

MRC p15, 0, Rd, c7, c7, 0 - Invalidate I/D-cache

MRC p15, 0, Rd, c7, ¢5, 0 - Invalidate I-Cache

TLB Operation: (Write/Only) This register configures, or performs a clean (flush) of, the
TLB when written to. Example:
MRC p15, 0, Rd, c8, c7, 0 - Invalidate TLB

Cache Lockdown: (Read/Write) This register prevents certain existing cache-lines from
being overwritten (locked) during a new cache-line fill. Examples:

MRC p15, 0, Rd, c9, c0, 1- Write lockdown base pointer for D-Cache

MRC p15, 0, Rd, c9, c0, 1 - Write lockdown base pointer for I-Cache

10

TLB Lockdown: (Read/Write) This register prevents existing TLB entries from being
erased during a table walk. Examples:

MRC p15, 0, Rd, c10, c0, 1- Write lockdown base pointer for data TLB entry

MRC p15, 0, Rd, c10, c0, 1 - Write lockdown base pointer for instruction TLB entry

2-15
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)

EP93xx User’s Guide

il

Table 2-6. CP15 ARM920T Register Description (Continued)

Register

Description

11,12,14 | Reserved

FCSE PID Register: (Read/Write) ARM9TDMI core addresses ranging from 0 to 32MB are
13 translated by this register to A + FCSE*32MB and then sent to the MMU. If turned off,
straight addresses are sent to the MMU.

15 Test Register Only: Reads or writes will cause unpredictable behavior.

2.3.5 Memory Map

The memory map for Synchronous Memory Boot and Asynchronous Memory Boot is shown

in Table 2-7.

If internal Boot Mode is selected and the register BootModeClr has been written, the address
range 0x0000_0000 -> 0x0000_FFFF is occupied by the internal Boot ROM until the internal
Boot Code is completed. After boot completion, either Synchronous or Asynchronous

memory is re-mapped to occupy this address space.

NOTE: Some memory locations are listed as Reserved. These memory locations should not
be used. Reading from these memory locations will yield invalid data. Writing to these
memory locations may cause unpredictable results.

Table 2-7. Global Memory Map for the Two Boot Modes

Address Range

Sync Memory Boot

Async Memory Boot

ASDO Pin =1

ASDO Pin =0

0xF000_0000 - OXFFFF_FFFF

Async memory (nCS0)

Sync memory (nSDCE3)

0xE000_0000 - OXEFFF_FFFF

Sync memory (nSDCE2)

Sync memory (nSDCE2)

0xD000_0000 - OXDFFF_FFFF

Sync memory (nSDCEL1)

Sync memory (nSDCE1)

0xC000_0000 - OXCFFF_FFFF

Sync memory (nSDCEDQ)

Sync memory (nSDCEQ)

0x9000_0000 - OXBFFF_FFFF Not Used Not Used
0x8080_0000 - Ox8FFF_FFFF APB mapped registers APB mapped registers
0x8010_0000 - 0x807F_FFFF Reserved Reserved

0x8000_0000 - 0x800F_FFFF

AHB mapped registers

AHB mapped registers

0x7000_0000 - Ox7FFF_FFFF

Async memory (nCS7)

Async memory (nCS7)

0x6000_0000 - OX6FFF_FFFF

Async memory (nCS6)

Async memory (nCS6)

0x5000_0000 - OX5FFF_FFFF

Reserved

Reserved

0x4000_0000 - Ox4FFF_FFFF

PCMCIA (Slot 0)

PCMCIA (Slot 0)

0x3000_0000 - Ox3FFF_FFFF

Async memory (nCS3)

Async memory (nCS3)

0x2000_0000 - Ox2FFF_FFFF

Async memory (nCS2)

Async memory (nCS2)

0x1000_0000 - OXLFFF_FFFF

Async memory (nCS1)

Async memory (nCS1)

0x0001_0000 - OXOFFF_FFFF

Sync memory (nSDCE3)

Async memory (nCS0)

0x0000_0000 - 0x0000_FFFF

Sync memory (nSDCE3)
or
Internal Boot ROM
if INTBOOT is selected

Async memory (nCS0)
or
Internal Boot ROM
if INTBOOT is selected

2-16

Copyright 2007 Cirrus Logic

DS785UM1

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

I

Note: The shaded memory areas are dedicated to system registers. Details of these registers
are in Table 2-8.

2.3.6 Internal Register Map

Table 2-8 on page 2-17 shows the memory map for internal registers. Registers are set to
their default state by the RSTOn pin input or by the PRSTn pin input. Some state conserving
registers are reset only by the PRSTn pin. All registers are read/write unless otherwise
specified.

2.3.6.1 Memory Access Rules

Any memory address not specifically assigned to a register should be avoided. Reads to
register memory addresses labelled Reserved, Unused or Undefined will return
indeterminate data. Writes to register memory addresses labelled Reserved, Unused or
Undefined are generally ignored, but this behavior is not guaranteed. Many register
addresses are not fully decoded, so aliasing may occur. Addresses and memory ranges
listed as Reserved (RSVD) should not be accessed; behavior resulting from accesses to
these regions is not defined.

The SW Lock field identifies registers with a software lock. A software lock prevents the
register from being written (unless an unlock operation is performed immediately prior to the
write). Any register whose accidental alteration could cause system damage may be
controlled with a software lock. Each peripheral with software lock capability has its own
software lock register.

Within a register definition, a reserved bit indicated by the name RSVD, means the bit is not
accessible. Software should mask the RSVD bits when doing bit reads. RSVD bits will ignore
writes, that is writing a zero or a one has no affect.

Register bits identified as NC are functionally alive but have an undocumented or a “don’t
care” operating function. Bits identified as NC must be treated in a specific manner for reads
and writes. The register descriptions will provide information on how to handle NC bits.

Unless specified otherwise, all registers can be accessed as a byte, half-word, or word.

CAUTION: Some memory locations are listed as Reserved. These memory locations
should not be accessed. Reading from these memory locations will yield invalid data.
Writing to these memory locations may cause unpredictable results.

Table 2-8. Internal Register Map

. . . W
Address Register Name Register Description L%ck
0x8000_XXXX DMA DMA Control Registers
0x8000_0000 - 0x8000_003C | M2P Channel 0 Registers (Tx) | Memory-to-Peripheral Channel O Registers (Tx) N
0x8000_0040 - 0x8000_007C | M2P Channel 1 Registers (Rx) | Memory-to-Peripheral Channel 1 Registers (Rx) N
0x8000_0080 - 0x8000_00BC | M2P Channel 2 Registers (Tx) | Memory-to-Peripheral Channel 2 Registers (Tx) N
0x8000_00CO0 - 0x8000_00FC | M2P Channel 3 Registers (Rx) | Memory-to-Peripheral Channel 3 Registers (Rx) N
0x8000_0100 - 0x8000_013C | M2M Channel 0 Registers Memory-to-Memory Channel 0 Registers N
DS785UM1 2-17

Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)

EP93xx User’s Guide

il

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
0x8000_0140 - 0x8000_017C | M2M Channel 1 Registers Memory-to-Memory Channel 1 Registers N
0x8000_0180 - 0x8000_01FC Reserved
0x8000_0200 - 0x8000_023C | M2P Channel 5 Registers (Rx) | Memory-to-Peripheral Channel 5 Registers (Rx) N
0x8000_0240 - 0x8000_027C | M2P Channel 4 Registers (Tx) | Memory-to-Peripheral Channel 4 Registers (Tx) N
0x8000_0280 - 0x8000_02BC | M2P Channel 7 Registers (Rx) | Memory-to-Peripheral Channel 7 Registers (Rx) N
0x8000_02C0 - 0x8000_02FC | M2P Channel 6 Registers (Tx) | Memory-to-Peripheral Channel 6 Registers (Tx) N
0x8000_0300 - 0x8000_033C | M2P Channel 9 Registers (Rx) | Memory-to-Peripheral Channel 9 Registers (Rx) N
0x8000_0340 - 0x8000_037C | M2P Channel 8 Registers (Tx) | Memory-to-Peripheral Channel 8 Registers (Tx) N
0x8000_0380 DMAChArb DMA Channel Arbitration Register N
0x8000_03CO0 DMAGIInt DMA Global Interrupt Register N
0x8000_03C4 - 0x8000_FFFC Reserved
0x8001_XXXX Ethernet MAC Ethernet MAC Control Registers
0x8001_0000 RXCtl MAC Receiver Control Register N
0x8001_0004 TXCtl MAC Transmitter Control Register N
0x8001_0008 TestCtl MAC Test Control Register N
0x8001_0010 MIICmd MAC MIl Command Register N
0x8001_0014 MiIData MAC MII Data Register N
0x8001_0018 MIISts MAC MII Status Register N
0x8001_0020 SelfCtl MAC Self Control Register N
0x8001_0024 IntEn MAC Interrupt Enable Register N
0x8001_0028 IntStsP MAC Interrupt Status Preserve Register N
0x8001_002C IntStsC MAC Interrupt Status Clear Register N
0x8001_0030 - 0x8001_0034 Reserved
0x8001_0038 DiagAd MAC Diagnostic Address Register N
0x8001_003C DiagDa MAC Diagnostic Data Register N
0x8001_0040 GT MAC General Timer Register N
0x8001_0044 FCT MAC Flow Control Timer Register N
0x8001_0048 FCF MAC Flow Control Format Register N
0x8001_004C AFP MAC Address Filter Pointer Register N
0x8001_0050 - 0x8001_0055 | IndAd maAS%_:_rgtlj)ividual Address Register, (shares address space with N
0x8001_0050 - 0x8001_0057 |HashTbl MAC Hash Table Register, (shares address space with IndAd) N
0x8001_0060 GlintSts MAC Global Interrupt Status Register N
0x8001_0064 GlintMsk MAC Global Interrupt Mask Register N
0x8001_0068 GlIntROSts MAC Global Interrupt Read Only Status Register N
0x8001_006C GlintFrc MAC Global Interrupt Force Register N
0x8001_0070 TXCollCnt MAC Transmit Collision Count Register N
0x8001_0074 RXMissCnt MAC Receive Miss Count Register N
0x8001_0078 RXRuntCnt MAC Receive Runt Count Register N
0x8001_0080 BMCitl MAC Bus Master Control Register N
0x8001_0084 BMSts MAC Bus Master Status Register N
0x8001_0088 RXBCA MAC Receive Buffer Current Address Register N

2-18 DS785UM1

Copyright 2007 Cirrus Logic

I

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
0x8001_0090 RXDQBAdd MAC Receive Descriptor Queue Base Address Register N
0x8001_0094 RXDQBLen MAC Receive Descriptor Queue Base Length Register N
0x8001_0096 RXDQCurLen MAC Receive Descriptor Queue Current Length Register N
0x8001_0098 RXDCurAdd MAC Receive Descriptor Current Address Register N
0x8001_009C RXDEng MAC Receive Descriptor Enqueue Register N
0x8001_00A0 RXStsQBAdd MAC Receive Status Queue Base Address Register N
0x8001_00A4 RXStsQBLen MAC Receive Status Queue Base Length Register N
0x8001_00A6 RXStsQCurLen MAC Receive Status Queue Current Length Register N
0x8001_00A8 RXStsQCurAdd MAC Receive Status Queue Current Address Register N
0x8001_00AC RXStsEnq MAC Receive Status Enqueue Register N
0x8001_00B0O TXDQBAdd MAC Transmit Descriptor Queue Base Address Register N
0x8001_00B4 TXDQBLen MAC Transmit Descriptor Queue Base Length Register N
0x8001_00B6 TXDQCurLen MAC Transmit Descriptor Queue Current Length Register N
0x8001_00B8 TXDQCurAdd MAC Transmit Descriptor Current Address Register N
0x8001_00BC TXDENq MAC Transmit Descriptor Enqueue Register N
0x8001_00CO0 TXStsQBAdd MAC Transmit Status Queue Base Address Register N
0x8001_00C4 TXStsQBLen MAC Transmit Status Queue Base Length Register N
0x8001_00C6 TXStsQCurLen MAC Transmit Status Queue Current Length Register N
0x8001_00C8 TXStsQCurAdd MAC Transmit Status Queue Current Address Register N
0x8001_00D0 RXBufThrshid MAC Receive Buffer Threshold Register N
0x8001_00D4 TXBufThrshid MAC Transmit Buffer Threshold Register N
0x8001_00D8 RXStsThrshld MAC Receive Status Threshold Register N
0x8001_00DC TXStsThrshid MAC Transmit Status Threshold Register N
0x8001_00EO RXDThrshid MAC Receive Descriptor Threshold Register N
0x8001_00E4 TXDThrshld MAC Transmit Descriptor Threshold Register N
0x8001_00E8 MaxFrmLen MAC Maximum Frame Length Register N
0x8001_00EC RXHdrLen MAC Receive Header Length Register N
0x8001_0100 - 0x8001_010C Reserved
0x8001_4000 - 0x8001_50FF | MACFIFO MAC FIFO RAM N
0x8002_XXXX USB USB Registers N
0x8002_0000 HcRevision USB Host Controller Revision N
0x8002_0004 HcControl USB Host Controller Control N
0x8002_0008 HcCommandStatus USB Host Controller Command Status N
0x8002_000C HclnterruptStatus USB Host Controller Interrupt Status N
0x8002_0010 HcinterruptEnable USB Host Controller Interrupt Enable N
0x8002_0014 HclinterruptDisable USB Host Controller Interrupt Disable N
0x8002_0018 HcHCCA USB Host Controller HCCA N
0x8002_001C HcPeriodCurrentED USB Host Controller Period CurrentED N
0x8002_0020 HcControlHeadED USB Host Controller Control HeadED N
0x8002_0024 HcControlCurrentED USB Host Controller Control CurrentED N
0x8002_0028 HcBulkHeadED USB Host Controller Bulk HeadED N
0x8002_002C HcBulkCurrentED USB Host Controller Bulk CurrentED N

DS785UM1 2-19

Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

il

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
0x8002_0030 HcDoneHead USB Host Controller Done Head N
0x8002_0034 HcFminterval USB Host Controller Fm Interval
0x8002_0038 HcFmRemaining USB Host Controller Fm Remaining N
0x8002_003C HcFmNumber USB Host Controller Fm Number N
0x8002_0040 HcPeriodicStart USB Host Controller Periodic Start N
0x8002_0044 HcLSThreshold USB Host Controller LS Threshold N
0x8002_0048 HcRhDescriptorA USB Host Controller Root Hub Descriptor A N
0x8002_004C HcRhDescriptorB USB Host Controller Root Hub Descriptor B N
0x8002_0050 HcRhStatus USB Host Controller Root Hub Status N
0x8002_0054 HcRhPortStatus[1] USB Host Controller Root Hub Port Status 1 N
0x8002_0058 HcRhPortStatus[2] USB Host Controller Root Hub Port Status 2 N
0x8002_005C HcRhPortStatus[3] USB Host Controller Root Hub Port Status 3 N
0x8002_0080 USBCtrl USB Configuration Control N
0x8002_0084 USBHCI USB Host Controller Interface Status N
0x8003_XXXX RASTER Raster Control Registers
0x8003_0000 VLinesTotal Total Number of vertical frame lines Y
0x8003_0004 VSyncStrtStop Vertical sync pulse setup Y
0x8003_0008 VActiveStrtStop Vertical blanking setup Y
0x8003_000C VCIkStrtStop Vertical clock active frame Y
0x8003_0010 HClkTotal Total Number of horizontal line clocks Y
0x8003_0014 HSyncStrtStop Horizontal sync pulse setup Y
0x8003_0018 HActiveStrtStop Horizontal blanking setup Y
0x8003_001C HCIkStrtStop Horizontal clock active frame Y
0x8003_0020 Brightness PWM brightness control N
0x8003_0024 VideoAttribs Video state machine parameters Y
0x8003_0028 VidScrnPage Starting address of video screen N
0x8003_002C VidScrnHPage Starting address of video screen half page N
0x8003_0030 ScrnLines Number of active lines scanned to the screen N
0x8003_0034 LineLength Length in words of data for lines N
0x8003_0038 VLineStep Memory step for each line N
0x8003_003C LineCarry Horizontal/vertical offset parameter Y
0x8003_0040 BlinkRate Blink counter setup N
0x8003_0044 BlinkMask Logic mask applied to pixel to perform blink operation N
0x8003_0048 BlinkPattrn Compare value for determining blinking pixels N
0x8003_004C PattrnMask Mask to limit pattern N
0x8003_0050 BkgrndOffset Background color or blink offset value N
0x8003_0054 PixelMode Pixel mode definition setup Register N
0x8003_0058 ParllifOut Parallel interface write/control Register N
0x8003_005C Parllifin Parallel interface read/setup Register N
0x8003_0060 CursorAdrStart Word location of the top left corner of cursor to be displayed N
0x8003_0064 CursorAdrReset Location of first word of cursor to be scanned after last line N
0x8003_0068 CursorSize Cursor height, width, and step size Register N

2-20

Copyright 2007 Cirrus Logic

DS785UM1

I

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

Table 2-8. Internal Register Map (Continued)

Address

Register Name

Register Description

SW
Lock

0x8003_006C

CursorColorl

Cursor color overlaid when cursor value is 10

0x8003_0070

CursorColor2

Cursor color overlaid when cursor value is 11

0x8003_0074 CursorXYLoc Cursor X and Y location Register

0x8003_0078 CursorDScanLHYLoc Cursor dual scan lower half Y location Register
Software Lock Register. Register used to unlock registers that

0x8003_007C RasterSWLock e SWLOGK 9 9 9

0x8003_0080 - 0x8003_00FC | GrySclLUTR Grayscale Look Up Table

0x8003_0200 VidSigRsiltVal Video signature result value

0x8003_0204 VidSigCtrl Video signature Control Register

0x8003_0208 VSigStrtStop Vertical signature bounds setup

0x8003_020C HSigStrtStop Horizontal signature bounds setup

0x8003_0210 SigClrStr Signature clear and store location

0x8003_0214 ACRate LCD AC voltage bias control counter setup

0x8003_0218 LUTSwCtrl LUT switching control Register

0x8003_021C

CursorBlinkColorl

Cursor Blink color 1

0x8003_0220

CursorBlinkColor2

Cursor Blink color 2

0x8003_0224

CursorBlinkRateCtrl

Cursor Blink rate control Register

2| Z|Z|Z|1Z|Z|1Z|Z|Z|Z2|Z2|Z2|Z2|1Z2|1Z2|2|Z2|Z2| 2 |Z2|Z2|Z2|2

0x8003_0228 VBlankStrtStop Vertical Blank signal Start/Stop Register
0x8003_022C HBlankStrtStop Horizontal Blank signal Start/Stop Register
0x8003_0230 EOLOffset End Of Line Offset value
0x8003_0234 FIFOLevel FIFO refill level Register
0x8003_0280 - 0x8003_02FC | GryScILUTG Grayscale Look Up Table
0x8003_0300 - 0x8003_037C | GryScILUTB Grayscale Look Up Table
0x8003_0400 - 0x8003_07FC | ColorLUT Color Look Up Table
0x8004_xxxx - 0x8005_xxxX Reserved
0x8006_XXXX SDRAM SDRAM Registers N
0x8006_0000 Reserved
0x8006_0004 GlConfig Control and status bits used in configuration N
0x8006_0008 RefrshTimr Set the period between refresh cycles N
0x8006_000C BootSts Reflect the state of the boot mode option pins N
0x8006_0010 SDRAMDevCfg0 Device configuration 0 N
0x8006_0014 SDRAMDevCfgl Device configuration 1 N
0x8006_0018 SDRAMDevCfg2 Device configuration 2 N
0x8006_001C SDRAMDevCfg3 Device configuration 3 N
0x8008_XXXX SMC SMC and PCMCIA Control Registers
Bank config Register O (used to program characteristics of the
0x8008_0000 SMCBCRO SRAM/ROM memory) N
Bank config Register 1 (used to program characteristics of the
0x8008_0004 SMCBCR1 SRAM/ROM memory) N
DS785UM1 2-21

Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

il

Table 2-8. Internal Register Map (Continued)

. . — W
Address Register Name Register Description LS:JCK
Bank config Register 2 (used to program characteristics of the
0x8008_0008 SMCBCR2 SRAM/ROM memory) N
Bank config Register 3 (used to program characteristics of the
0x8008_000C SMCBCR3 SRAM/ROM memory) N
0x8008_0010 - 0x8008_0014 Reserved
Bank config Register 6 (used to program characteristics of the
0x8008_0018 SMCBCR6 SRAM/ROM memory) N
Bank config Register 7 (used to program characteristics of the
0x8008_001C SMCBCR7 SRAM/ROM memory) N
0x8008_0020 PC1Attribute PC1 Attribute Register
0x8008_0024 PC1Common PC1 Common Register
0x8008_0028 PC1I10 PC1 IO Register
0x8008_002C Reserved
0x8008_0030 PC2Attribute PC2 Attribute Register
0x8008_0034 PC2Common PC2 Common Register
0x8008_0038 PC2I10 PC2 10 Register
0x8008_003C Reserved
0x8008_0040 PCMCIACtrl PCMCIA Control register
0x8008_0044 - 0x8008_FFFC Reserved
0x8009_xxxx Boot ROM Boot ROM Memory Locations
0x8009_0000 Boot ROM Start N
0x8009_3FFF Boot ROM End N
0xB00A_XXXX IDE IDE Control Registers
0x800A_0000 IDECtrl IDE Control Register N
0x800A_0004 IDECfg IDE Configuration Register N
0x800A_0008 IDEMDMAOp IDE MDMA Operation Register N
0x800A_000C IDEUDMAOp IDE UDMA Operation Register N
0x800A_0010 IDEDataOut IDE PIO Data Output Register N
0x800A_0014 IDEDataln IDE PIO Data Input Register N
0x800A_0018 IDEMDMADataOut IDE MDMA Data Output Register N
0x800A_001C IDEMDMADataln IDE MDMA Data Input Register N
0x800A_0020 IDEUDMADataOut IDE UDMA Data Output Register N
0x800A_0024 IDEUDMADataln IDE UDMA Data Input Register N
0x800A_0028 IDEUDMASs IDE UDMA Status Register N
0x800A_002C IDEUDMADebug IDE UDMA Debug Register N
0x800A_0030 IDEUDMAWTrBuUfSts IDE UDMA Write Buffer Status Register N
0x800A_0034 IDEUDMARdBUfSts IDE UDMA Read Buffer Status Register N
0x800B_xxxx VIC1 Vectored Interrupt Controller 1 Registers
0x800B_0000 VIC1IRQStatus IRQ status Register N
0x800B_0004 VIC1FIQStatus FIQ status Register N
2-22 DS785UM1

Copyright 2007 Cirrus Logic

I

ARMO920T Core and Advanced High-Speed Bus (AHB)

Table 2-8. Internal Register Map (Continued)

EP93xx User’s Guide

Address

Register Name

Register Description

SW
Lock

0x800B_0008

VIC1Rawintr

Raw interrupt status Register

0x800B_000C

VIC1IntSelect

Interrupt select Register

0x800B_0010

VIC1IntEnable

Interrupt enable Register

0x800B_0014

VIC1lIntEnClear

Interrupt enable clear Register

0x800B_0018

VIC1Softint

Software interrupt Register

0x800B_001C

VIC1SoftintClear

Software interrupt clear Register

0x800B_0020

VIC1Protection

Protection enable Register

0x800B_0030 VIC1VectAddr Vector address Register
0x800B_0034 VIC1DefVectAddr Default vector address Register
0x800B_0100 VIC1VectAddrO Vector address 0 Register
0x800B_0104 VIC1VectAddrl Vector address 1 Register
0x800B_0108 VIC1VectAddr2 Vector address 2 Register
0x800B_010C VIC1VectAddr3 Vector address 3 Register

0x800B_0110

VIC1VectAddr4

Vector address 4 Register

0x800B_0114

VIC1VectAddr5

Vector address 5 Register

0x800B_0118

VIC1VectAddr6

Vector address 6 Register

0x800B_011C

VIC1VectAddr7

Vector address 7 Register

0x800B_0120 VIC1VectAddr8 Vector address 8 Register

0x800B_0124 VIC1VectAddr9 Vector address 9 Register

0x800B_0128 VIC1VectAddr10 Vector address 10 Register
0x800B_012C VIC1VectAddril Vector address 11 Register
0x800B_0130 VIC1VectAddri2 Vector address 12 Register
0x800B_0134 VIC1VectAddrl3 Vector address 13 Register
0x800B_0138 VIC1VectAddr14 Vector address 14 Register
0x800B_013C VIC1VectAddrl5 Vector address 15 Register

0x800B_0200

VIC1VectCntlO

Vector control O Register

0x800B_0204

VIC1VectCntll

Vector control 1 Register

0x800B_0208

VIC1VectCntl2

Vector control 2 Register

0x800B_020C

VIC1VectCntl3

Vector control3 Register

0x800B_0210

VIC1VectCntl4

Vector control 4 Register

0x800B_0214

VIC1VectCntl5

Vector control 5 Register

0x800B_0218

VIC1VectCntl6

Vector control 6 Register

0x800B_021C

VIC1VectCntl7

Vector control 7 Register

0x800B_0220

VIC1VectCntl8

Vector control 8 Register

0x800B_0224

VIC1VectCntl9

Vector control 9 Register

0x800B_0228

VIC1VectCntl10

Vector control 10 Register

0x800B_022C

VIC1VectCntl1l

Vector control 11 Register

0x800B_0230

VIC1VectCntl12

Vector control 12 Register

0x800B_0234

VIC1VectCntl13

Vector control 13 Register

0x800B_0238

VIC1VectCntl14

Vector control 14 Register

0x800B_023C

VIC1VectCntl15

Vector control 15 Register

0x800B_0OFEO

VIC1PeriphlDO

VIC Identification Register bits 7:0

0x800B_OFE4

VIC1PeriphiD1

VIC Identification Register bits 15:8

Zl|Z|Z|1Z|Z|Z|Z|Z|Z|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|2

DS785UM1

Copyright 2007 Cirrus Logic

2-23

ARM920T Core and Advanced High-Speed Bus (AHB)

EP93xx User’s Guide

il

Table 2-8. Internal Register Map (Continued)

. . — W

Address Register Name Register Description LS:JCK
0x800B_OFES8 VIC1PeriphlD2 VIC Identification Register bits 23:16 N
0x800B_OFEC VIC1PeriphlD3 VIC Identification Register bits 31:24 N
0x800B_OFFO - 0x800B_OFFC Reserved N

0x800C_xxxx

VIC2

Vectored Interrupt Controller 2 Registers

0x800C_0000

VIC2IRQStatus

IRQ status Register

0x800C_0004

VIC2FIQStatus

FIQ status Register

0x800C_0008

VIC2RawIntr

Raw interrupt status Register

0x800C_000C

VIC2IntSelect

Interrupt select Register

0x800C_0010

VIC2IntEnable

Interrupt enable Register

0x800C_0014

VIC2IntEnClear

Interrupt enable clear Register

0x800C_0018

VIC2SoftInt

Software interrupt Register

0x800C_001C

VIC2SoftintClear

Software interrupt clear Register

0x800C_0020

VIC2Protection

Protection enable Register

0x800C_0030 VIC2VectAddr Vector address Register
0x800C_0034 VIC2DefVectAddr Default vector address Register
0x800C_0100 VIC2VectAddrO Vector address 0 Register
0x800C_0104 VIC2VectAddrl Vector address 1 Register
0x800C_0108 VIC2VectAddr2 Vector address 2 Register
0x800C_010C VIC2VectAddr3 Vector address 3 Register
0x800C_0110 VIC2VectAddr4 Vector address 4 Register
0x800C_0114 VIC2VectAddr5 Vector address 5 Register
0x800C_0118 VIC2VectAddr6 Vector address 6 Register
0x800C_011C VIC2VectAddr7 Vector address 7 Register
0x800C_0120 VIC2VectAddr8 Vector address 8 Register
0x800C_0124 VIC2VectAddr9 Vector address 9 Register
0x800C_0128 VIC2VectAddrl10 Vector address 10 Register
0x800C_012C VIC2VectAddril Vector address 11 Register
0x800C_0130 VIC2VectAddri2 Vector address 12 Register
0x800C_0134 VIC2VectAddrl3 Vector address 13 Register
0x800C_0138 VIC2VectAddr14 Vector address 14 Register
0x800C_013C VIC2VectAddrl5 Vector address 15 Register

0x800C_0200

VIC2VectCntlO

Vector control O Register

0x800C_0204

VIC2VectCntll

Vector control 1 Register

0x800C_0208

VIC2VectCntl2

Vector control 2 Register

0x800C_020C

VIC2VectCntl3

Vector control3 Register

0x800C_0210

VIC2VectCntl4

Vector control 4 Register

0x800C_0214

VIC2VectCntl5

Vector control 5 Register

0x800C_0218

VIC2VectCntl6

Vector control 6 Register

0x800C_021C

VIC2VectCntl7

Vector control 7 Register

0x800C_0220

VIC2VectCntl8

Vector control 8 Register

0x800C_0224

VIC2VectCntl9

Vector control 9 Register

0x800C_0228

VIC2VectCntl10

Vector control 10 Register

Z|Z|Z|1Z|Z|Z|Z|Z|Z2|Z2|Z2|Z2|1Z2|Z|Z|Z2|Z2|Z2|Z2|Z2|Z|Z|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|2|2|2|Z2

2-24

Copyright 2007 Cirrus Logic

DS785UM1

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

I

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
0x800C_022C VIC2VectCntl11l Vector control 11 Register N
0x800C_0230 VIC2VectCntl12 Vector control 12 Register N
0x800C_0234 VIC2VectCntl13 Vector control 13 Register N
0x800C_0238 VIC2VectCntl14 Vector control 14 Register N
0x800C_023C VIC2VectCntl15 Vector control 15 Register N
0x800C_OFEO VIC2PeriphlDO VIC Identification Register bits 7:0 N
0x800C_OFE4 VIC2PeriphlD1 VIC Identification Register bits 15:8 N
0x800C_OFE8 VIC2PeriphlD2 VIC Identification Register bits 23:16 N
0x800C_OFEC VIC2PeriphlD3 VIC Identification Register bits 31:24 N
0x800C_OFFO0 - 0x800C_OFFC Reserved N
0xB8081_XXXX TIMER Timer Registers
0x8081_0000 TimerlLoad Contains the initial value of the timer N
0x8081_0004 TimerlValue Gives the current value of the timer N
0x8081_0008 Timer1Control Provides enable/disable and mode configurations for the timer N
0x8081_000C TimerlClear Clears an interrupt generated by the timer N
0x8081_0020 Timer2Load Contains the initial value of the timer N
0x8081_0024 Timer2Value Gives the current value of the timer N
0x8081_0028 Timer2Control Provides enable/disable and mode configurations for the timer N
0x8081_002C Timer2Clear Clears an interrupt generated by the timer N
0x8081_0060 - 0x8081_0064 Reserved
0x8081_0080 Timer3Load Contains the initial value of the timer N
0x8081_0084 Timer3Value Gives the current value of the timer N
0x8081_0088 Timer3Control Provides enable/disable and mode configurations for the timer N
0x8081_008C Timer3Clear Clears an interrupt generated by the timer N
0x8082_XXXX 12S I12S Registers N
0x8082_0000 I2STXCIkCfg Transmitter clock configuration Register N
0x8082_0004 12SRXCIkCfg Receiver clock configuration Register N

12S Global Status Register. This reflects the status of the 3 RX
0x8082_0008 12SGISts FIFOs and the 3 TX IgIFOs N
0x8082_000C 12SGICtrl I12S Global Control Register N
0x8082_0010 12STXOLft Left Transmit data Register for channel 0 N
0x8082_0014 I2STXORt Right Transmit data Register for channel 0 N
0x8082_0018 12STX1Lft Left Transmit data Register for channel 1 N
0x8082_001C I2STX1Rt Right Transmit data Register for channel 1 N
0x8082_0020 12STX2Lft Left Transmit data Register for channel 2 N
0x8082_0024 I2STX2Rt Right Transmit data Register for channel 2 N
0x8082_0028 I12STXLinCtriData Transmit Line Control Register N
0x8082_002C 12STXCtrl Transmit Control Register N
0x8082_0030 I2STXWrdLen Transmit Word Length N
0x8082_0034 I2STX0EN TXO0 Channel Enable N
0x8082_0038 I2STX1En TX1 Channel Enable N
DS785UM1 2-25

Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)

EP93xx User’s Guide

il

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
0x8082_003C 12STX2En TX2 Channel Enable N
0x8082_0040 12SRXOLft Left Receive data Register for channel O N
0x8082_0044 I2SRXO0Rt Right Receive data Register for channel 0 N
0x8082_0048 I2SRX1Lft Left Receive data Register for channel 1 N
0x8082_004C I2SRX1Rt Right Receive data Register for channel 1 N
0x8082_0050 12SRX2Lft Left Receive data Register for channel 2 N
0x8082_0054 I2SRX2Rt Right Receive data Register for channel 2 N
0x8082_0058 I2SRXLinCtriData Receive Line Control Register N
0x8082_005C I2SRXCtrl Receive Control Register N
0x8082_0060 I2SRXWrdLen Receive Word Length N
0x8082_0064 I2SRX0EN RXO0 Channel Enable N
0x8082_0068 I2SRX1En RX1 Channel Enable N
0x8082_006C I2SRX2En RX2 Channel Enable N
0x8083_XXXX SECURITY Security Registers
0x8083_2714 ExtensionID Contains the Part ID for EP93XX devices N

Contact Cirrus Logic for details regarding implementation of device Security measures.
0x8084_XXXX GPIO GPIO Control Registers
0x8084_0000 PADR GPIO Port A Data Register N
0x8084_0004 PBDR GPIO Port B Data Register N
0x8084_0008 PCDR GPIO Port C Data Register N
0x8084_000C PDDR GPIO Port D Data Register N
0x8084_0010 PADDR GPIO Port A Data Direction Register N
0x8084_0014 PBDDR GPIO Port B Data Direction Register N
0x8084_0018 PCDDR GPIO Port C Data Direction Register N
0x8084_001C PDDDR GPIO Port D Data Direction Register N
0x8084_0020 PEDR GPIO Port E Data Register N
0x8084_0024 PEDDR GPIO Port E Data Direction Register N
0x8084_0028 - 0x8084_002C Reserved
0x8084_0030 PFDR GPIO Port F Data Register N
0x8084_0034 PFDDR GPIO Port F Data Direction Register N
0x8084_0038 PGDR GPIO Port G Data Register N
0x8084_003C PGDDR GPIO Port G Data Direction Register N
0x8084_0040 PHDR GPIO Port H Data Register N
0x8084_0044 PHDDR GPIO Port H Data Direction Register N
0x8084_0048 Reserved
0x8084_004C GPIOFIntTypel tIE(‘e:)inj;esr(;:folgg’r(:IIli:ng type, level or edge, of interrupt generated by N
0x8084_0050 GPIOFINtType2 gR:r?;sr;(iggobn;rglcl)irr:ngolarity, high/low or rising/falling, of interrupt N
0x8084_0054 GPIOFEOI GPIO Port F End Of Interrupt Register N
0x8084_0058 GPIOFIntEn Interrupt Enable for Port F N
2-26 DS785UM1

Copyright 2007 Cirrus Logic

I

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

Table 2-8. Internal Register Map (Continued)

. . — W
Address Register Name Register Description LS:JCK
0x8084 005C INtStsE _GPIO Interrupt Statu_s Register. Contains status of Port F N
- interrupts after masking.
0x8084_0060 RawlntStsE Raw Interrupt Statu_s Register. Contains raw interrupt status of N
Port F before masking.
0x8084_0064 GPIOFDB GPIO F Debounce Register N
0x8084_0068 - 0x8084_008C Reserved
0x8084 0090 GPIOAINtTypel Regl;ter controlling type, level or edge, of interrupt generated by N
- the pins of Port A
0x8084_0094 GPIOAINtType2 Register controlling polarity, high/low or rising/falling, of interrupt N
generated by Port A
0x8084_0098 GPIOAEOI GPIO Port A End Of Interrupt Register N
0x8084_009C GPIOAINntEn Controlling the generation of interrupts by the pins of Port A N
0x8084 00AO INtStsA _GPIO Interrupt Statu_s Register. Contains status of Port A N
- interrupts after masking.
0x8084_00A4 RawlntStsA Raw Interrupt Statu§ Register. Contains raw interrupt status of N
Port A before masking.
0x8084_00A8 GPIOADB GPIO A Debounce Register N
0x8084_00AC GPIOBINtTypel Reglgter controlling type, level or edge, of interrupt generated by N
the pins of Port B
0x8084_00BO GPIOBINtType2 Register controlling polarity, high/low or rising/falling, of interrupt N
generated by Port B
0x8084_00B4 GPIOBEOI GPIO Port B End Of Interrupt Register N
0x8084_00B8 GPIOBIntEn Controlling the generation of interrupts by the pins of Port B N
0x8084_00BC IntStsB _GPIO Interrupt Statu_s Register. Contains status of Port B N
interrupts after masking.
0x8084_00CO RawIntStsB Raw Interrupt Statu; Register. Contains raw interrupt status of N
Port B before masking.
0x8084_00C4 GPIOBDB GPIO B Debounce Register N
. EEPROM pin drive type control. Defines the driver type for the
0x8084_00C8 EEDrive EECLK and EEDAT pins N
0x8088_xxxx AC'97 AC’97 Control Registers
0x8088_0000 AC97DR1 Data read or written from/to FIFO1 N
0x8088_0004 AC97RXCR1 Control Register for receive N
0x8088_0008 AC97TXCR1 Control Register for transmit N
0x8088_000C AC97SR1 Status Register N
0x8088_0010 AC97RISR1 Raw interrupt status Register N
0x8088_0014 AC97ISR1 Interrupt Status N
0x8088_0018 AC97IE1 Interrupt Enable N
0x8088_001C Reserved
0x8088_0020 AC97DR2 Data read or written from/to FIFO2 N
0x8088_0024 AC97RXCR2 Control Register for receive N
0x8088_0028 AC97TXCR2 Control Register for transmit N
0x8088_002C AC97SR2 Status Register N
0x8088_0030 AC97RISR2 Raw interrupt status Register N
DS785UM1 2-27

Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

il

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
0x8088_0034 AC97ISR2 Interrupt Status N
0x8088_0038 AC97IE2 Interrupt Enable N
0x8088_003C Reserved
0x8088_0040 AC97DR3 Data read or written from/to FIFO3 N
0x8088_0044 AC97RXCR3 Control Register for receive N
0x8088_0048 AC97TXCR3 Control Register for transmit N
0x8088_004C AC97SR3 Status Register N
0x8088_0050 AC97RISR3 Raw interrupt status Register N
0x8088_0054 AC97ISR3 Interrupt Status N
0x8088_0058 AC97IE3 Interrupt Enable N
0x8088_005C Reserved
0x8088_0060 AC97DR4 Data read or written from/to FIFO4 N
0x8088_0064 AC97RXCR4 Control Register for receive N
0x8088_0068 AC97TXCR4 Control Register for transmit N
0x8088_006C AC97SR4 Status Register N
0x8088_0070 AC97RISR4 Raw interrupt status Register N
0x8088_0074 AC97ISR4 Interrupt Status N
0x8088_0078 AC97IE4 Interrupt Enable N
0x8088_007C Reserved
0x8088_0080 AC97S1Data Data received/transmitted on SLOT1 N
0x8088_0084 AC97S2Data Data received/transmitted on SLOT2 N
0x8088_0088 AC97S12Data Data received/transmitted on SLOT12 N
0x8088_008C AC97RGIS Raw Global interrupt status Register N
0x8088_0090 AC97GIS Global interrupt status Register N
0x8088_0094 AC97IM Interrupt mask Register N
0x8088_0098 AC97EOI End Of Interrupt Register N
0x8088_009C AC97GCR Main Control Register N
0x8088_00A0 AC97Reset RESET control Register N
0x8088_00A4 AC97SYNC SYNC control Register N
0x8088_00A8 AC97GCIS Global channel FIFO interrupt status Register N
OX808A_XXXX SPI SPI Control Registers
0x808A_0000 SSP1CRO SPI1 Control Register 0 N
0x808A_0004 SSP1CR1 SPI1 Control Register 1 N
0x808A_0008 SSP1DR SPI1 Data Register N
0x808A_000C SSP1SR SPI1 Status Register N
0x808A_0010 SSP1CPSR SPI1 Clock Prescale Register N
0x808A_0014 SSP1IIR SPI1 Interrupt/Interrupt Clear Register N
0x808B_xXXxx IrDA IrDA Control Registers
0x808B_0000 IrEnable IrDA Interface Enable N
0x808B_0004 IrCtrl IrDA Control Register N

2-28 DS785UM1

Copyright 2007 Cirrus Logic

I

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
0x808B_0008 IrAdrMatchVal IrDA Address Match Value Register N
0x808B_000C IrFlag IrDA Flag Register N
0x808B_0010 IrData IrDA Transmit and Receive FIFOs N
0x808B_0014 IrDataTail IrDA Data Tail Register N
0x808B_0018 - 0x808B_001C Reserved
0x808B_0020 IrRIB IrDA Receive Information Buffer N
0x808B_0024 IrTRO IrDA Test Register, Received byte count N
0x808B_0088 MIIR IrDA MIR Interrupt Register N
0x808B_008C - 0x808B_018C Reserved
0xB808C_xxxx UART1 UART1 Control Registers
0x808C_0000 UART1Data UART1 Data Register N
0x808C_0004 UART1RXSts UARTL1 Receive Status Register N
0x808C_0008 UARTL1LinCtrlHigh UARTL1 Line Control Register - High Byte N
0x808C_000C UART1LinCtrIMid UARTL1 Line Control Register - Middle Byte N
0x808C_0010 UARTL1LinCtrlLow UART1 Line Control Register - Low Byte N
0x808C_0014 UARTI1Ctrl UART1 Control Register N
0x808C_0018 UART1Flag UART1 Flag Register N
0x808C_001C UART1IntIDIntClIr UARTL Interrupt ID and Interrupt Clear Register N
0x808C_0020 Reserved
0x808C_0028 UART1DMACIHr UART1 DMA Control Register N
0x808C_0100 UART1ModemcCitrl UART1 Modem Control Register N
0x808C_0104 UART1ModemsSts UART1 Modem Status Register N
0x808C_0114 - 0x808C_0208 Reserved
0x808C_020C UART1HDLCCtrl UART1 HDLC Control Register N
0x808C_0210 UART1HDLCAddMtchVal UART1 HDLC Address Match Value N
0x808C_0214 UART1HDLCAddMask UART1 HDLC Address Mask N
0x808C_0218 UART1HDLCRXInfoBuf UART1 HDLC Receive Information Buffer N
0x808C_021C UART1HDLCSts UART1 HDLC Status Register N
0x808D_XxXXX UART2 UART?2 Control Registers
0x808D_0000 UART2Data UART2 Data Register N
0x808D_0004 UART2RXSts UART2 Receive Status Register N
0x808D_0008 UART2LinCtrIHigh UART2 Line Control Register - High Byte N
0x808D_000C UART2LinCtrIMid UART2 Line Control Register - Middle Byte N
0x808D_0010 UART2LinCtrlLow UART2 Line Control Register - Low Byte N
0x808D_0014 UART2Ctrl UART2 Control Register N
0x808D_0018 UART2Flag UART2 Flag Register N
0x808D_001C UART2IntIDIntClIr UART2 Interrupt ID and Interrupt Clear Register N
0x808D_0020 UART2IrLowPwrCntr UART2 IrDA Low-power Counter Register N
0x808D_0028 UART2DMACTrI UART2 DMA Control Register N

DS785UM1 2-29

Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)

EP93xx User’s Guide

il

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
OxBO8E_xxxx UART3 UART3 Control Registers
0x808E_0000 UART3Data UARTS3 Data Register N
0x808E_0004 UART3RXSts UART3 Receive Status Register N
0x808E_0008 UART3LinCtrIHigh UARTS3 Line Control Register - High Byte N
0x808E_000C UART3LinCtrIMid UARTS3 Line Control Register - Middle Byte N
0x808E_0010 UARTS3LinCtrlLow UARTS3 Line Control Register - Low Byte N
0x808E_0014 UART3Ctrl UART3 Control Register N
0x808E_0018 UART3Flag UARTS3 Flag Register N
0x808E_001C UART3IntIDIntClIr UARTS Interrupt ID and Interrupt Clear Register N
0x808E_0020 UART3IrLowPwrCntr UARTS3 IrDA Low-power Counter Register N
0x808E_0028 UART3DMACTrI UART3 DMA Control Register N
0x808E_0100 UART3ModemcCirl UART3 Modem Control Register N
0x808E_0104 UART3ModemSts UART3 Modem Status Register N
0x808E_0108 UART3ModemTstCtrl UART3 Modem Support Test Control Register N
0x808E_0114 - 0x808E_0208 Reserved
0x808E_020C UART3HDLCCtrl UART3 HDLC Control Register N
0x808E_0210 UART3HDLCAddMtchVal UART3 HDLC Address Match Value N
0x808E_0214 UART3HDLCAddMask UART3 HDLC Address Mask N
0x808E_0218 UART3HDLCRXInfoBuf UART3 HDLC Receive Information Buffer N
0x808E_021C UART3HDLCSts UART3 HDLC Status Register N
0x808F _xxxx KEY Key Matrix Control Registers
0x808F_0000 KeyScanlnit Key Matrix Scan Initialize N
0x808F_0004 KeyDiagnostic Key Matrix Diagnostic N
0x808F_0008 KeyRegister Key Matrix Key Register N
0x8090_XXXX TOUCH Touchscreen Control Registers
0x8090_0000 TSSetup Touchscreen Setup Register N
0x8090_0004 TSXYMaxMin Touchscreen X/Y Max Min Register N
0x8090_0008 TSXYResult Touchscreen X/Y Result Register N
0x8090_000C TSDischarge Touchscreen Switch Matrix Discharge Control Register Y
0x8090_0010 TSXSample Touchscreen Switch Matrix X-Sample Control Register Y
0x8090_0014 TSYSample Touchscreen Switch Matrix Y-Sample Control Register Y
0x8090_0018 TSDirect Touchscreen Switch Matrix Direct Control Register Y
0x8090_001C TSDetect Touchscreen Direct Control Touch Detect Register N
0x8090_0020 TSSWLock Touchscreen Software Lock Register N
0x8090_0024 TSSetup2 Touchscreen Setup Register 2 N
0x8091_xxxx PWM PWM Control Registers
0x8091_0000 PWMOTermCnt PWMO Terminal Count N
0x8091_0004 PWMODutyCycle PWMO Duty Cycle N
0x8091_0008 PWMOEN PWMO Enable N
2-30 DS785UM1

Copyright 2007 Cirrus Logic

I

ARMO920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

Table 2-8. Internal Register Map (Continued)

Address Register Name Register Description L%\::Vk
0x8091_000C PWMOInvert PWMO Invert N
0x8091_0010 PWMOSync PWMO Synchronous N
0x8091_0020 PWM1_TC PWM1 Terminal Count N
0x8091_0024 PWM1_DC PWM1 Duty Cycle N
0x8091_0028 PWM1_EN PWM1 Enable N
0x8091_002C PWM1_INV PWM1 Invert N
0x8091_0030 PWM1_SYNC PWM1 Synchronous N
0X8092_XxXXX RTC RTC Control Registers
0x8092_0000 RTCData RTC Data Register N
0x8092_0004 RTCMatch RTC Match Register N
0x8092_0008 RTCsSts RTC Status/EOI Register N
0x8092_000C RTCLoad RTC Load Register N
0x8092_0010 RTCCtrl RTC Control Register N
0x8092_0098 RTCSWComp RTC Software Compensation N
0X8093_XxXxX Syscon System Control Registers
0x8093_0000 PwrSts Power/state control state N
0x8093_0004 PwrCnt Clock/debug control status N
0x8093_0008 Halt Enter IDLE mode N
0x8093_000C Stby Enter Standby mode N
0x8093_0018 TEOI Write to clear Watchdog interrupt N
0x8093_001C STFCIr Write to clear Nbflg, rstflg, pfflg and cldflg N
0x8093_0020 ClkSetl Clock speed control 1 N
0x8093_0024 ClkSet2 Clock speed control 2 N
0x8093_0040 ScratchReg0 Scratch Register O N
0x8093_0044 ScratchRegl Scratch Register 1 N
0x8093_0050 APBWait APB wait N
0x8093_0054 BusMstrArb Bus Master Arbitration N
0x8093_0058 BootModeClr Boot Mode Clear Register N
0x8093_0080 DeviceCfg Device configuration Y
0x8093_0084 VidCIkDiv Video Clock Divider Y
0x8093_0088 MIRCIKDiv MIR Clock Divider. Configures video clock for the raster engine. | Y
0x8093_008C I12SCIkDiv 12S Audio Clock Divider
0x8093_0090 KeyTchCIkDiv Keyscan/Touch Clock Divider Y
0x8093_0094 ChiplD Chip ID Register Y
0x8093_009C SysCfg System Configuration Y
0x8093_00CO0 SysSWLock Syscon Software Lock Register N
0x8094_XXXX WATCHDOG Watchdog Control Register
0x8094_0000 Watchdog Watchdog Timer Register N
0x8094_0004 WDStatus Watchdog Status Register N

DS785UM1 2-31

Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)

EP93xx User’s Guide

Address

Table 2-8. Internal Register Map (Continued)

Register Name

il

Register Description

SW
Lock

0x8095_0000 - Ox8FFF_FFFF

Reserved

2-32

Copyright 2007 Cirrus Logic

DS785UM1

Chapter 3

MaverickCrunch Co-Processor

3.1 Introduction

Note:This chapter applies only to the EP9302, EP9307, EP9312, and EP9315 processors.

The MaverickCrunch co-processor accelerates IEEE-754 floating point arithmetic and 32-bit
and 64-bit fixed point arithmetic operations. It provides an integer multiply-accumulate (MAC)
that is considerably faster than the native MAC implementation in the ARM920T. The
MaverickCrunch co-processor significantly accelerates the arithmetic processing required to
encode/decode digital audio formats.

The MaverickCrunch co-processor uses the standard ARM920T co-processor interface,
sharing its memory interface and instruction stream. All MaverickCrunch operations are
simply ARM920T co-processor instructions. The co-processor handles all internal inter-
instruction dependencies by using internal data forwarding and inserting wait states.

3.1.1 Features

Key features include:
« |[EEE-754 single and double precision floating point
» 32/64-bit integer
e Add/multiply/compare
* Integer Multiply-Accumulate (MAC) 32-bit input with 72-bit accumulate
* Integer Shifts
« Floating point to/from integer conversion
e Sixteen 64-bit registers

e Four 72-bit accumulators

3.1.2 Operational Overview

The MaverickCrunch co-processor is a true ARM920T co-processor. It communicates with
the ARM920T via the co-processor bus and shares the instruction stream and memory
interface of the ARM920T. It runs at the ARM920T core clock frequency (either FCLK or
BCLK).

The co-processor supports four primary data formats:

DS785UM1 3-1
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

» |EEE-754 single precision floating point (24-bit signed significand and 8-bit biased
exponent)

« |[EEE-754 double precision floating point (53-bit signed significand and 11-bit biased
exponent)

e 32-bit integer
e 64-bit integer

The co-processor performs the following standard operations on all four supported data
formats:

* addition

subtraction
* multiplication
 absolute value
e negation
« logical left/right shift
e comparison
In addition, for 32-bit integers, the co-processor provides:
« multiply-accumulate (MAC)
« multiply-subtract (MSB)

Any of the four data formats may be converted to another of the formats. All four data types
may be loaded directly from and stored directly to memory via the ARM920T co-processor
interface. They may also be moved to or from ARM920T registers.

The MaverickCrunch co-processor also provides a 72-bit extended precision integer format
that is used only in the accumulators. The accumulators may also be used in MAC and MSB
operations.

IEEE-754 rounding and exceptions are also provided. Four rounding modes for floating point
operations are:

e round to nearest
e round toward +oo
» round toward -0
e round toward O

Exceptions include:
 Invalid operator
e Overflow

* Underflow

3-2 DS785UM1
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

¢ |nexact

Note that the division by zero exception is not supported as the MaverickCrunch co-
processor does not provide division or square root.

3.1.3 Pipelines and Latency

There are two primary pipelines within the MaverickCrunch co-processor. One handles all
communication with the ARM920T, while the other, the “data path” pipeline, handles all
arithmetic operations (this one actually operates at one half the MaverickCrunch co-
processor clock frequency).

The data path pipeline may run synchronously or asynchronously with respect to the ARM
instruction pipeline. If run asynchronously, data path computation is decoupled from the ARM,
allowing high throughput, though arithmetic exceptions are not synchronous. If run
synchronously, exceptions are synchronous, but throughput suffers.

Assuming no inter-instruction dependencies causing pipeline stalls, arithmetic instructions
can produce a new result every two ARM920T clocks, which is a maximum throughput of one
data path instruction per eight ARM920T clocks. The only exception is 64-bit multiplies
(CFMULD or CFMULG64), which require six extra ARM920T clocks to produce their result,
which is maximum throughput of eight ARM920T clocks per instruction.

The normal latency for an arithmetic instruction is approximately nine ARM920T clocks, from
initial decode to the time the result is written to the register file. A 64-bit multiply requires 15
clocks.

3.1.4 Data Registers

The MaverickCrunch co-processor contains these registers:
« Sixteen 64-bit general purpose registers, c0 through c15
e Four 72-bit accumulators, a0 through a3
« One status and control register, DSPSC

A single precision floating point value is stored in the upper 32 bits of a 64-bit register and
must be explicitly promoted to double precision to be used in double precision calculations:

Opcode
63 62 55 32 31 0
Sign | Exponent Significand not used
DS785UM1 3-3

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

e
—
—
—
—
—
A double precision value requires all 64 bits:
Opcode
63 62 52 51 0
Sign Exponent Significand

A 32-bit integer is stored in the lower 32 bits of a 64-bit register and sign-extended when
written, provided the Ul bit in the DSPSC is clear:

Opcode

63 32 31 30 0

Sign Extension Sign Data

Hence, 32-bit integers may be used directly in calculations with 64-bit integers, which are
stored as:

Opcode

63 62 0

Sign Data

3.1.5 Integer Saturation Arithmetic

By default, the co-processor treats all 32-bit and 64-bit integers as signed values and
automatically saturates the results of most integer operations and all conversions from
floating-point to integer format. Instructions that may saturate their results are:

» CFADD32 and CFADD64

» CFSUB32 and CFSUB64

» CFMUL32 and CFMUL64

* CFMAC32 and CFMSC32

* CFCVTS32 and CFCVTD32

* CFTRUNCS32 and CFTRUNCD32

This behavior, however, can be altered by setting the Ul bit and the ISAT bit in the DSPSC.
With the Ul bit clear (the default), 32-bit and 64-bit integer operations are treated as signed
with respect to overflow and underflow detection and saturation as well as compare
operations. Setting the Ul bit causes the MaverickCrunch co-processor to treat all 32-bit and
64-bit integer operations as unsigned with respect to overflow, underflow, saturation, and
comparison.

3-4 DS785UM1
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

!

———— Y
~——

With saturation enabled (the default), the maximum representable value is returned on
overflow and the minimum representable value is returned on underflow. The maximum and
minimum values depends on the operand size and whether the Ul bit in the DSPSC is set, as 3
shown in Table 3-1.

Table 3-1. Saturation for Non-accumulator Instructions

. 32-bit OX7FFF_FFFF
Signed - —
64-bit Ox7FFF_FFFF_FFFF_FFFF
Overflow -
. 32-bit OXFFFF_FFFF
Unsigned - —
64-bit OXFFFF_FFFF_FFFF_FFFF
. 32-bit 0x8000_0000
Signed -
64-bit 0x8000_0000_0000_0000
Underflow -
. 32-bit 0x0000_0000
Unsigned -
64-bit 0x0000_0000_0000_0000

To disable saturation on overflow and underflow, set the ISAT bit in the DSPSC.

Normally, arithmetic instructions that write to an accumulator do not saturate their results on
overflow or underflow. These instructions are:

» CFMADD32 and CFMSUB32
» CFMADDA32 and CFMSUBA32

However, the SAT[1:0] bits in the DSPSC may be set to select one of several kinds of
saturation to occur on the results of these instructions before they are written to an
accumulator.

Note: This action does not affect the operation of instructions that do not write their result to an
accumulator.

Enabling saturation also modifies the representation of data stored in the accumulator. The
three supported bit formats and their maximum and minimum saturation values are shown in

Table 3-2.
Table 3-2. Accumulator Bit Formats for Saturation
Bit Format Maximum Value (hex) Minimum Value (hex)
2.62 64 bits - 0X3FFF FFFF FFFF FFFF 64 bits - 0xC000 0000 0000 0000
1.63 64 bits - 0X7FFF FFFF FFFF FFFF 64 bits - 0x8000 0000 0000 0000
1.31 32 bits - OX7FFF FFFF 32 bits - 0x8000 0000

The bit format x.yy represents x binary bits before the decimal point and yy fraction bits after
the decimal point, as for example, when the bit format 2.62 has two binary bits and sixty-two
fraction bits. Though these formats utilize either 32- or 64-bit integers, the accumulators are

DS785UM1 3-5
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

72 bits wide. If the accumulator saturation mode is disabled (the default), the accumulator bit

fields are assigned as below for a 2's complement integer.

71 70 0

Sign Data

If the saturation mode 1.63 is selected, the bit field assignments are:

Opcode
71 64 63 62 0
Sign Extension | Sign Data

If the saturation mode 1.31 is selected, the bit field assignments are:

Opcode
71 64 63 62 32 31 0
Sign Extension | Sign Data Unused

If the saturation mode 2.62 is selected, the bit field assignments are:

Opcode
71 63 62 61 0
Sign Extension | Sign Data

3.1.6 Comparisons

The Crunch co-processor provides four compare operations:
* CFCMP32 - 32-bit integer
 CFCMP64 - 64-bit integer
« CFCMPS - single floating point
« CFCMPD - double floating point

The DSPSC register bit UINT affects the operation of integer comparisons. If clear, integers
are treated as signed values, and if set, they are treated as unsigned. DSPSC.UINT has no
effect on floating point comparisons.

All compare operations update both the FCC[1:0] bits in the DSPSC register and an ARM
register. Though any of the ARM general purpose registers rO through r14 may be specified
as the destination, specifying r15 actually updates the CPSR flag bits NZCV. This permits the

3-6 DS785UM1
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

condition code field of any subsequent ARM instruction to gate the execution of that
instruction based on the result of a Crunch compare operation.

Table 3-3 illustrates the legal relationships and, for each one, the values written to the FCC
bits and the NZCV flags. The FCC bits and the NZCV flags provide the same information, but
in different ways and in different places. Their values depend only on the relationship
between the operands, regardless of whether the operands are considered signed integer,
unsigned integer, or floating point. The unordered relationship can only apply to floating point
operands.

Table 3-3. Comparison Relationships and Their Results

Relationship FCC[1:0] NCzV
A=B 00 0100
A<B 01 1000
A>B 10 1001

Unordered 11 0000

The NZCV flags are not computed exactly as with integer comparisons using the ARM CMP
instruction. Hence, when examining the result of Crunch comparisons, the condition codes
field of ARM instructions should be interpreted differently, as shown in Table 3-4. The same
six condition codes should be used whether the comparison operands were signed integers,
unsigned integers, or floating point. No other condition codes are meaningful.

Table 3-4. ARM® Condition Codes and Crunch Compare Results

Condition Code

Relationship ARM Meaning Crunch Meaning

Opcode[31:28] | Mnemonic
0000 EQ A=8B Equal Equal
0001 NE A#B Not Equal Not Equal
1010 GE A=2B Signed Greater Than or Equal | Greater Than or Equal
1011 LT A<B Signed Less Than Less Than
1100 GT A>B Signed Greater Than Greater Than
1101 LE A<B Signed Less Than or Equal Less Than or Equal
1110 AL N/A Always (unconditional) Always (unconditional)
1111 NV N/A Never Never
DS785UM1 3-7

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

3.2 Programming Examples

The examples below show two algorithms, each implemented using the standard
programming languages and the MaverickCrunch instruction set.

3.2.1 Example 1

Section 3.2.1.2, Section 3.2.1.3, and Section 3.2.1.4 show three coding samples performing
the same operation. Section 3.2.1.1 shows common setup code used by all three samples.
Section 3.2.1.2 shows the program implemented in C code. Section 3.2.1.3 uses ARM
assembly language, accessing the MaverickCrunch with ARM co-processor instructions.
Section 3.2.1.4 uses MaverickCrunch assembly language instructions.

3.2.1.1 Setup Code

1dr ro, =80930000 ; Syscon base address
mov rl, #0xaa ; SW lock key
str. rl, [r0, #0xcO0] ; unlock by writing key to SysSWLock
register
ldr rl, [rO, #0x80] ; Turn on CPENA bit in DEVCFG register
to
orr rl, rl, #0x00800000 ; enable MaverickCrunch co-processor
str rl, [rO0, #0x80] ;
3.2.1.2 C Code

int num = 0;

for (num=0; num < 10; num++)

num = num * 5;

3.2.1.3 Accessing MaverickCrunch with ARM Co-Processor Instructions

ldc p5, cO,
ldc p5, cl,
ldc p5, c2,
ldc p5, c3,
loop

cdp p5, 1,
cdp p5, 3,
mrc p5, 0,
blt loop

stc p5, cO,

[rO, #0x0]
[rO, #0x4]
[rO, #0x8]
[rO0, #0xc]
c0, c0, c3, O
c0, c0, c2, 6
rl5 c0, cl, 4
[rO0, #0x0]

7
7

7

7

data
data
data
data

c0 <=

c0 <=

section
section
section

section

cO * 5
co - 1

c0 < 10 ?

no,

i yes

preloaded
preloaded
preloaded
preloaded

store result

3.2.1.4 MaverickCrunch Assembly Language Instructions

3-8

cfldr32
cfldr32
cfldr32
cfldr32

co,
cl,
c2,
c3,

[rO0, #0x0]
[rO, #0x4]
[rO, #0x8]
[rO, #0xc]

data
data
data
data

section
section
section

section

Copyright 2007 Cirrus Logic

preloaded
preloaded
preloaded
preloaded

with
with
with
with

with
with
with
with

0x0
Oxa
0x1
0x5

0x0
Oxa
0x1
0x5

(w numl!)

(“num”)

DS785UM1

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

loop
cfmul32 c0, c0, c3 ; c0 <= c0 * 5
cfsub32 c0, c0, c2 ; ¢c0 <= c0 - 1
cfcmp32 rl5, c0, cl ; c0 < 10 ?
blt loop ; yes
cfstr32 c0, [r0, #0x0] ; no, store result

3.2.2 Example 2

The following function performs an FIR filter on the given input stream. The variable “data”
points to an array of floating point values to be filtered, “n” is the number of samples for which
the filter should be applied, “filter” is the FIR filter to be applied, and “m” is the number of taps
in the FIR filter. The “data” array must be “n + m - 1” samples in length, and “n” samples will
be produced.

3.2.2.1 C Code

void
ComputeFIR (float *data, int n, float *filter, int m)
{

int 1, 3J;

float sum;

for(i = 0; 1 < n; i++)
{
sum = 0;
for(j = 0; j < m; j++)

{

sum += datali + j] * filterI[j];

data[i] = sum;

3.2.2.2 MaverickCrunch Assembly Language Instructions

ComputeFIR
mov rl, rl, 1lsl #2 ; n *= 4
mov r3, r3, 1lsl #2 ; m *= 4
outer loop
mov rl2, r3 ; J =m * 4
cfsub64 c0, c0, cO ; int _sum = 0;
cfevt32s c0, cO0 ; sum = float (int_sum) ;
inner loop
cfldrs c¢2, [r0], #4 ; c2 = *data++;
DS785UM1 3-9

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

T —
—r
——
—r
—
——
cfldrs ¢3, [r2], #4 ; €3 = *filter++;
cfmuls «c¢1, c2, c3 ; cl = c2 * c3;
cfadds «¢0, cO0, cl ; sum += cl;
subs rl2a, rl2, #4 ;] -= 4;
bne inner loop ; branch if j != 0
sub r0, r3 ; data -=m * 4;
cfstrs c¢0, [r0], #4 ; *data++ = sum;
sub r2, r3 ; filter -=m * 4;
subs rl, rl, #4 ; n o-= 4;
bne outer loop ; branch if n != 0
mov pc, 1lr ; return to caller
3.3 DSPSC Register
63 62 61 60 ‘ 59 58 57 56 55 54 53 52 ‘ 51 50 49 48
INST
47 46 45 44 ‘ 43 42 41 40 39 38 37 36 ‘ 35 34 33 32
INST
31 30 29 28 ‘ 27 26 25 24 23 22 21 20 19 18 17 16
DAID HVID RSVD ISAT ul INT | AEXC SAT[1:0] FCCI[1:0]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
V | FWDEN | Invalid | Denorm RM[1:0] IXE | UFE | OFE | RSVD | IOE IX UF OF RSVD 10
Default:

0x0000_0000_0000_0000

Definition:
MaverickCrunch Status and Control Register. Accessed only via the
MaverickCrunch instruction set. All bits, including status bits, are both
readable and writable. This register should generally be written only using a
read-modify-write sequence.

Bit Descriptions:
RSVD: Reserved. Unknown During Read.
INST: Exception Instruction. Whenever an unmasked exception
occurs, these 32 bits are loaded with the instruction that

caused the exception. Hence, this contains the instruction
that caused the most recent unmasked exception.

3-10 DS785UM1
Copyright 2007 Cirrus Logic

I

DS785UM1

DAID:

HVID:

ISAT.

uUl:

INT:

AEXC:

MaverickCrunch Co-Processor
EP93xx User’s Guide

MaverickCrunch Architecture ID. This read-only value is
incremented for each revision of the overall
MaverickCrunch co-processor architecture. These bits are
“000” for this revision.

Hardware Version ID. This read-only value is incremented
each time the hardware implementation of the architecture
named by DAID[2:0] is changed, typically done in
response to bugs. These bits are “000” for this version.

Integer Saturate Enable. This bit controls whether non-
accumulator integer operations, both signed and
unsigned, will saturate on overflow or underflow:

0 = Saturation enabled

1 = Saturation disabled

Unsigned Integer Enable. This bit controls whether non-
accumulator integer operations treat their operands as
signed or unsigned. It also determines the saturation value
if the ISAT bit is clear:

0 = Signed integers

1 = Unsigned integers

MaverickCrunch Interrupt. This bit indicates whether an
interrupt has occurred. This bit is identical to the external
interrupt signal:

0 = No interrupt signaled

1 = Interrupt signaled

Asynchronous Exception Enable. This bit determines
whether exceptions generated by the co-processor are
signaled synchronously or asynchronously to the
ARM920T. Synchronous exceptions force all data path
instructions to be serialized and to stall the ARM920T. If
exceptions are asynchronous, they are signalled by
assertion of the DSPINT output of the co-processor, which
may interrupt the ARM920T via the interrupt controller.
Enabling asynchronous exceptions does provide a
performance improvement, but makes it difficult for an
interrupt handler to determine the co-processor instruction
that caused the exception because the address of the
instruction is not preserved. Exceptions may be
individually enabled by other bits in this register (IXE, UFE,
OFE, and IOE). This bit has no effect if no exceptions are
enabled:

0 = Exceptions are synchronous

1 = Exceptions are asynchronous

3-11

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

SAT[1:0]:

FCCJ1:0]:

FWDEN:

Invalid:

Denorm:

RM[1:0]:

IXE:

3-12

il

Accumulator saturation mode select. These bits are set to
select the saturation mode or to disable saturation for
accumulator operations:

0X = Saturation disabled for accumulator operations

10 = Accumulator saturation enabled, bit formats 1.63 and
1.31

11 = Accumulator saturation enabled, bit format 2.62

FCC flags out of comparator:

00 = Operand A equals operand B

01 = Operand A less than operand B

10 = Operand A greater than operand B

11 = Operands are unordered (at least one is NaN)

Overflow Flag. Indicates the overflow status of the
previous integer operation:

0 = No overflow

1 = Overflow

Forwarding Enable. This bit determines whether data path
writeback results are forwarded to the data path operand
fetch stage and to the STC/MRC execute stage. When
pipeline interlocks occur due to dependencies of data
path, STC, and MRC instruction source operands on data
path results, setting this bit will improve instruction
throughput:

0 = Forwarding not enabled

1 = Forwarding enabled

0 = No invalid operations detected
1 = An invalid operation was performed

0 = No denormalized numbers have been supplied as
instruction operands

1 = A denormalized number has been supplied as an
instruction operand

Rounding Mode. Selects IEEE 754 rounding mode:
0 0 = Round to nearest

0 1 = Round toward 0

1 0 = Round to -oo

11 = Round to +oo

Inexact Trap Enable. Enables/disables software trapping
for IEEE 754 inexact exceptions:

0 = Disable software trapping for inexact exceptions

1 = Enable software trapping for inexact exceptions

DS785UM1

Copyright 2007 Cirrus Logic

I

UFE:

OFE:

IOE:

UF:

OF:

DS785UM1

MaverickCrunch Co-Processor
EP93xx User’s Guide

Underflow Trap Enable. Enables/disables software
trapping for IEEE 754 underflow exceptions:

0 = Disable software trapping for underflow exceptions

1 = Enable software trapping for underflow exceptions

Overflow Trap Enable. Enables/disables software trapping
for IEEE 754 overflow exceptions:

0 = Disable software trapping for overflow exceptions

1 = Enable software trapping for overflow exceptions

Invalid Operator Trap Enable. Enables/disables software
trapping for IEEE 754 invalid operator exceptions:

0 = Disable software trapping for invalid operator
exceptions

1 = Enable software trapping for invalid operator
exceptions

Inexact. Set when an IEEE 754 inexact exception occurs,
regardless of whether or not software trapping for inexact
exceptions is enabled. Writing a “0” to this position clears
the status bit.

0 = No inexact exception detected

1 = Inexact exception detected

Underflow. Set when an IEEE 754 underflow exception
occurs, regardless of whether or not software trapping for
underflow exceptions is enabled. Writing a “0” to this
position clears the status bit.

0 = No underflow exception detected

1 = Underflow exception detected

Overflow. Set when an IEEE 754 overflow exception
occurs, regardless of whether or not software trapping for
overflow exceptions is enabled. Writing a “0” to this
position clears the status bit.

0 = No overflow exception detected

1 = Overflow exception detected

Invalid Operator. Set when an IEEE 754 invalid operator
exception occurs, regardless of whether or not software
trapping for invalid operator exceptions is enabled. Writing
a “0” to this position clears the status bit.

0 = No invalid operator exception detected

1 = Invalid operator exception detected

3-13

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

3.4 ARM Co-Processor Instruction Format

The ARM VAT architecture defines five ARM co-processor instructions:

* CDP - Co-processor Data Processing

e LDC - Load Co-processor

e STC - Store Co-processor

* MCR - Move to Co-processor Register from ARM Register
« MRC - Move to ARM Register from Co-processor Register

The co-processor instruction assembler notation is found in the ARM programming manuals
or the Quick Reference Card. (For additional information, see Preface, “Reference
Documents” on page P-3) Formats for the above instructions and variants of these
instructions are detailed below.

CDP (Co-Processor Data Processing) Instruction Format

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3
cond 1110 opcodel CRn CRd cp num opcode2 | O CRm
LDC (Load Co-Processor) Instruction Format
31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7
cond 110 PIUIN|W|1 Rn CRd cp num offset
STC (Store Co-Processor) Instruction Format
31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7
cond 110 PI{UIN|W|O Rn CRd cp num offset
MCR (Move to Co-Processor from ARM Register) Instruction Format
31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3
cond 1110 opcodel CRn Rd cp num opcode2 | 1 CRm
MRC (Move to ARM Register from Co-Processor) Instruction Format
31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3
cond 1110 opcodel CRn Rd cp num opcode2 | 1 CRm
3-14 DS785UM1

Copyright 2007 Cirrus Logic

I

MaverickCrunch Co-Processor
EP93xx User’s Guide

Table 3-5 shows the condition codes, which are bits [31:28] for each instruction format.
Table 3-5. Condition Code Definitions

[gf: gg] l\é)?teer:;gir? Meaning Status Flag State
0000 EQ Equal Z set
0001 NE Not Equal Z clear
0010 CS/HS Carry Set/Unsigned Higher or Same C set
0011 CC/LO Carry Clear/Unsigned Lower C clear
0100 Mi Minus/Negative N set
0101 PL Plus/Positive or Zero N clear
0110 VS Overflow V set
0111 VvC No Overflow V clear
1000 HI Unsigned Higher C set and Z clear
1001 LS Unsigned Lower or Same C clear or Z set
1010 GE Signed Greater Than or Equal N set and V set, or N clear and V clear (N = V)
1011 LT Signed Less Than N set and V clear, or N clear and V set (N ! = V)
1100 GT Signed Greater Than Z clear, and either N set and V set, or N clear and V clear (Z=0, N =V)
1101 LE Signed Less Than or Equal Z set, or N setand V clear, or N clearand Vset (Z=1,N!=V)
1110 AL Always (unconditional) -
1111 NV Never -
The remaining bits in the instruction formats are interpreted as follows:

* opcodel: MaverickCrunch co-processor-defined opcode

» opcode2: MaverickCrunch co-processor defined opcode

e CRn: MaverickCrunch co-processor-defined register

e CRd: MaverickCrunch co-processor-defined register

« CRm: MaverickCrunch co-processor-defined register

* Rn: Specifies an ARM base address register. These bits are ignored by the
MaverickCrunch co-processor.

* Rd: Specifies a source or destination ARM register

* cp_num: Co-processor number

« P: Pre-indexing (P=1) or post-indexing (P=0) addressing. This bit is ignored by the
MaverickCrunch co-processor.

» U: Specifies whether the supplied 8-bit offset is added to a base register (U=1) or
subtracted from a base register (U=0). This bit is ignored by the MaverickCrunch co-
processor.

* N: Specifies the width of a data type involved in a move operation. The MaverickCrunch

DS785UM1 3-15

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

co-processor uses this bit to distinguish between single precision floating point/32-bit
integer numbers (N=0) and double precision floating point/64-bit integer numbers (N=1).

« W: Specifies whether or not a calculated address is written back to a base register (W=1)
or not (W=0). This bit is ignored by the MaverickCrunch co-processor.

« of fset: An 8-bit word offset used in address calculations. These bits are ignored by the
MaverickCrunch co-processor.

Table 3-6, Table 3-7, Table 3-8, and Table 3-9, define the bit values for opcode2, opcodel,
and cp_num for all of the MaverickCrunch instructions.

Table 3-6. LDC/STC Opcode Map

cp num [3:0] Opcode Bits 22 and 20
00 01 10 11
0100 cfstrs cfldrs cfstrd cfldrd
0101 cfstr32 cfldr32 cfstr64 cfldr64

Table 3-7. CDP Opcode Map

op cp
colde num opcode2[2:0]
[1:0] [3:0]
000 001 010 011 100 101 110 111
0100 cfcpys cfcpyd cfevtds cfevtsd cfevt3d2s cfevt32d cfcvt64s cfevt64d
00 0101 cfsh32
0110 cfmadd32
0100 cfmuls cfmuld cfmv32al cfmv32am cfmv32ah cfmv32a cfmv64a cfmv32sc
01 0101 cfmul32 cfmul64 cfmac32 cfmsc32 cfcvts32 cfevtd32 cftruncs32 cftruncd32
0110 cfmsub32
0100 cfmval32 cfmvam32 cfmvah32 cfmva32 cfmva64 cfmvsc32
10 0101 cfsh64
0110 cfmadda32
0100 cfabss cfabsd cfnegs cfnegd cfadds cfaddd cfsubs cfsubd
11 0101 cfabs32 cfabs64 cfneg32 cfneg64 cfadd32 cfadd64 cfsub32 cfsub64
0110 cfmsuba32
3-16 DS785UM1

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor

———————
—rf
————— EP93xx User's Guide
—
~———

Table 3-8. MCR Opcode Map

op cp
codel| num opcode2[2:0]
[3:0]
000 001 010 011 100 101 110 111
0100 cfmvdir cfmvdhr cfmvsr
0 0101 cfmv64lr cfmv64hr cfrshi32 cfrshl64
0110
Table 3-9. MRC Opcode Map
op cp
codel| num opcode2[2:0]
[3:0]
000 001 010 011 100 101 110 111
0100 cfmvrdl cfmvrdh cfmvrs cfcmps cfcmpd
0 0101 cfmvré4l cfmvré4h cfemp32 cfemp64
0110

3.5 Instruction Set for the MaverickCrunch Co-Processor
Table 3-10 summarizes the MaverickCrunch co-processor instruction set. Please note that:

¢ CRd, CRn, and CRm each refer to any of the 16 general purpose MaverickCrunch
registers unless otherwise specified

« CRarefers to any of the MaverickCrunch accumulators
* Rd and Rn refer to any of the 16 general purpose ARM920T registers
* <imm> refers to a seven-bit immediate value

The remainder of this section describes in detail each of the individual MaverickCrunch
instructions. The fields in the opcode for each MaverickCrunch instruction are shown. When
specific bit values are required for the instruction, they are shown as either '1' or '0". Any field
whose value may vary, such as a register index, is named as in the ARM programming
manuals, and its function described below.

DS785UM1 3-17
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

Fields that are ignored by the co-processor are shaded. Dark shading implies that a field is
processed by the ARM itself and can have any value, while light shading indicates that the
field, though ignored by both the ARM and the co-processor, should have the value shown.

Table 3-10. MaverickCrunch Instruction Set

Maverick

ARM
Crunch
Co-
Co- . N
Processor Instruction Description
Processor .
. Instruction
Instruction Tvpe
Type yp
cfldrs CRd, [Rn] Load CRd with single stored at address in Rn
cfldrd CRd, [Rn] Load CRd with double stored at address in Rn
Loads LDC ; _hit i ; ;
cfidr32 CRd, [Rn] Lpad CRd with 32-bit integer stored at address in Rn, sign extend through
bit 63
cfldr64 CRd, [Rn] Load CRd with 64-bit integer stored at address in Rn
cfstrs CRd, [Rn] Store single in CRd at address in Rn
cfstrd CRd, [RN] Store double in CRd at address in Rn
Stores STC
cflstr32 CRd, [Rn] Store 32-bit integer in CRd at address in Rn
cfstr64 CRd, [Rn] Store 64-bit integer in CRd at address in Rn
cfmvsr CRn, Rd Move single from Rd to CRn[63:32]
cfmvdlr CRn, Rd Move lower half of double from Rd to CRn[31:0]
Moves to co- MCR cfmvdhr CRn, Rd Move upper half of double from Rd to CRn[63:32]
processor - -)
Move lower half of 64-bit integer from Rd to CRn[31:0], sign extend bit 31
cfmv64ir CRn, Rd through bits [63:31]
cfmv64hr CRn, Rd Move upper half of 64-bit integer from Rd to CRn[63:32]
cfmvsr Rd, CRn Move single from CRn[63:32] to Rd
cfmvrdl Rd, CRn Move lower half of double from CRn[31:0] to Rd
Moves from co- MRC cfmvrdh Rd, CRn Move upper half of double from CRn[63:32] to Rd
processor
cfmvr64l Rd, CRn Move lower half of 64-bit integer from CRn[31:0] to Rd
cfmvr64h Rd, CRn Move upper half of 64-bit integer from CRn[63:32] to Rd
cfmval32 CRd, CRn Move 32-bit integer from CRn [31:0] to accumulator CRd[31:0]
cfmvam32 CRd, CRn | Move 32-bit integer from CRn [31:0] to accumulator CRd[63:32]
cfmvah32 CRd, CRn Move lower 8 bits of 32-bit integer from CRn [7:0] to accumulator
Moves to cDP CRd[71:64]

accumulator

cfmva32 CRd, CRn

Move 32-bit integer from CRn[31:0] to accumulator CRd[31:0] and sign
extend through bit 71

cfmva64 CRd, CRn

Move 64-bit integer from CRn to accumulator CRd[63:0] and sign extend
through bit 71

3-18

DS785UM1

Copyright 2007 Cirrus Logic

I

MaverickCrunch Co-Processor
EP93xx User’s Guide

Table 3-10. MaverickCrunch Instruction Set (Continued)

Maverick

ARM
Crunch
Co-
Co- . _—
Processor Instruction Description
Processor .
. Instruction
Instruction Tvpe
Type yp
cfmv32al CRd, CRn Move accumulator CRn[31:0] to 32-bit integer CRd[31:0]
cfmv32am CRd, CRn | Move accumulator CRn[63:32] to 32-bit integer CRd[31:0]
cfmv32ah CRd, CRn Move accumulator CRn[71:64] to lower 8 bits of 32-bit integer CRd[31:0]
Moves from CDP
accumulator Saturate to 32-bit integer and move accumulator CRn[31:0] to 32-bit
cfmv32a CRd, CRn .
integer CRd[31:0]
cfmv64a CRd, CRn _Saturate to 64-bit integer and move accumulator CRn[63:0] to 64-bit
integer CRd
Move to . L
DSPSC cfmvsc32 CRd, CRn Move CRd to DSPSC; CRn is ignored
CDP
Move from cfmv32sc CRd, CRn Moves DSPSC to CRd; CRn is ignored
DSPSC
cfcpys CRd, CRn Copy a single from CRn to CRd
cfcpyd CRd, CRn Copy a double from CRn to CRd
cfevtsd CRd, CRn Convert a single in CRn to a double in CRd
cfevtds CRd, CRn Convert a double in CRn to a single in CRd
cfevt32s CRd, CRn Convert a 32-bit integer in CRn to a single in CRd
Conversions cfevt32d CRd, CRn Convert a 32-bit integer in CRn to a double in CRd
; CDP
and copies cfcvt64s CRd, CRn Convert a 64-bit integer in CRn to a single in CRd
cfevt64d CRd, CRn Convert a 64-bit integer in CRn to a double in CRd
cfevts32 CRd, CRn Convert a single in CRn to a 32-bit integer in CRd
cfevtd32 CRd, CRn Convert a double in CRn to a 32-bit integer in CRd
cftruncs32 CRd, CRn | Truncate a single in CRn to a 32-bit integer in CRd
cftruncd32 CRd, CRn | Truncate a double in CRn to a 32-bit integer in CRd
cfrshi32 CRm, CRn, Shift 32-bit integer in CRn by two’s complement value in Rd and store in
Rd CRm
MCR
cfrshl64 CRm, CRn, Shift 64-bit integer in CRn by two’s complement value in Rd and store in
Rd CRm
Shifts
cfsh32 CRd, CRn, Shift 32-bit integer in CRn by <imm> bits and store in CRd, where <imm>
<imm> is between -32 and 31, inclusive
CDP
cfsh64 CRd, CRn, Shift 64-bit integer in CRn by <imm> bits and store in CRd, where <imm>
<imm> is between -32 and 31, inclusive
DS785UM1 3-19

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

Table 3-10. MaverickCrunch Instruction Set (Continued)

Maverick
ARM
Crunch
Co-
Co- . .
Processor Instruction Description
Processor .
. Instruction
Instruction Tvpe
Type yp
cfcmps Rd, CRn, CRm | Compare singles in CRn to CRm, result in Rd, or CPSR if Rd == R15
cfcmpd Rd, CRn, CRm | Compare doubles in CRn to CRm, result in Rd, or CPSR if Rd == R15
Comparisons MRC cfcmp32 Rd, CRn, Compare 32-bit integers in CRn to CRm, result in Rd, or CPSR if Rd ==
CRm R15
cfcmp64 Rd, CRn, Compare 64-bit integers in CRn to CRm, result in Rd, or CPSR if Rd ==
CRm R15
cfabss CRd, CRn CRd gets absolute value of CRn
cfnegs CRd, CRn CRd gets negation of CRn
Floating point g;‘::s CRd, CRn, CRd gets sum of CRn and CRm
arithmetic, CDP
single precision
gep cfsubs CRd, CRn, CRd gets CRn minus CRm
CRm
cfmuls CRd, CRn, CRd gets the product of CRn and CRm
CRm
cfabsd CRd, CRn CRd gets absolute value of CRn
cfnegd CRd, CRn CRd gets negation of CRn
FI(.)atlng'pomt cfaddd CRd, CRn, CRd gets sum of CRn and CRm
arithmetic, CRm
CDP
double fsubd CRd, CR
precision cisu » &R, CRd gets CRn minus CRm
CRm
cfmuld CRd, CRn, CRd gets the product of CRn and CRm
CRm
cfabs32 CRd, CRn CRd gets absolute value of CRn
cfneg32 CRd, CRn CRd gets negation of CRn
cfadd32 CRd, CRn, CRd gets sum of CRn and CRm
CRm
- cfsub32 CRd, CRn, CRd gets CRn minus CRm
32-bit integer CRm
. . CDP
arithmetic fmul32 CRd. CR
cimu ' n CRd gets the product of CRn and CRm
CRm
ggric& CRd, CRn, CRd gets sum of CRd and the product of CRn and CRm
gfg];cf%Z CRD, CRn, CRd gets CRd minus the product of CRn and CRm
3-20 DS785UM1

Copyright 2007 Cirrus Logic

I

MaverickCrunch Co-Processor
EP93xx User’s Guide

Table 3-10. MaverickCrunch Instruction Set (Continued)

Maverick
ARM
Crunch
Co-
Co- . .
Processor Instruction Description
Processor .
. Instruction
Instruction Tvpe
Type yp
cfabs64 CRd, CRn CRd gets absolute value of CRn
cfnegb64 CRd, CRn CRd gets negation of CRn
. cfaddé4 CRd, CRn, CRd gets sum of CRn and CRm
64-bit integer CRm
. . CDP
arithmetic tsub64 CRd. CR
cisu » RN, CRd gets CRn minus CRm
CRm
cfmul64 CRd, CRn, CRd gets the product of CRn and CRm
CRm
cfmadd32 CRa, CRd, Accumulator CRa gets sum of CRd and the product of CRn and CRm
CRn, CRm
cfmsub32 CRa, CRd, Accumulator CRa gets CRd minus the product of CRn and CRm
Accumulator cDP CRn, CRm
arithmetic cfmadda32 CRa, CRd, | Accumulator CRa gets sum of accumulator CRd and the product of CRn
CRn, CRm and CRm
cfmsuba32 CRa, CRd, | Accumulator CRa gets accumulator CRd minus the product of CRn and
CRn, CRm CRm

3.5.1 Load and Store Instructions

Loading Floating Point Value from Memory

31:28 27:25 24 23 22 21 20 19:16 15:12 11:8 7:0
cond 110 P U N w 1 Rn CRd 0100 8_bhit_word_offset
Description: _ o _ _ _
Loads a single or double precision floating point value from memory into
MaverickCrunch register.
Table 3-11. Mnemonic Codes for Loading Floating Point Value from Memory
Mnemonic Addressing Mode N
CFLDRS<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 0
CFLDRS<cond> CRd, [Rn], <offset> Immediate post-indexed 0
CFLDRD<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 1
CFLDRD<cond> CRd, [Rn], <offset> Immediate post-indexed 1
DS785UM1 3-21

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

——
——
——
Bit Definitions:
N: Floating point precision - O for single, 1 for double.
Rn: Base register in ARM
CRd: Destination register.
Loading Integer Value from Memory
31:28 | 27:25 (24 | 23 | 22| 21| 20 | 19:16 | 15:12 11:8 7:0
cond 110 P U N W 1 Rn CRd 0101 8_bhit_word_offset
Description:
Loads a 32- or 64-bit integer from memory into a MaverickCrunch register.
Table 3-12. Mnemonic Codes for Loading Integer Value from Memory
Mnemonic Addressing Mode N
CFLDR32<cond> CRd, [Rn, <offset>{'} Immediate pre-indexed 0
CFLDR32<cond> CRd, [Rn], <offset> Immediate post-indexed 0
CFLDR64<cond> CRd, [Rn, <offset>|{'} Immediate pre-indexed 1
CFLDR64<cond> CRd, [Rn], <offset> Immediate post-indexed 1
Bit Definitions:
N: Integer width - O for 32-bit integer, 1 for 64-bit integer
Rn: Base register in ARM
CRd: Destination register.

Store Floating Point Values to Memory

31:28 27:25 24 | 23 22 21 20 19:16 15:12 11:8 7:0
cond 110 P U N w 0 Rn CRd 0100 8_bhit_word_offset
Description:

Stores a single or double precision floating point value from a MaverickCrunch
register into memory.

3-22 DS785UM1
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

Mnemonic:

Table 3-13. Mnemonic Codes for Storing Floating Point Values to Memory

Mnemonic Addressing Mode N
CFSTRS<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 0
CFSTRS<cond> CRd, [Rn], <offset> Immediate post-indexed 0
CFSTRD<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 1
CFSTRD<cond> CRd, [Rn], <offset> Immediate post-indexed 1
Bit Definitions:
N: Floating point precision - O for single, 1 for double.
Rn: Base register in ARM
CRd: Source register.

Store Integer Values to Memory

31:28 27:25 24 1 23 22 21 20 19:16 15:12 11:8 7:0
cond 110 P U N w 0 Rn CRd 0101 8_bhit_word_offset
Description:

Stores a 32- or 64-bit integer value from a MaverickCrunch register into
memory.

Mnemonic:

Table 3-14. Mnemonic Codes for Storing Integer Values to Memory

Mnemonic Addressing Mode N
CFSTR32<cond> CRd, [Rn, <offset>{!} Immediate pre-indexed 0
CFSTR32<cond> CRd, [Rn], <offset> Immediate post-indexed 0
CFSTR64<cond> CRd, [Rn, <offset>{!} Immediate pre-indexed 1
CFSTR64<cond> CRd, [Rn], <offset> Immediate post-indexed 1
Bit Definitions:
N: Integer width - O for 32-bit integer, 1 for 64-bit integer
Rn: Base register in ARM
CRd: Source register.
DS785UM1 3-23

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

i

3.5.2 Move Instructions

Move Single Precision Floating Point from ARM to MaverickCrunch

31:28 27:24 23:22 21 20 19:16 15:12 11:8 75 4 3:0
cond 1110 00 0 0 CRn Rd 0100 010 1 CRm
Description:

Moves a single precision floating point number from an ARM register into the
upper half of a MaverickCrunch register.

Mnemonic:
CFMVSR<cond> CRn, Rd

Bit Definitions:
Rd: Source ARM register

CRn: Destination register

Move Single Precision Floating Point from MaverickCrunch to ARM

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 0 1 CRn Rd 0100 010 1 CRm
Description:

Moves a single precision floating point number from the upper half of a
MaverickCrunch register to an ARM register.

Mnemonic:
CFMVRS<cond> Rd, CRn

Bit Definitions:

Rd: Destination ARM register
CRn: Source register
Move Lower Half Double Precision Float from ARM to MaverickCrunch
31:28 27:24 23:22 21| 20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 0 0 CRn Rd 0100 000 1 CRm
Description:

Moves the lower half of a double precision floating point value from an ARM
register into the lower half of a MaverickCrunch register.

Mnemonic:
CFMVDLR<cond> CRn, Rd

Bit Definitions:
CRn: Destination register

Rd: Source ARM register

3-24 DS785UM1
Copyright 2007 Cirrus Logic

——— MaverickCrunch Co-Processor
——————— EP93xx User’'s Guide
—
~————
Move Lower Half Double Precision Float from MaverickCrunch to ARM
31:28 27:24 23:22 21 | 20 19:16 15:12 11:8 75 4 3.0
cond 1110 00 0 1 CRn Rd 0100 000 1 CRm 3
Description: o _ _ _
Moves the lower half of a double precision floating point value stored in a
MaverickCrunch register into an ARM register.
Mnemonic:

Bit Definitions:

CFMVRDL<cond> Rd, CRn

Rd:
CRn:

Destination ARM register

Source register

Move Upper Half Double Precision Float from ARM to MaverickCrunch

31:28 27:24 23:22 21 | 20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 0 0 CRn Rd 0100 001 1 CRm
Description: o _ _
Moves the upper half of a double precision floating point value from an ARM
register into the upper half of a MaverickCrunch register.
Mnemonic:

Bit Definitions:

CFMVDHR<cond> CRn, Rd

CRn: Destination register
Rd: Source ARM register
Move Upper Half Double Precision Float from MaverickCrunch to ARM
31:28 27:24 23:22 21 | 20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 0 1 CRn Rd 0100 001 1 CRm
Description: o _ _ _
Moves the upper half of a double precision floating point value stored in a
MaverickCrunch register into an ARM register.
Mnemonic:

Bit Definitions:

DS785UM1

CFMVRDH<cond> Rd, CRn

Rd: Destination ARM register

CRn: Source register

3-25
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

i

~——————

Move Lower Half 64-bit Integer from ARM to MaverickCrunch

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 0 0 CRn Rd 0101 000 1 CRm
Description:

Moves the lower half of a 64-bit integer from an ARM register into the lower
half of a MaverickCrunch register and sign extend it.

Mnemonic:
CFMV64LR<cond> CRn, Rd

Bit Definitions:

CRn: Destination register
Rd: Source ARM register
Move Lower Half 64-bit Integer from MaverickCrunch to ARM
31:28 27:24 23:22 21 | 20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 0 1 CRn Rd 0101 000 1 CRm
Description:

Moves the lower half of a 64-bit integer stored in a MaverickCrunch register
into an ARM register.

Mnemonic:
CFMVR64L<cond> Rd, CRn

Bit Definitions:
Rd: Destination ARM register

CRn: Source register

Move Upper Half 64-bit Integer from ARM to MaverickCrunch

31:28 27:24 23:22 21 20 19:16 15:12 11:8 75 4 3:0
cond 1110 00 0 0 CRn Rd 0101 001 1 CRm
Description:

Moves the upper half of a 64-bit integer from an ARM register into the upper
half of a MaverickCrunch register.

Mnemonic:
CFMV64HR<cond> CRn, Rd

Bit Definitions:
CRn: Destination register

Rd: Source ARM register

3-26 DS785UM1
Copyright 2007 Cirrus Logic

——— MaverickCrunch Co-Processor
——————— EP93xx User’'s Guide
—
~————
Move Upper Half 64-bit Integer from MaverickCrunch to ARM
31:28 27:24 23:22 21 | 20 19:16 15:12 11:8 75 3.0
cond 1110 00 0 1 CRn Rd 0101 001 CRm 3
Description: o) _ _
Moves the upper half of a 64-bit integer stored in a MaverickCrunch register
into an ARM register.
Mnemonic:

CFMVR64H<cond> Rd, CRn

Bit Definitions:
Rd: Destination ARM register

CRn: Source register

3.5.3 Accumulator and DSPSC Move Instructions

Move MaverickCrunch Register to Lower Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 10 CRn CRd 0100 010 0 CRm
Description: _ _ _ _
Moves the low 32 bits of a MaverickCrunch register to the lowest 32 bits of an
accumulator (31:0).
Mnemonic:

CFMVAL32<cond> CRd, CRn

Bit Definitions:
CRd: Destination accumulator

CRn: Source register

Move Lower Accumulator to MaverickCrunch Register

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 01 CRn CRd 0100 010 0 CRm
Description: _ _

Moves the lowest 32 bits of an accumulator (31:0) to the low 32 bits of a
MaverickCrunch register.
Mnemonic:

CFMV32AL<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

CRn: Source accumulator

DS785UM1 3-27
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

Move MaverickCrunch Register to Middle Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 10 CRn CRd 0100 011 0 CRm
Description:

Moves the low 32 bits of a MaverickCrunch register to the middle 32 bits of an
accumulator (63:32).

Mnemonic:
CFMVAM32<cond> CRd, CRn

Bit Definitions:

CRd: Destination accumulator
CRn: Source register
Move Middle Accumulator to MaverickCrunch Register
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 01 CRn CRd 0100 011 0 CRm
Description:

Moves the middle 32 bits of an accumulator (63:32) to the low 32 bits of a
MaverickCrunch register.

Mnemonic:
CFMV32AM<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

CRn: Source accumulator

Move MaverickCrunch Register to High Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 75 4 3:0
cond 1110 00 10 CRn CRd 0100 100 0 CRm
Description:

Moves the lowest 8 bits (7:0) of a MaverickCrunch register to the highest 8 bits
of an accumulator (71:64).

Mnemonic:
CFMVAH32<cond> CRd, CRn

Bit Definitions:
CRd: Destination accumulator

CRn: Source register

3-28 DS785UM1
Copyright 2007 Cirrus Logic

——— MaverickCrunch Co-Processor
——————— EP93xx User’'s Guide
—
~————
Move High Accumulator to MaverickCrunch Register
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 3.0
cond 1110 00 01 CRn CRd 0100 100 CRm
Description: _ _ _
Moves the highest 8 bits of an accumulator (71:64) to the lowest 8 bits of a
MaverickCrunch register (7:0).
Mnemonic:

CFMV32AH<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

CRn: Source accumulator

Move 32-bit Integer from Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 75 3:0
cond 1110 00 01 CRn CRd 0100 101 CRm
Description:

Saturates and rounds an accumulator value to 32 bits and moves the result to

the low 32 bits of a MaverickCrunch register.

Mnemonic:
CFMV32A<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

CRn: Source accumulator

Move 32-bit Integer to Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 3.0
cond 1110 00 10 CRn CRd 0100 101 CRm
Description: _) _
Moves a 32-bit value from a MaverickCrunch register to an accumulator and
sign extend to 72 bits.
Mnemonic:

CFMVA32<cond> CRd, CRn

Bit Definitions:
CRd: Destination accumulator

CRn: Source register

DS785UM1
Copyright 2007 Cirrus Logic

3-29

MaverickCrunch Co-Processor

EP93xx User’s Guide S
——fEER.
—r
—rf
—rt
e (
~———t
Move 64-bit Integer from Accumulator
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 3:0
cond 1110 00 01 CRn CRd 0100 110 CRm
Description: _
Saturates and rounds an accumulator value to 64 bits and moves the result to
a MaverickCrunch register.
Mnemonic:

CFMV64A<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

CRn: Source accumulator

Move 64-bit Integer to Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 3.0
cond 1110 00 10 CRn CRd 0100 110 CRm
Description: _) _

Moves a 64-bit value from a MaverickCrunch register to an accumulator and
sign extend to 72 bits.
Mnemonic:

CFMVAG4<cond> CRd, CRn

Bit Definitions:

CRd: Destination accumulator
CRn: Source register
Move from MaverickCrunch Register to Control/Status Register
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 10 CRn CRd 0100 111 0 CRm
Description:

Moves a 64-bit value from a MaverickCrunch register to the MaverickCrunch
Status/Control register, DSPSC. All DSPSC bits are writable. CRn is ignored.

Mnemonic:
CFMVSC32<cond> CRd, CRn

Bit Definitions:
CRd: Source register

3-30 DS785UM1
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

Move from Control/Status Register to MaverickCrunch Register

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 01 CRn CRd 0100 111 0 CRm
Description:

Moves a 64-bit value from the MaverickCrunch Status/Control register,
DSPSC, to a MaverickCrunch register. CRn is ignored.

Mnemonic:
CFMV32SC<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

3.5.4 Copy and Conversion Instructions
Copy Single Precision Floating Point

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 00 CRn CRd 0100 000 0 CRm
Description:

Copies a single precision floating point value from one register to another.

Mnemonic:
CFCPYS<cond> CRd, CRn

Bit Definitions:

CRd: Destination register
CRn: Source register
Copy Double Precision Floating Point
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 00 CRn CRd 0100 001 0 CRm
Description:

Copies a double precision floating point value from one register to another.

Mnemonic:
CFCPYD<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

CRn: Source register

DS785UM1 3-31
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

Convert Single Precision Floating Point to Double Precision Floating Point

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 00 CRn CRd 0100 011 0 CRm
Description: _ o _ _ o _
Converts a single precision floating point value to a double precision floating
point value.
Mnemonic:

Bit Definitions

CFCVTSD<cond> CRd, CRn

CRd: Destination register
CRn: Source register
Convert Double Precision Floating Point to Single Precision Floating Point
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 00 CRn CRd 0100 010 0 CRm
Description: o _ _ _ o _
Converts a double precision floating point value to a single precision floating
point value.
Mnemonic:

Bit Definitions:

CFCVTDS<cond> CRd, CRn

CRd: Destination register

CRn: Source register

Convert 32-bit Integer to Single Precision Floating Point

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 00 CRn CRd 0100 100 0 CRm
Description: o _ o _ _
Converts a 32-bit integer to a single precision floating point value.
Mnemonic:

Bit Definitions:

3-32

CFCVT32S<cond> CRd, CRn

CRd: Destination register

CRn: Source register

DS785UM1
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

Convert 32-bit Integer to Double Precision Floating Point

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 00 CRn CRd 0100 101 0 CRm
Description:

Converts a 32-bit integer to a double precision floating point value.

Mnemonic:
CFCVT32D<cond> CRd, CRn

Bit Definitions:

CRd: Destination register
CRn: Source register
Convert 64-bit Integer to Single Precision Floating Point
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 00 CRn CRd 0100 110 0 CRm
Description:

Converts a 64-bit integer to a single precision floating point value.

Mnemonic:
CFCVT64S<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

CRn: Source register

Convert 64-bit Integer to Double Precision Floating Point

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 00 CRn CRd 0100 111 0 CRm
Description:

Converts a 64-bit integer to a double precision floating point value.

Mnemonic:
CFCVT64D<cond> CRd, CRn

Bit Definitions:
CRd: Destination register

CRn: Source register

DS785UM1 3-33
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

Convert Single Precision Floating Point to 32-bit Integer

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 01 CRn CRd 0101 100 0 CRm
Description:

Converts a single precision floating point number to a 32-bit integer.

Mnemonic:
CFCVTS32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register
CRn: Source register

Convert Double Precision Floating Point to 32-bit Integer

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 01 CRn CRd 0101 101 0 CRm
Description:

Converts a double precision floating point number to a 32-bit integer.

Mnemonic:
CFCVTD32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register
CRn: Source register

Truncate Single Precision Floating Point to 32-bit Integer

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 01 CRn CRd 0101 110 0 CRm
Description:

Truncates a single precision floating point number to a 32-bit integer.

Mnemonic:
CFTRUNCS32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register.
CRn: Source register.

Truncate Double Precision Floating Point to 32-bit Integer

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 01 CRn CRd 0101 111 0 CRm
Description: o _ _ o
Truncates a double precision floating point number to a 32-bit integer.
Mnemonic:
CFTRUNCD32<cond> CRd, CRn
3-34 DS785UM1

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

Bit Definitions:

CRd: Destination register
CRn: Source register
3.5.5 Shift Instructions
Shift 32-bit Integer

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 0 0 CRn Rd 0101 010 1 CRm
Description:

Shifts a 32-bit integer left or right. The shift count is a two’s complement
integer stored in an ARM register; the count is positive for left shifts and
negative for right shifts. This instruction may also be used to copy a 32-bit
integer from one register to another by using a shift value of 0.

Mnemonic:
CFRSHL32<cond> CRm, CRn, Rd

Bit Definitions:

CRm: Destination register
CRn: Source register
Rd: Shift count register in ARM
Shift 64-bit Integer
31:28 27:24 23:22 21 | 20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 0 0 CRn Rd 0101 011 1 CRm
Definition:
Shifts a 64-bit integer left or right. The shift count is a two’s complement
integer stored in an ARM register; the count is positive for left shifts and
negative for right shifts. This instruction may also be used to copy a 64-bit
integer from one register to another using a shift value of 0.
Mnemonic:

CFRSHL64<cond> CRm, CRn, Rd

Bit Definitions:

CRm: Destination register
CRn: Source register
Rd: Shift count register in ARM
DS785UM1 3-35

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

Shift 32-bit Integer Immediate

! b

31:28 27:24 23:22 21:20 19:16 15:12 11:8 4 3.0
cond 1110 00 00 CRn CRd 0101 Shift[6:4] 0 Shift[3:0]
Definition: _ o o _
Shift a 32-bit integer by the count specified in the seven bit, two’s complement
immediate value. A positive number indicates a left shift and a negative
number indicates a right shift. This instruction may also be used to copy a 32-
bit integer from one register to another using a shift value of 0.
Mnemonic:

CFSH32<cond> CRd, CRn, Shift[6:0]

Bit Definitions:

CRd: Destination register
CRn: Source register
Shift[6:0]: Shift count.
Shift 64-bit Integer Immediate
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 3.0
cond 1110 00 10 CRn CRd 0101 Shift[6:4] Shift[3:0]
Definition:
Shifts a 64-bit integer by a count specifies in the seven bit, two’s complement
immediate value. A positive number indicates a left shift and a negative
number indicates a right shift. This instruction may also be used to copy a 64-
bit integer from one register to another by using a shift value of 0.
Mnemonic:

CFSH64<cond> CRd, CRn, Shift[6:0]

Bit Definitions:

CRd: Destination register
CRn: Source register
Shift[6:0]: Shift count.

3.5.6 Compare Instructions

Compare Single Precision Floating Point

31:28
cond

27:24 23:22 21 20
1110 00 0 1

19:16 15:12
CRn Rd

11:8 75 4 3:0
0100 100 1 CRm

Definition:
Compares two single precision floating point numbers and stores an integer
representing the result in the ARM920T register; the highest four bits of the
integer result match the N, Z, C, and V bits, respectively, in the ARM920T’s
program status register, while the bottom 28 bits are zeros. If Rd = 15, then the
four status bits are stored in the ARM status register, CPSR.

3-36 DS785UM1

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

Mnemonic:
CFCMPS<cond> Rd, CRn, CRm

Bit Definitions:

CRn: First source register
CRm: Second source register
Rd: Destination ARM register. If Rd = 15, destination is ARM

N, C, Z, and V flags.

Compare Double Precision Floating Point

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 0 1 CRn Rd 0100 101 1 CRm
Definition:

Compares two double precision floating point numbers and stores an integer
representing the result in the ARM920T register; the highest four bits of the
integer result match the N, Z, C, and V bits, respectively, in the ARM920T’s
program status register, while the bottom 28 bits are zeros. If Rd = 15, then the
four status bits are stored in the ARM status register, CPSR.

Mnemonic:
CFCMPD<cond> Rd, CRn, CRm

Bit Definitions:

CRn: First source register
CRm: Second source register
Rd: Destination ARM register. If Rd = 15, destination is ARM

N, C, Z, and V flags.

Compare 32-bit Integers

31:28 2724 23:22 21 20 19:16 15:12 11:8 75 4 3.0
cond 1110 00 0 1 CRn Rd 0101 100 1 CRm
Definition:

Compares two 32-bit integers and stores an integer representing the result in
the ARM920T register; the highest four bits of the integer result match the N,
Z, C, and V bits, respectively, in the ARM920T's program status register, while
the bottom 28 bits are zeros. If Rd = 15, then the four status bits are stored in
the ARM status register, CPSR.

Mnemonic:
CFCMP32<cond> Rd, CRn, CRm

Bit Definitions:
CRn: First source register

CRm: Second source register

DS785UM1 3-37
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

e —
~———t
Rd: Destination ARM register. If Rd = 15, destination is ARM
N, C, Z, and V flags.
Compare 64-bit Integers
31:28 27:24 23:22 21 | 20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 0 1 CRn Rd 0101 101 1 CRm
Description:
Compares two 64-bit integers and stores an integer representing the result in
the ARM920T register; the highest four bits of the integer result match the N,
Z, C, and V bits, respectively, in the ARM920T’s program status register, while
the bottom 28 bits are zeros. If Rd = 15, then the four status bits are stored in
the ARM status register, CPSR.
Mnemonic:

Bit Definitions:

CFCMP64<cond> Rd, CRn, CRm

CRn: First source register
CRm: Second source register
Rd: Destination ARM register. If Rd = 15, destination is ARM

N, C, Z, and V flags.

3.5.7 Floating Point Arithmetic Instructions

Single Precision Floating Point Absolute Value

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 11 CRn CRd 0100 000 0 CRm
Description: _ o) _
Computes the absolute value of a single precision floating point number:
CRd = |CRn|
Mnemonic:

Bit Definitions:

CFABSS<cond> CRd, CRn

CRd: Destination register

CRn: Source register

Double Precision Floating Point Absolute Value

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 11 CRn CRd 0100 001 0 CRm
Description: o _ _
Computes the absolute value of a double precision floating point number.
Mnemonic:
CFABSD<cond> CRd, CRn
3-38 DS785UM1

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

Bit Definitions:

CRd: Destination register
CRn: Source register
Single Precision Floating Point Negate
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 11 CRn CRd 0100 010 0 CRm
Description:

Takes the negative of a single precision floating point number:
CRd =-CRn

Mnemonic:
CFNEGS<cond> CRd, CRn

Bit Definitions:
CRd: Destination register
CRn: Source register

Double Precision Floating Point Negate

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 11 CRn CRd 0100 011 0 CRm
Description:

Takes the negative of a double precision floating point number.

Mnemonic:
CFNEGD<cond> CRd, CRn

Bit Definitions:
CRd: Destination register
CRn: Source register

Single Precision Floating Point Add

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 11 CRn CRd 0100 100 0 CRm
Description:

Adds two single precision floating point numbers:
CRd =CRn + CRm

Mnemonic:
CFADDS<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register
CRn: Addend register
CRm: Addend register
DS785UM1 3-39

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

——
—r
——
—r
— e (
~———
Double Precision Floating Point Add
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 11 CRn CRd 0100 101 0 CRm
Description: o _ _
Adds two double precision floating point numbers.
Mnemonic:

CFADDD<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register
CRn: Addend register
CRm: Addend register
Single Precision Floating Point Subtract
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 11 CRn CRd 0100 110 0 CRm
Description:

Subtracts two single precision floating point numbers:
CRd = CRn - CRm

Mnemonic:
CFSUBS<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register
CRn: Minuend register
CRm: Subtrahend register
Double Precision Floating Point Subtract
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 11 CRn CRd 0100 111 0 CRm
Description:

Subtracts two double precision floating point numbers.

Mnemonic:
CFSUBD<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register
CRn: Minuend register
CRm: Subtrahend register
3-40 DS785UM1

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

I

Single Precision Floating Point Multiply

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 01 CRn CRd 0100 000 0 CRm
Description:

Multiplies two single precision floating point numbers:
CRd = CRn X CRm

Mnemonic:
CFMULS<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register
CRn: Multiplicand register
CRm: Multiplicand register
Double Precision Floating Point Multiply
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 01 CRn CRd 0100 001 0 CRm
Description:

Multiplies two double precision floating point numbers.

Mnemonic:
CFMULD<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register
CRn: Multiplicand register
CRm: Multiplicand register

3.5.8 Integer Arithmetic Instructions
32-bit Integer Absolute Value

31:28 27:24 23:22 21:20 19:16 15:12 11:8 75 4 3:0
cond 1110 00 11 CRn CRd 0101 000 0 CRm
Description:

Computes the absolute value of a 32-bit integer.

Mnemonic:
CFABS32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register

CRn: Source register

DS785UM1 3-41
Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor

EP93xx User’s Guide

f———
——
—r
—
—
64-bit Integer Absolute Value
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 11 CRn CRd 0101 001 0 CRm
Description: o
Computes the absolute value of a 64-bit integer.
Mnemonic:
CFABS64<cond> CRd, CRn
Bit Definitions:
CRd: Destination register
CRn: Source register
32-bit Integer Negate
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 11 CRn CRd 0101 010 0 CRm
Description: o
Negate a 32-bit integer.
Mnemonic:
CFNEG32<cond> CRd, CRn
Bit Definitions:
CRd: Destination register
CRn: Source register
64-bit Integer Negate
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 11 CRn CRd 0101 011 0 CRm
Description: o
Negate a 64-bit integer.
Mnemonic:
CFNEG64<cond> CRd, CRn
Bit Definitions:
CRd: Destination register
CRn: Source register
32-bit Integer Add
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3.0
cond 1110 00 11 CRn CRd 0101 100 0 CRm
Description:
Adds two 32-bit integers.
3-42 DS785UM1

Copyright 2007 Cirrus Logic

I

Mnemonic:
CFADD32<cond> CRd, CRn, CRm

Bit Definitions:

MaverickCrunch Co-Processor
EP93xx User’s Guide

CRd: Destination register
CRn: Addend register
CRm: Addend register
64-bit Integer Add
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 3.0
cond 1110 00 11 CRn CRd 0101 101 CRm
Description:
Adds two 64-bit integers.
Mnemonic:
CFADDG64<cond> CRd, CRn, CRm
Bit Definitions:
CRd: Destination register
CRn: Addend register
CRm: Addend register
32-bit Integer Subtract
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 3.0
cond 1110 00 11 CRn CRd 0101 110 CRm
Description:
Subtracts two 32-bit integers.
Mnemonic:
CFSUB32<cond> CRd, CRn, CRm
Bit Definitions:
CRd: Destination register
CRn: Minuend register
CRm: Subtrahend register
64-bit Integer Subtract
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 3.0
cond 1110 00 11 CRn CRd 0101 111 CRm
Description:
Subtracts two 64-bit integers.
Mnemonic:
CFSUBG64<cond> CRd, CRn, CRm
DS785UM1 3-43

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

p—)
—
Bit Definitions:
CRd: Destination register
CRn: Minuend register
CRm: Subtrahend register
32-bit Integer Multiply
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 01 CRn CRd 0101 000 0 CRm
Description:
Multiplies two 32-bit integers.
Mnemonic:
CFMUL32<cond> CRd, CRn, CRm
Bit Definitions:
CRd: Destination register
CRn: Multiplicand register
CRm: Multiplicand register
64-bit Integer Multiply
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 3.0
cond 1110 00 01 CRn CRd 0101 001 CRm
Description:
Multiplies two 64-bit integers.
Mnemonic:
CFMUL64<cond> CRd, CRn, CRm
Bit Definitions:
CRd: Destination register
CRn: Multiplicand register
CRm: Multiplicand register
32-bit Integer Multiply-Add
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 4 3.0
cond 1110 00 01 CRn CRd 0101 010 0 CRm
Description:
Multiplies two 32-bit integers and adds the result to another 32-bit integer:
CRd = CRd + (CRn X CRm)
Mnemonic:
CFMAC32<cond> CRd, CRn, CRm
3-44 DS785UM1

Copyright 2007 Cirrus Logic

I

Bit Definitions:

MaverickCrunch Co-Processor
EP93xx User’s Guide

CRd: Destination/addend register
CRn: Multiplicand register
CRm: Multiplicand register
32-bit Integer Multiply-Subtract
31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 3.0
cond 1110 00 01 CRn CRd 0101 011 CRm
Description:
Multiplies two 32-bit integers and subtracts the result from another 32-bit
integer:
CRd = CRd - (CRn X CRm)
Mnemonic:

Bit Definitions:

CFMSC32<cond> CRd, CRn, CRm

CRd: Destination/minuend register
CRn: Multiplicand register
CRm: Multiplicand register

3.5.9 Accumulator Arithmetic Instructions
32-bit Integer Multiply-Add, Result to Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5 3.0
cond 1110 00 00 CRn CRd 0110 CRa CRm
Description:
Multiplies two 32-bit integers, adds the product to a third 32-bit integer, and
stores the result in an accumulator:
CRa = CRd + (CRn X CRm)
Mnemonic:

CFMADD32<cond> CRa, CRd, CRn, CRm

Bit Definitions:

DS785UM1

CRa: Destination accumulator
CRd: Addend register

CRn: Multiplicand register
CRm: Multiplicand register

3-45

Copyright 2007 Cirrus Logic

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

32-bit Integer Multiply-Subtract, Result to Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1110 00 01 CRn CRd 0110 CRa 0 CRm
Description:

Multiplies two 32-bit integers, subtracts the product from a third 32-bit integer,
and stores the result in an accumulator:
CRa = CRd - (CRn X CRm)

Mnemonic:
CFMSUB32<cond> CRa, CRd, CRn, CRm

Bit Definitions:

CRa: Destination accumulator
CRd: Minuend register

CRn: Multiplicand register
CRm: Multiplicand register

32-bit Integer Multiply-Add to Accumulator

31:28 27:24 23:22 21:20 19:16 15:12 11:8 75 4 3:0
cond 1110 00 10 CRn CRd 0110 CRa 0 CRm
Description:

Multiplies two 32-bit integers, adds the product to an accumulator, and stores
the result in an accumulator:
CRa = CRd + (CRn X CRm)

Mnemonic:
CFMADDA32<cond> CRa, CRd, CRn, CRm

Bit Definitions:

CRa: Destination accumulator
CRd: Addend accumulator
CRn: Multiplicand register
CRm: Multiplicand register
3-46 DS785UM1

Copyright 2007 Cirrus Logic

I

MaverickCrunch Co-Processor
EP93xx User’s Guide

32-bit Integer Multiply-Subtract from Accumulator

3.0
CRm 3

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7.5
cond 1110 00 11 CRn CRd 0110 CRa
Description: o o
Multiplies two 32-bit integers, subtracts the product from an accumulator, and
stores the result in an accumulator:
CRa = CRd - (CRn X CRm)
Mnemonic:

Bit Definitions:

DS785UM1

CFMSUBA32<cond> CRa, CRd, CRn, CRm

CRa: Destination accumulator

CRd: Specifies minuend accumulator
CRn: Multiplicand register

CRm: Multiplicand register

Copyright 2007 Cirrus Logic

3-47

MaverickCrunch Co-Processor
EP93xx User’s Guide

il

3-48 DS785UM1
Copyright 2007 Cirrus Logic

Chapter 4

Boot ROM

4.1 Introduction
The Boot ROM allows a program or OS to boot from the following devices:
* SPI Flash
e FLASH, SyncFLASH or SyncROM
* UART1

4.1.1 Boot ROM Hardware Operational Overview

The Boot ROM is an AHB slave device containing a 16 kbyte mask-programmed ROM. The
AHB slave always operates with one wait state, so all data reads from the ROM use 2 HCLK
cycles.

On system reset, the ARM920T begins executing code at address zero. The system follows
the Hardware Configuration controls to select the boot device that appears at address zero. If
Internal Boot is selected, the Boot ROM is mapped to address zero and the ARM920T will
execute the Boot ROM code.

4.1.1.1 Memory Map

The normal Boot ROM base address base is 0x8009_0000. It will alias on 16 kbyte intervals.
When internal boot is active, the Boot ROM is double decoded and appears at its normal
address base and at address 0x0000_0000. At address 0x0000_0000 plus the current offset,
the Boot ROM can write the BootModeClr bit to remap itself back to 0x8009_0000 plus the current
offset. Execution then continues with the instruction at the next Boot ROM address in
0x8009_0000 space.

4.1.2 Boot ROM Software Operational Overview

The Boot ROM is a 16 kbyte mask-programmed ROM that controls the source of the first off-
chip code that is executed by the ARM Core. The code within the Boot ROM supports the
following sources for the processor’s initialization program:

 UART1: Code is downloaded through UART1 into an on chip buffer and executed

e SPI Serial Flash: Code is copied from an SPI Serial Flash into an on-chip buffer and
executed

e FLASH: Code present in external FLASH memory is executed directly

DS785UM1 4-1
Copyright 2007 Cirrus Logic

Boot ROM

EP93xx User’s Guide

il

Note that the code retrieved via UART1 and the SPI Serial Flash is not intended to be a
complete operating system image. It is intended to be a small (up to 2 kbyte) loader that will,
in turn, retrieve a complete operating system image. This small loader can retrieve this
complete image through UARTL1 or the SPI Serial Flash (just as the Boot ROM did) or it can
be more sophisticated and retrieve it through the IrDA, USB, or Ethernet interfaces.

The Boot ROM code disables the ARM920T’s MMU, so any loader program that is
downloaded sees physical addresses. The loader is free to initialize the page tables and start
the MMU and caches if needed.

The Boot ROM code also does not enable interrupts or timers, so that the system delivered to
the user is in a known safe state and is ready for an operating system or for user code to be
loaded.

4.1.2.1 Image Header

For images copied from the SPI Serial Flash or external FLASH, one of the ASCII strings,
“CRUS” or “SURC”, must be present as a HeaderID prefixed to an executable image.

4.1.2.2 Boot Algorithm

4-2

The steps in the software boot process are:
1. Remap memory
. Turn the green LED off and the red LED on
. Disable the Watchdog timer
. Read the Boot State

. Set up the Clocks to run from external clocks (PLLs are not configured)

o g B~ WDN

. Based on the Boot State memory width, follow steps A, B, and C.

A. Initialize the SYNC Flash and SMC memory interfaces for slow (maximum
compatibility) operation

B. Initialize the SDRAM interfaces.
C. Perform minimal memory tests

7. Based on the contents of the SysCfg register, start serial download (see Figure 4-1), and
then follow Steps A, B, C, D, E, and F.

A. Initialize UART1 to 9600 baud, 8 bits, no parity, 1 stop bit
B. Output a “<” character

C. Read 2048 (decimal count) characters from UART1 and store these in the internal
Boot buffer (alias for the Ethernet Mac buffer)

D. Output a “>" to signify 2048 characters have been read
E. Turn on Green LED

F. Jump to the start of the internal Boot Buffer

DS785UM1
Copyright 2007 Cirrus Logic

I

Boot ROM
EP93xx User’s Guide

8. If it is not a Serial Download, attempt to read from SPI Serial Flash (see Figure 4-1), and
then follow Steps A, B, C, and D.

A. Check if the first 4 bytes from the Serial Flash are equal to “CRUS” or to “SURC" in
ASCII, verifying the HeaderID

B. Read the next 2048 (decimal count) bytes into the Internal Boot Buffer
C. Turn on Green LED

D. Jump to the start of the Internal Boot Buffer

9. Attempt to read the “CRUS” or “SURC"” HeaderID in ASCIl in FLASH memory at FLASH

Base + 0x0000, and verify the HeaderID. This is read in for each FLASH Chip select
(see Figure 4-1), and then follow Steps A and B.

A. Turn on Green LED
B. Jump to the start of FLASH memory plus four bytes

10.Attempt to read the “CRUS” or “SURC” HeaderID in ASCIl in FLASH memory at FLASH
Base + 0x1000, and verify the HeaderID. This is read in for each FLASH Chip select
(see Figure 4-1), and then follow Steps A and B.
A. Turn on Green LED

B. Jump to the start of FLASH memory

11.Attempt to read the “CRUS” or “'SURC” HeaderID in ASCII in memory at 0xC000_0000

and OxF000_0000, and verify the HeaderID. This is read in for SDRAM or SyncFLASH
boot (see Figure 4-1), and then follow Steps A and B.

A. Turn on Green LED

B. Jump to memory location 0xC000_0004 or 0xFO00_0004

12.Attempt to read the “CRUS” or “SURC” HeaderID in ASCII in memory at 0xC000_1000
and OxF000_1000, and verify the HeaderID. This is read in for SDRAM or SyncFLASH

boot (see Figure 4-1), and then follow Steps A and B.
A. Turn on Green LED
B. Jump to memory location 0xC000_0000 or OxFO00_0000

13.If “CRUS” or “SURC"” HeaderlID is not found, copy dummy vectors into low SDRAM, and
then follow Step A.
A. Flash Green LED

4.1.2.3 Flowchart

Figure 4-1 provides a flow chart for operation of the Boot ROM software.

DS785UM1

4-3
Copyright 2007 Cirrus Logic

Boot ROM
EP93xx User’s Guide

——.
——fER.
—r
——
—r
—
——
Start Internal Boot
Read Boot Set Up Set Up
State Clocks Memory
|
~ Download Boot
/ Code Download
Boot Code
SPI Boot ? Copy
Code Copy
Flash Boot ? Boot Flash
See 4.2.3
Sync Boot ? ~— | Boot Sync
See 4.2.4
Copy
Vectors
Flash
Green Led

Figure 4-1. Flow Chart of Boot ROM Software

4.2 Boot Options

Table 4-1 shows configuration settings that are common to all boot modes.

4-4 DS785UM1
Copyright 2007 Cirrus Logic

I

Boot ROM
EP93xx User’s Guide

Table 4-1. Boot Configuration Options

EECLK | EEDAT | BOOT1 | BOOTO |ASDO |CSn[7:6] Boot Configuration
External boot using Sync boot mode and SDCSn3.
The media type must be either SyncROM or
SyncFLASH. The selection of the bus width is
determined by latched CSn[7:6] value:
16-bit
0 1 0 0 1 00 16-bit
01 .
10 32-bit
11 32-bit
External boot using Async boot mode and CSn0. The
selection of the bus width is determined by latched
CSn[7:6] value:
00 i-etfltt)it
0 1 0 0 0 01 .
10 32-bit
11 32-bit
1 1 0 1 X XX Internal boot from UARTL.
1 1 0 0 X XX Internal SPI boot if HeaderID is found.
Internal boot using SYNC boot mode at the chip select
where the HeaderlD exists. The selection of the bus
width is determined by latched CSn[7:6] value:
00 16-bit
01 16-bit
10 32-bit
1 1 0 0 1 11 | 32-bit
See memory map in Table 2-7 on page 2-16 for SYNC
boot mode.
Internal boot using ASYNC boot mode at the chip
select where the HeaderID exists. The selection of the
bus width is determined by latched CSn[7:6] value:
00 8-bit
01 16-bit
10 32-bit
! L 0 0 0 11 32-bit
See memory map in Table 2-7 on page 2-16 for
ASYNC boot mode.

Note: ASYNC boot mode is the preferred boot mode type for new designs.

DS785UM1

4-5

Copyright 2007 Cirrus Logic

Boot ROM

EP93xx User’s Guide

il

4.2.1 UART Boot

Make sure that the boot configuration pins (see Table 5-1 on page 5-2) are configured for
internal boot mode. EEDAT and BOOTO should be pulled high and BOOT1 should be pulled
low as shown in Table 5-2 on page 5-3. UART 1 is configured at 9600 bps, 8-bits, No Parity,
No flow control. The code performs:

1. A single “<"is output by UART 1
2. The ASCII “CRUS” or “SURC” value in the HeaderID is read

3. 2048 characters are received by UART 1 and copied to the Ethernet buffer at address
0x8001_4000

4. The ARM Core will jump to 0x8001_4000. The ARM Core will be in SVC mode when the
jump occurs.

4.2.2 SPlBoot

To boot from an SPI Serial Flash device, make sure that the boot configuration pins (see
Table 5-1 on page 5-2) are configured for internal boot mode. EEDAT should be pulled high
and LBOOT1 and LBOOTO should be pulled low as shown in Table 5-2 on page 5-3.

To boot from the SPI ROM, place the ASCII “CRUS” or “SURC” value in the HeaderID at the
first location in the ROM. The code will be copied from the SPI ROM to the Ethernet buffer at
address 0x8001_4000 with a length of 2048 bytes. Code execution will start at 0x8001_4000
(MAC base + 0x4000). The ARM Core will be in SVC mode. At this point the user can use the
code in the MAC buffer to load the rest of the image from the SPI ROM.

4.2.3 FLASH Boot

4-6

To enable FLASH boot, make sure that the boot configuration pins (see Table 5-1 on page 5-
2) are configured for normal boot mode, as shown in Table 4-1. Also make sure that the
FLASH word size is correct as shown in Table 4-1.

To boot from FLASH, put the ASCII “CRUS” or “SURC” value in the HeaderID at one of the
following locations (this location will be referred to as FLASH base + 0x0):

0x1000_0000
0x2000_0000
0x3000_0000
0x6000_0000
0x7000_0000

Code execution will start at address FLASH base + 0x4. The ARM Core will be in SVC mode.

Alternatively, to boot from FLASH, put the ASCII “CRUS” or “SURC” value in the HeaderID at
one of the following locations (this location will be referred to as FLASH base +0x1000):

0x1000_1000
0x2000_1000

DS785UM1
Copyright 2007 Cirrus Logic

Boot ROM
EP93xx User’s Guide

I

0x3000_1000
0x6000_0000
0x7000_0000

Code execution will start at address FLASH base + 0x0. The ARM Core will be in SVC mode.

Note: CSn6 is the recommended chip select for Flash when performing an Internal boot. CSn0
must be connected to Flash when performing an External boot.

4.2.4 SDRAM or SyncFLASH Boot

To enable SDRAM or SyncFLASH boot, make sure that the pins are configured for normal
boot mode, as shown in Figure 4-2. If booting with SyncFLASH or a 32-bit SDRAM device,
make sure the SDRAM or SyncFLASH word size is correct, as shown in Figure 4-2. If booting
with a 16-bit SDRAM device, follow the suggested software sequence of commands, as
shown in Figure 4-2.

Boot Internally with Asynchronous Device |

Re-configure SDRAM for 16-bit access |

Branch to desired SDRAM memory |

Figure 4-2. Flow chart of Boot Sequence for 16-bit SDRAM Devices

To boot from SDRAM or SyncFLASH, put the ASCII “CRUS” or “SURC” value in the
HeaderlID at one of the following locations (this location is Base + 0x0):

0xC000_0000
0xF000_0000

Code execution will start at address Base + 0x4. The ARM Core will be in SVC mode.

Alternatively, to boot from SDRAM or SyncFLASH, put the ASCII “CRUS” or “SURC” value in
the HeaderID at one of the following locations (this is Base + 0x1000):

0xC000_1000
0xF000_1000

Code execution will start at address Base + 0x0. The ARM Core will be in SVC mode.

4.2.5 Synchronous Memory Operation

If running from Synchronous memory, before issuing a software reset, perform this
procedure:

1. Run from SDRAM
2. Perform a software reset (SWRST bit in DEVCFG register)

DS785UM1 4-7
Copyright 2007 Cirrus Logic

Boot ROM
EP93xx User’s Guide

il

3. Run the internal boot code and boot from FLASH
4. Set the PLL back to use the external clock
5. Set up the SDRAM
6. Load the programs to SDRAM
7. Run from SDRAM

4-8 DS785UM1
Copyright 2007 Cirrus Logic

Chapter 5

System Controller

5.1 Introduction
The System Controller (Syscon) provides:
* Clock control
* Power management
« System configuration management

These central resources are controlled by a set of software-locked registers, which can be
used to prevent accidental accesses. Syscon generates the various bus and peripheral
clocks and controls the system startup configuration.

5.1.1 System Startup

System startup begins with the assertion of a reset signal. There are five different categories
of reset events. In order of decreasing effect, the reset events are:

* PRSTn (external pin for power-on reset)

RSTON (external pin for user reset)
Three-key reset externally generated by a Keypad (behaves like user reset)

Watchdog reset (internally generated)
» Software reset (internally generated)
During the time that any reset is active, the system is halted until it exits the reset state.

When the device starts with an external PRSTn or RSTOn, certain hardware configurations
are determined, and some system configuration information will be recorded so that software
can access it. See the details in “System Reset” on page 5-1 and “Hardware Configuration
Control” on page 5-2.

5.1.2 System Reset
The device system reset consists of several events and signals. It has four levels of reset
control:

« Power-on-reset, controlled by PRSTn pin. It resets the entire processor with no
exceptions.

» User reset, controlled by RSTOnN pin. While active, it resets the entire processor, except

DS785UM1 5-1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

certain system variables such as RTC, SDRAM refresh control/global configuration, and
the Syscon registers.

Note: If PLLs are enabled, user reset does NOT disable or reset the PLLs. They retain their

frequency settings.

« Three-key reset. When F2, F4, and F7 are pressed, a user reset occurs.

« Software reset and watchdog reset. They perform the functions of the user reset, but are
under software control.

“Watchdog” on page 19-3 and “PwrSts” on page 5-14 registers contain the information
regarding which reset event occurred. Note that only the Watchdog timer contains
information about a user-generated 3-key reset.

5.1.3 Hardware Configuration Control

The Hardware Configuration controls provide a mechanism to place the system into various
boot configurations. In addition, one of several external boot memory options can be selected
at system wake up.

The Hardware Configuration controls are defined by a set of device pins that are latched into
configuration control bits on the rising edge of the PRSTn or RSTOn pin. The different
hardware configuration bits define watchdog behavior, boot mode (internal or external), boot
synchronicity, and external boot width. The latched pins are described in Table 5-1.

Table 5-1. Hardware Configuration Control Latched Pins

Pin Name(s) Action

csn1] Enablg/DlsabIe Watchdog
reset timer

csni2] Enable/Dl;abIe Watchdog
reset duration

CSn[3] Should be pulled-up to “1”

EECLK Select internal or external
boot

EEDAT Should be pulled-up to “1”

BOOT[1:0] Select boot mode

ASDO Select synchronous or
asynchronous boot

CSn[7:6] Select external boot width

The latched version of these signals have an “L” prefix, are stored in the SysCfg register, and
are readable by software. Note that the signals EECLK and EEDAT may have 1 kQ pull-up
resisters if used in an open-drain two-wire serial port application. (The default state
assignments will assume these pull-ups.)

The Hardware Control configurations are show in Table 5-2.

5-2 DS785UM1
Copyright 2007 Cirrus Logic

I

System Controller
EP93xx User’s Guide

The normal boot function is described in Chapter 4 on page 4-1.

Serial boot is functionally identical to normal boot except that the SBoot bit in the SysCfg
register is set. This mode is available for a software configuration option that is readable by
the boot code.

In either normal boot or serial boot mode, once the processor starts up, it will begin to
execute the instruction at logical address 0x0000_0000. Various configuration options are
provided to select a memory device for booting from at address location 0. The options are

listed in Table 5-2.

Table 5-2. Boot Configuration Options

EECLK | EEDAT | BOOT1 | BOOTO [ASDO |CSn[7:6] Boot Configuration
External boot fusing Sync boot mode and SDCSn3.
The media type must be either SROM or SyncFLASH.
The selection of the bus width is determined by latched
CSn[7:6] value:
00 16-bit
0 1 0 0 1 01 16-bit
10 32-bit
11 32-bit
External boot using Async boot mode and CSn0. The
selection of the bus width is determined by latched
CSn[7:6] value:
00 | oy
0 1 0 0 0 01 .
10 32-bit
11 32-bit
XX Internal boot from UARTL1.
1 1 0 1 X
1 1 0 0 X XX Internal SPI boot if HeaderID is found.
Internal boot using Sync boot mode at the chip select
where the Header|D exists. The selection of the bus
width is determined by latched CSn[7:6] value:
16-bit
00 | ey
1 1 0 0 1 01 .
10 32-bit
11 See memory map in Table 2-7 on page 2-16 for SYNC
boot mode.
Internal boot using Async boot mode at the chip select
where the HeaderlD exists. The selection of the bus
width is determined by latched CSn[7:6] value:
8-bit
00 | oy
1 1 0 0 0 01 .
10 32-bit
11 See memory map in Table 2-7 on page 2-16 for
ASYNC boot mode.

DS785UM1

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

Note: ASYNC boot mode is the preferred boot mode type for new designs.

5.1.4 Software System Configuration Options

There are several system configuration options selectable by the DeviceCfg and SysCfg
registers. These registers provide the selection of several pin multiplexing options and also
provide software access to the system reset configuration options. Please refer to the
descriptions of the registers, “DeviceCfg” on page 5-25 and “SysCfg” on page 5-34, for a
detailed explanation.

5.1.5 Clock Control

The EP93xx uses a flexible system to generate required clocks. The clock system generates
up to 20 independent clock frequencies, some with very tight accuracy requirements, all from
a single external low-frequency crystal or other external clock source. The ARM Core is
designed so that once it has been configured, its CPU speed, bus speeds, and video clocks
may be set to a number of different speeds without affecting the speeds of other clocks in the
processor.

5.1.5.1 Oscillators and Programmable PLLs

5-4

The EP93xx has an interface to two external crystal oscillators: 32.768 KHz and

14.7456 MHz. To generate the required high-frequency clocks, the processor uses two
phase-locked-loops (PLLs) to multiply the incoming 14.7456 MHz low frequency signal to
much higher frequencies that are then divided down by programmable dividers to produce
needed clocks. The PLLs operate independently of one another.

Figure 5-1 shows the PLL1 structure used in the EP93xx. Since PLL2 is identical to PLL1,
wherever the phrase “PLL1" is used in the figure, it applies to PLL2 as well.

r———- - - - - " -" " -2 - " - - — Bl
| |
13”7_'4;’ Input Divider I
i ® pLL1 x21PD 2(PLLLPY 125
| T
| |
| |
| |
| > |
| Feedback Divider | Feedback Divider | |
| PLL1 X1FBD PLL1 X2FBD |

Figure 5-1. Phase Locked Loop (PLL) Structure

DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

I

Both PLLs are software programmable (each value is defined in “ClkSet1” on page 5-18 and

“ClkSet2” on page 5-20 registers, respectively). The frequency of output clock Fout is
determined by:

(PLL1 X1FBD + 1) x (PLL1 X2FBD + 1)

Fout= 14.7456MHz -
(PLL1 X2IPD + 1) x 2"--1-P°

Here PLL1 X1FBD, PLL1_X2FBD, PLL1_X2IPD and PLL1_PS are the bit fields in the
"ClkSetl" register. The user must be aware of the requirements of PLL operation. They are:

« PLL1 X1 desired reference clock frequency range is > 11.058 MHz and < 200 MHz
* PLL1_X1 output frequency range is > 294 MHz and < 368 MHz

* PLL1_X2 desired reference clock frequency (after PLL1_X2IPD divider) is > 12.9 MHz
and < 200 MHz.

e PLL1_X2 output, BEFORE the PS divide, must be > 290 MHz and <= 528 MHz
The same conditions apply to PLL2 and the "ClkSet2" register.

5.1.5.2 Bus and Peripheral Clock Generation

Figure 5-2 illustrates the clock generation system.

DS785UM1 5-5
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

——————N
—r
—rf
—rt
—
—
[syscon 1
32 KHz Oscillator ‘ |
‘ aokpy [WATCH_CLK |
Divide
‘ _ L UARTXCLK |
Peripheral | sspet K
‘ Clocks PWMCLK |
—— Timer Clocks
‘ - FCLK |
CPU and
Bus Clocks HCLK
—— PCLK
. ‘ USBand —— USBHost48MHz |
14.7456 MHz Oscill ator yssad USBLOGLAM s
‘ - FIR_CLK
PLL1CFG PLLL ' .
| Video 1 yerk |
Clocks
PLL2 CFG PLL2 | L sok
i Audio
| e [LRCLK |
Clocks | mcLk
MIR |
‘ A MIR_CLK |
Key [——KEY _CLK
‘ Touwch ——TOUCH_CLK |
Clock ——ADC CLK
——FILT CLK

L. - _— -

Figure 5-2. Clock Generation System

5.1.5.2.1 Bus Clock Generation

Figure 5-3 shows the generated clocks: the CPU clock (FCLK), the AHB bus clock (HCLK),
and the APB bus clock (PCLK).

5-6 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

I

External Clock PLL1

; * MAX = 500 MHz

\J \J For 2nd stage dividers:
HCLK FCLK FCLK Divide = 1, 2, 4, 8, 16
Div Div HCLK Divide = 1, 2, 4, 5, 6,
8, 16, 32

MAX = 100 MHz

-
MAX = 250 MHz FCLK

|
HCLK
Y
PCLK
Div >
MAX = 50 MHz PCLK

PCLK Divide = 1, 2, 4, 8

Figure 5-3. Bus Clock Generation

There are some limitations of each clock. FCLK must be <=200 MHz, HCLK<=100 MHz and
PCLK<=50 MHz and FCLK >= HCLK > PCLK. Refer to register, “ClkSetl1” on page 5-18, for
the detailed configuration information regarding the divider bit fields.

DS785UM1 5-7
Copyright 2007 Cirrus Logic

System Controller

EP93xx User’s Guide

il

Even though FCLK is the usual CPU clock, HCLK can optionally be used instead. Processor
clocking modes are:

* Async mode
e Sync mode
« Fast Bus mode

Both Async mode and Sync mode use FCLK. FCLK can be faster than HCLK, which would
yield higher performance. Async mode and Sync mode have different clock skew
requirements between FCLK and HCLK, and therefor have different throughput penalties due
to clock synchronization. Fast Bus mode bypasses FCLK, and the CPU runs from HCLK. In
this mode, the ARM Core potentially has lower performance than with the other two modes.
When the ARM Core starts up, it defaults to Fast Bus mode. (The selection of clocking
modes is determined by the iA and nF bits in ARM co-processor 15 register 1.)

5.1.5.2.2 Peripheral Clock Generation

5-8

The MCLK, VCLK, and MIR_CLK generators are three identical blocks. Each block contains
a pre-divider of 2, 2.5 and 3 followed by a 7-bit programmer divider. The audio clock SCLK
and LRCLK are further divided down from MCLK. The registers, “MIRCIkDiv” on page 5-30,
“VidCIkDiv” on page 5-29, and “I2SCIkDiv” on page 5-31, show the details.

USB uses a 48 MHz clock generated by PLL2. USBDIV, in register “ClkSet2” on page 5-20, is
used to divide the frequency down from the PLL2 output.

The Key Matrix and Touchscreen Controller clocks are generated from an external 14.7 MHz
oscillator. A chain of dividers generates divide-by-2, 4, 8, 16, 32, 64 versions of external
oscillator clock. Programmable bits in the “KeyTchCIkDiv’ on page 5-32 select either a divide-
by-4 or a divide-by-16 version of the external oscillator clock for each of the Key Matrix clock
and Touchscreen controller.

Table 5-3 describes the speeds and sources for the various clocks.
Table 5-3. Clock Speeds and Sources

Block Clocks Used Clock Source
SSP 7.3728 MHz Divided by 2 from 14.7456 MHz external oscillator
UART1
UART2 14.7456 MHz Both are derived from 14.7456 MHz external oscillator
7.3728 MHz

UART3

PWM 14.7456 MHz From the 14.7456MHz external oscillator

AAC 2.9491 MHz Divided-by-5 from the 14.7456MHz external oscillator

508.4689 KHz
Timers 1.9939 KHz All divided by the 14.7456 MHz external oscillator
983 KHz
Watchdog 256 Hz Tap from the 32 KHz RTC clock

DS785UM1
Copyright 2007 Cirrus Logic

!

System Controller
EP93xx User’s Guide

5.1.5.3

Steps for Clock Configuration

The boot ROM must contain code that performs the following steps for a 14.7456 MHz
crystal. The actual register values should be taken from the register descriptions for the
desired clock setup.

1. After power up, the reset state of all clock control registers (all bits zero) will ensure that
FCLK and HCLK are running at the crystal oscillator frequency of 14.7456 MHz.

2. Configure PLL1 to multiply by the desired value, set HCLK and FCLK rates, and power it
up. To do this: write the proper value (taken from the register table) to "ClkSet1"
immediately followed by 5 NOP instructions to flush the ARM Core’s instruction pipeline.
The ARM Core will go into Standby mode while PLL1 stabilizes, then it returns to normal
operation at the new clock rates.

w

. Configure PLL2 to multiply by the desired value. To do this, write the proper value to
"ClkSet2".

. Wait for PLL2 to stabilize (at least 1 ms)

IN

5. Program all other clock dividers to the desired values and enable them. The clocks won't
actually begin running until the clock sources which feed them are enabled. Write the
desired values to these registers:

* “VidCIkDiv" on page 5-29

» “MIRCIKDiv" on page 5-30

» “I2SCIkDiv” on page 5-31

» “KeyTchCIkDiv” on page 5-32

6. All peripherals are now running from divided PLL outputs. Once the clocks have been
configured, the frequency of any peripheral clock can be changed on-the-fly. To do this,
perform a write to the clock register with the new divisor value and then set the
appropriate enable bit. This ensures a problem-free change of the clock.

5.1.6 Power Management

The device follows a power-saving design plan. Power management is done by either
altering the PLLs or the clock system frequency or by shutting off clocks to unused blocks.
Also, there are several system power states to which the device can transition in order to
save power. Care must be taken to ensure the clock system is not put into a non-operational
state and that clock system dependencies are observed.

5.1.6.1 Clock Gatings

The list of peripherals with PCLK gating is shown Table 5-4. Refer to the appropriate chapter
in this user’s guide to find detailed information about clock gatings for a specific peripheral.

DS785UM1

5-9
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

5 Table 5-4. Peripherals with PCLK Gating
Peripheral/PCLK PCLK on with

Peripheral on with Enable or Register Access | PCLK Continuous
Register Access Only

UART1 X - -
UART2 X - -
UART3 X - -
KEYPAD - X -
IRDA X - -
SEC X - -
%S X - -
Watchdog - - X
TSC - X -
PWM X - -
AAC X - -
SSP X - -
RTC - - X
GPIO - X -

HCLK to the USB Hosts can be gated off as well to further save power. The USH_EN bit in
the "PwrCnt" register serves the purpose.

5.1.6.2 System Power States
The EP93xx has three power states:
* Run mode: Normal operation mode.
« Halt: ARM Core stops executing instructions.
« Standby: Power is on, but only SDRAM self-refresh and the RTC run.

Figure 5-4 illustrates the transitions among power states.

5-10 DS785UM1
Copyright 2007 Cirrus Logic

I

Power on
Reset

Read Standby register &
SHena=1

Any Enabled Interrupt

Write to
ClkSetl register

Read Halt register
& SHena=1

Interrupt (if enabled) or
return from ClkSetl

Figure 5-4. Power States and Transitions

5.1.6.2.1 Power-on-Reset Run
After power-on-reset, the ARM Core is automatically in run mode.
5.1.6.2.2 Run Standby Mode

Once in run mode, it is possible to move to the Standby state under these conditions:

« Aread from the Standby register location 0x8093 _000C when the SHena bit in the
"DeviceCfg" register is set to 1. This triggers the system to enter STANDBY mode.

« A write to the "ClkSetl1" register.

When the SHena bit is set to 1 and the user reads the Standby register location

System Controller
EP93xx User’s Guide

0x8093_000C, the EP93xx is forced to transition into the Standby state. After this transition,

the state controller will hold the Standby state before re-loading and allowing transition to
Run state.

A write to the "ClkSet1" register will also trigger the system to go into Standby mode.
However, the system will automatically come back to normal operation after new clock

the

settings take effect. The amount of time the EP93xx remains in the Standby state depends on
whether the PLL is enabled, or if the EP93xXx is using the external clock. If the PLL is enabled,

the EP93xx will remain in Standby until the PLL is locked. If the EP93xx is in PLL bypass
mode (NBYP1 = 1), then the EP93xx will remain in the Standby state for One to two
16.384 kHz clock cycles. This is to ensure a minimum 'off' time. The 16.384 kHz clock,

derived from the 32.768 kHz clock, times how long the EP93xx remains in the Standby state.

When the EP93xx normally enters Standby mode, the SDRAM controller puts the external
SDRAM into self-refresh before disabling its clocks (see “SDRAM Self Refresh” on page 13-
8). This condition is only true if the refresh enable bit (RFSHEN) in the SDRAM controller is

DS785UM1
Copyright 2007 Cirrus Logic

5-11

System Controller
EP93xx User’s Guide

il

set. One example of this is when a power-on-reset is applied and this register bit is cleared.
This means that this bit will not be set on boot-up and will have to be set to maintain the
memory image for when the device re-enters Standby mode.

5.1.6.2.3 RUN HALT mode

A transition from Run mode to Halt mode is caused by reading the Halt register location
0x8093 0008 with the SHena bit set to 1. This has the effect of gating the CPU clock (FCLK)
bus interface, with the APB/AHB system clock, and Memory/DMA system remaining enabled.

5.1.6.2.4 STANDBY RUN mode

There are normally several conditions in which the device can move from Standby mode to
Run mode.

These conditions are:

» A falling edge on IRQ interrupt

A falling edge on FIQ interrupt

An exit from a "ClkSetl1" write
PRSTn
RSTOn

The EP93xx comes out of Standby if an interrupt occurs or when an exit from a ClkSet1 write
occurs. If a write is performed to the ClkSetl register, the EP93xx then enters Standby mode
and then automatically comes out of Standby mode and back into the Run state.

5.1.6.2.5 HALT RUN mode

The transition from the Halt state to the Run state is caused by:
« A falling edge on IRQ interrupt
» A falling edge on FIQ interrupt
¢ RSTOnN

5.1.7 Interrupt Generation

The Syscon block generates two interrupts: TICK interrupt and Watchdog Expired interrupt.

The block generates the TICK interrupt based upon the 64 Hz clock, which is derived from
the 32.768 KHz oscillator. The interrupt becomes active on every rising edge of the internal
64 Hz clock. It can be cleared by writing to the TEOI location.

Watchdog Expired interrupt becomes active on a rising edge of the 64 Hz TICK clock, if the
TICK interrupt is still active. In other words, if a TICK interrupt has not been served for a
complete TICK period, a watchdog expired interrupt is generated. It can be cleared by writing
to the TEOI location as well.

5-12 DS785UM1
Copyright 2007 Cirrus Logic

!

5.2 Registers

This section contains the detailed register descriptions for registers in the Syscon block.
Table 5-5 shows the address map for the registers in this block, followed by a detailed listing
for each register.

Table 5-5. Syscon Register List

System Controller
EP93xx User’s Guide

Address Name SW Locked Type Size Description
0x8093_0000 PwrSts No R 32 Power/state control state
0x8093_0004 PwrCnt No R/W 32 Clock/Debug control status
0x8093_0008 Halt No R 32 Reading this location enters Halt mode.
0x8093_000C Standby No R 32 Reading this location enters Standby mode.
0x8093_0018 TEOI No 32 Write to clear Tick interrupt
0x8093_001C STECIK No 32 Write to cIear\i:VI_D?_IIZ:LLCé- RSTFLG and
0x8093_0020 ClkSetl No R/W 32 Clock speed control 1
0x8093_0024 ClkSet2 No R/W 32 Clock speed control 2
0x8093_0040 ScratchReg0 No R/W 32 Scratch register O
0x8093_0044 ScratchRegl No R/W 32 Scratch register 1
0x8093_0050 APBWait No R/W 32 APB wait
0x8093_0054 BusMstrArb No R/W 32 Bus Master Arbitration
0x8093_0058 BootModeClr No W 32 Boot Mode Clear register
0x8093_0080 DeviceCfg Yes R/W 32 Device configuration
0x8093_0084 VidCIkDiv Yes R/W 32 Video Clock Divider
0x8093_0088 MIRCIKDiv Yes RIW 32 MIR Clock Divider, divides MIR clock for

MIR IrDA
0x8093_008C I12SCIkDiv Yes R/W 32 12S Audio Clock Divider
0x8093_0090 KeyTchCIkDiv Yes R/W 32 Keyscan/Touch Clock Divider
0x8093_0094 ChipIlD Yes R/W 32 Chip ID Register
0x8093_009C SysCfg Yes R/W 32 System Configuration
0x8093_00A0 - - - - Reserved
0x8093_00C0 SysSWLock No R/W 1 bit Software Lock Register

DS785UM1

Copyright 2007 Cirrus Logic

5-13

System Controller

EP93xx User’s Guide

Register Descriptions

il

31

30

29

28

27

26

25 24 23 22 21 20

[N

9 18 17 16

CHIPMAN

CHIPID

15

14

13

12

11

10

9 8 7 6

o
IN

3 2 1 0

WDTFLG

RSVD

CLDFLG

TEST_
RESET

RSTFLG

SW_
RESET

LOCK_REG | LOCK |LOCK_REG | LOCK

PLL2_ PLL2_ PLL1_ PLL1_ RTCDIV

Address:

Definition:

0x8093_0000 - Read Only

The PwrSts system control register is the Power/State control register.

Bit Descriptions:

5-14

RSVD:

RTCDIV:

PLL1_LOCK:

Reserved. Unknown During Read.

The 6-bit RTCDIV shows the number of 64-seconds which
have elapsed. It is the output of the divide-by-64 chain that
divides the 64 Hz TICK clock down to 1 Hz though
showing an incrementing count. The MSB is the 1 Hz
output; the LSB is the 32 Hz output. It is reset by power-
on-reset to 000000b.

PLL1 lock. This signal goes high when PLL1 is locked and
it is at the correct frequency.

PLL1 LOCK_REG:Registered PLL1 lock. This is a one-shot registered signal

PLLZ2_LOCK:

of the PLL1_LOCK signal. It is only cleared on a power-
on-reset, when the device enters the Standby state or
when PLL1 is powered down.

PLL2 lock. This signal goes high when PLL2 is locked, and
it is at the correct frequency.

PLL2 LOCK REG:Registered PLL2 lock. This is a one-shot registered signal

SW_RESET:

of the PLL2_LOCK signal. It is only cleared on a power-
on-reset, when ClkSet2 is written, the device enters the
Standby state, or PLL2 is powered down.

Software reset flag. This bit is set if the software reset has
been activated. It is cleared by writing to the STFCIr
location. On power-on-reset, it is reset to Ob.

DS785UM1

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

I

RSTFLG: Reset flag. This bit is set if the user reset button has been
pressed; forcing the RSTOn input low. It is cleared by
writing to the STFCIr location. On power-on-reset, it is
reset to Ob.

TEST_RESET: Test reset flag. This bit is set if the test reset has been
activated; it is cleared by writing to the STFClIr location. On
power-on-reset, it is reset to Ob.

CLDFLG: Cold start flag. This bit is set if the device has been reset
with a power-on-reset; it is cleared by writing to the STFCIr
location. On power-on-reset, it is set to 1b.

WDTFLG: Watchdog Timer flag. This bit is set if the Watchdog timer
resets the system. It is cleared by writing to the STFCIr
location. It is reset to 0.

CHIPID: Chip ID bits. This 8-bit register determines the Chip
Identification for the device. For the device, this value is
0x20.
CHIPMAN: This 8-bit register determines the Chip Manufacturer ID for
the device. For the device, this value is 0x43.
PwrCnt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FIR_EN RSVD UART USH_EN DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA
BAUD M2M M2M M2P M2P M2P M2P M2P M2P M2P M2P M2P M2P
CH1 CHO CH8 CH9 CH6 CH7 CH4 CH5 CH2 CH3 CHO CH1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD
Address:
0x8093 0004 - Read / Write
Definition:

The PwrCnt system control register is the Clock/Debug control status register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DS785UM1 5-15
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

DMA M2M/P CHx: These bits enable the clocks to the DMA controller

USH_EN:

UARTBAUD:

FIR_EN:

5-16

channels. Note that a channels-enable bit MUST be
asserted before any register within the DMA controller can
be read or written. At least one ARM instruction cycle must
occur between writing to this register to enable the DMA
Controller channel and actually accessing it. The number
of cycles will depend on the setting of HCLK and PCLK
division in the "ClkSetl" or "ClkSet2" register. To save
power, ensure that all these bits are disabled (low) if the
DMA controller is not being used. On a system reset, the
register will be reset to zero.

This bit is used to gate the HCLK to the USB Host block in
order to save power. It is reset to zero, thus gating off the
HCLK. It can be set to one to turn on the HCLK to the USB
Host. This bit must be set before any register within the
USB Host can be accessed. At least one ARM instruction
cycle must occur between writing to this register bit and
actually accessing the USB Host. The number of cycles
will depend on the setting of HCLK and PCLK division in
the "ClkSetl" and "ClkSet2" register.s

This bit is also used to gate the 48 MHz and 12 MHz
clocks to the USB Host block in order to save power. It is
reset to zero, thus gating off the USB Host clocks. By
setting this to one, the USB Host clocks are enabled. At
least one ARM instruction cycle must occur between
writing to this register bit and actually accessing the USB
Host. The number of cycles will depend on the wake-up
time for PLL2. To find out if PLL2 has locked on to its
frequency, the PLL2_LOCK bit in the PwrSts register can
be read.

This bit controls the clock input to the UARTs. When
cleared, the UARTSs are driven by the 14.7456 MHz clock
divided by 2 (7.3728 MHz). This gives a maximum baud-
rate of 230 Kbps. When set, the UARTSs are driven by the
14.7456 MHz clock directly, giving an increased maximum
baud rate of 460 Kbps. This bit is O on reset.

This bit is used to gate the FIRCLK to the IrDA block in
order to save power. It is reset to zero, thus gating off the
FIRCLK. Setting this bit to one will turn on the 48 MHz
clock to the IrDA.

DS785UM1

Copyright 2007 Cirrus Logic

i

Standby and Halt

31 30 29

28

System Controller
EP93xx User’s Guide

27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13

12

11 10 9 8 7 6 5 4 3 2 1 0

RSVD

Address:

Definition:

Standby - 0x8093_000C - Read Only
Halt - 0x8093_0008 - Read Only

The Standby and Halt registers allow entry into the power saving modes. A
read to the Halt location will initiate a request for the system to enter Halt
mode, if the SHena bit is set in the DeviceCfg register in Syscon. Likewise a
read to Standby will request entry into Standby only when the SHena bit is set.

Note: When a read is performed to the Standby location, it must be immediately followed by 5
NOP instructions. This is needed to flush the instruction pipeline in the ARM920T core.
Writes to these locations have no effect.

Bit Descriptions:

RSVD: There are no readable bits in this register.
TEOI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD
Address:
0x8093_0018 - Write
Definition:

Bit Descriptions:

DS785UM1

Writing to the TEOI location will clear the periodic Watchdog expired interrupt
(WEINT) and the 64 Hz TICK interrupt (TINT). Any data written to the register
triggers the clearing.

RSVD: There are no readable bits in this register.

5-17
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

STFCIr
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD
Address: _
0x8093_001C - Write
Definition:

Bit Descriptions:

Writing to the STFCIr location will clear the CLDFLG, WDTFLG and RSTFLG

in the register, “PwrSts” on page 5-14. Any data written to the register triggers
the clearing.

RSVD: There are no readable bits in this register.
ClkSetl
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD FCLK DIV SMC ROM nBYP1 HCLK DIV PCLK DIV PLL1_PS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PLL1 X1FBD1 PLL1 X2FBD2 PLL1 X2IPD
Address: _
0x8093 0020 - Read/Write
Definition:

The ClkSetl system control register is one of two register that control clock
speeds.

Note: When a write is performed to the ClkSet1 location, it must be immediately followed by 5
NOP instructions. This is needed to flush the instruction pipeline in the ARM920T core.
Writing to this register will cause the the device to enter Standby for between 8 ms to

16 ms.

Bit Descriptions:

Reading from this register will not cause an entry into Standby mode.

RSVD:
PLL1_X2IPD:

Reserved. Unknown During Read.

These 5 register bits set the input divider for PLL1

operation. On power-on-reset the value is set to 00111b (7
decimal).

Note: The value in the register is the actual coefficient minus one.

5-18

DS785UM1
Copyright 2007 Cirrus Logic

I

Note:

Note:

Note:

Note:

Note:

DS785UM1

PLL1_X2FBD2:

The value in the register is the actual coefficient minus one.

PLL1_X1FBD1:

System Controller
EP93xx User’s Guide

These 6 register bits set the first feedback divider bits for
PLL1. On power-on-reset the value is set to 000111b (7
decimal).

These 5 register bits set the second feedback divider bits
for PLL1. On power-on-reset the value is set to 10011b (19
decimal).

The value in the register is the actual coefficient minus one.

PLL1_PS:

These two bits determine the final divide on the VCO clock
signal in PLL1.

00 - Divide by 1

01 - Divide by 2

10 - Divide by 4

11 - Divide by 8

On power-on-reset these bits are reset to 11b (3 decimal).

This means that PLL1 FOUT is programmed to be 36,864,000 Hz on startup.

The value in the register is the actual coefficient minus one.

PCLKDIV:

These two bits set the divide ratio between the HCLK AHB
clock and the APB clock (PCLK)

00 - Divide by 1

01 - Divide by 2

10 - Divide by 4

11 - Divide by 8

On power-on-reset the value is set to 00b.

Care must be taken to make the correct selection of PCLK divide for the HCLK frequency
used, so that the required minimum ratio between PCLK and the peripheral clock is not

violated

HCLKDIV:

These three bits set the divide ratio between the VCO
output and the bus clock (HCLK)

000 - Divide by 1 100 - Divide by 6

001 - Divide by 2 101 - Divide by 8

010 - Divide by 4 110 - Divide by 16

011 - Divide by 5 111 - Divide by 32

On power-on-reset the value is set to 000b.

5-19

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

nBYP1: This bit selects the clock source for the processor clock

dividers. With this bit clear, the system wakes up and

5 boots with the PLL bypassed and uses an external clock
source. With nBYP1 set, the system runs with the PLL

generated clock. The default for this bit is to boot/run from
external clock source.

SMCROM: If set, this bit will gate off the HCLK to the Static Memory
Controller when in Halt mode and therefore save power.
When in Halt mode, there are no Instruction Code fetches
occurring and therefore if there are no DMA operations in
progress that may require the SMC, there will be no
accesses to this controller. It may therefore be safely
disabled when in Halt mode. This bit is Ob on reset.

FCLKDIV: These three bits set the divide ratio between the VCO
output and processor clock. On power-on-reset the value
is set to 000b.

000 - Divide by 1 011 - Divide by 8
001 - Divide by 2 100 - Divide by 16
010 - Divide by 4

For FCLKDIV values equal to 1xxb (except for 100b), the
divide ratio will be divide by 1.

ClkSet2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
USB DIV RSVD nBYP2 | PLL2_EN PLL2_PS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PLL2 X1FBD1 PLL2 X2FBD2 PLL2 X2IPD
Address:
0x8093 0024 - Read/Write
Definition:

The ClkSet2 register is used for setting the dividers internally to PLL2 and to
the USB Host divider. The reset setting for PLL2 creates a frequency of
48 MHz. The default divider for USB_DIV is divide by 1, which will produce the
USB host clock frequency and FIR clock frequency of 48 MHz.

Bit Descriptions:

PLL2_X2IPD: These 5 register bits set the input divider for PLL2
operation. On power-on-reset the value is set to 10111b
(23 decimal).

Note: The value in the register is the actual coefficient minus one.

5-20 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

I

These 6 register bits set the first feedback divider bits for
PLL2. On power-on-reset the value is set to 11000b (24

decimal).

PLL2_X2FBD2:

Note: The value in the register is the actual coefficient minus one.

These 5 register bits set the second feedback divider bits
for PLL2. On power-on-reset the value is set to 11000b (24
decimal).

PLL2_X1FBD1:

Note: The value in the register is the actual coefficient minus one.

These two bits determine the final divide function on the
VCO clock signal in PLL2.

00 - Divide by 1

01 - Divide by 2

10 - Divide by 4

11 - Divide by 8

On power-on-reset these bits are reset to 11b (3 decimal).

PLL2_PS:

Note: This means that PLL2 FOUT is programmed to be 48,000,000 Hz on startup.

Note: The value in the register is the actual coefficient minus one.

This bit enables PLL2. If set, PLL2 is enabled. If this bit is
zero, PLL2 is disabled. On power-on-reset the value is set
to Ob.

nBYP2: This bit selects the clock source for the processor clock
dividers. If set, PLL2 is the clock source. If this bit is set to
zero, the external clock is the clock source. On power-on-
reset, this bit defaults to Ob.

PLL2_EN:

These four bits set the divide ratio between the PLL2
output and the USB clock.

USBDIV:

0000 - Divide by 1
0001 - Divide by 2
0010 - Divide by 3
0011 - Divide by 4
0100 - Divide by 5
0101 - Divide by 6
0110 - Divide by 7
0111 - Divide by 8

1000 - Divide by 9

1001 - Divide by 10
1010 - Divide by 11
1011 - Divide by 12
1100 - Divide by 13
1101 - Divide by 14
1110 - Divide by 15
1111 - Divide by 1

On power-on-reset these bits are reset to 0000b.

DS785UM1 5-21

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

T —
—r
——
—r
e (
~———
ScratchRegO, ScratchRegl
31 30 29 28 27 26 25 24 23 22 21 20 ‘ 19 18 17 16
Value
15 14 13 12 11 10 9 8 7 6 5 4 ‘ 3 2 1 0
Value

Address:
ScratchReg0 - 0x8093 0040, Read/Write
ScratchRegl - 0x8093 0044, Read/Write
Default:
0x0000_0000
Definition:

Each of these locations provide a 32-bit read/write scratch register, that can be
used as a general purpose storage. These registers are reset to zero only on a
power-on-reset. A System Reset will have no effect.

Bit Descriptions:

Value: This is a 32-bit read/write location.
APBWait
31 30 29 28 ‘ 27 26 25 24 ‘ 23 22 21 20 ‘ 19 18 17 16
RSVD
15 14 13 12 ‘ 11 10 9 8 ‘ 7 6 5 4 ‘ 3 2 1 0
RSVD NO_WRITE_WAIT
Address:
0x8093 0050, Read/Write
Definition:

The APBWait register controls the insertion of wait states for APB peripherals.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

NO_WRITE_WAIT:Used in the AHB/APB bridge to not insert an AHB wait
during writes, if set. If reset, a wait state is added by
forcing HREADY = 0 during ST_WRITE. This bit resets to
0x0001.

5-22 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

!

—EE
BusMstrArb
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD RSVD MAC MAC USH USH DMA_ DMA_ PRI RSVD PRI_ORD
ENFIQ | ENIRQ | ENFIQ | ENIRQ | ENFIQ | ENIRQ | CORE
Address:
0x8093 0054 - Read/Write
Definition:

The Bus Master arbitration register (BusMstrArb) is used to configure the AHB
master priority order.

Bit Descriptions:
RSVD:

PRI_ORD:

Reserved. Unknown During Read.

Used to set the priority of the AHB arbiter. The priority
order is shown in Table 5-6. This field resets to 00.

Table 5-6. Priority Order for AHB Arbiter

Priority Number (RZSL?sa?Se) PRIOR 01 PRIOR 10 PRIOR 11

1 Raster Cursor Raster Raster Raster

2 MAC Raster Cursor Raster Cursor DMA

3 USB MAC DMA MAC

4 DMA USB USB USB

5 ARM920T ARM920T MAC Raster Cursor

6 Raster DMA ARM920T ARM920T

PRI_CORE: When this bit is set the Core will become highest priority
following a grant to one of the following: Raster, Raster
Cursor, MAC, USB and DMA. If the Core then requests the
bus, it is then placed in the priority order selected by
PRI_ORD after it is granted, until one of the above
masters is granted the bus, and is placed on top of the
priority scheme.

DMA_ENIRQ: When set the arbiter will degrant DMA from the AHB bus

and will ignore subsequent requests from DMA if an IRQ is
active. When IRQ is cleared the DMA request is allowed
again. There is no impact on other masters. Reset to 0.

DS785UM1 5-23

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

DMA_ENFIQ:

USH_ENIRQ:

USH_ENFIQ:

MAC_ENIRQ:

MAC_ENFIQ:

BootModeClr

31 30 29 28 27 26

———.

—
~——————

When set the arbiter will degrant DMA from the AHB bus
and will ignore subsequent requests from DMA if an FIQ is
active. When FIQ is cleared the DMA request is allowed
again. There is no impact on other masters. Reset to 0.

When set the arbiter will degrant USB host from the AHB
bus and will ignore subsequent requests from the USB
Host if an IRQ is active. When IRQ is cleared, the USB
Host request is allowed again. There is no impact on other
masters. Reset to 0.

When set the arbiter will degrant USB Host from the AHB
bus and will ignore subsequent requests from USB Host if
an FIQ is active. When FIQ is cleared, the USB Host
request is allowed again. There is no impact on other
masters. Reset to 0.

When set the arbiter will degrant Ethernet MAC from the
AHB bus and will ignore subsequent requests from the
MAC if an IRQ is active. When IRQ is cleared, the MAC
request is allowed again. There is no impact on other
masters. Reset to 0.

When set the arbiter will degrant the Ethernet MAC from
the AHB bus and will ignore subsequent requests from the
MAC if an FIQ is active. When FIQ is cleared, the MAC
request is allowed again. There is no impact on other
masters. Reset to 0.

25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10

RSVD

Address:

0x8093_0058 - Write Only

Definition:

The BootModeClr register is a write-to-clear register. Reset activates the boot
ROM remap function causing the internal boot ROM to map to address zero, if
internal boot is selected. Writing BootModeClIr removes the internal ROM
address remap, restoring normal address space.

Bit Descriptions:
RSVD:

5-24

There are no readable bits in this register.

DS785UM1

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

!

DeviceCfg
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SWRST DlonG DOonG lonU2 GonK TonG MonG U3EN CPENA A20nG AlonG U2EN EXVC U1EN TIN RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HC3IN HC3EN HC1IN HC1EN HonIDE | GonIDE PonG EonIDE 12Son 12Son 0 RASOn RAS ADCPD KEYS SHena
SSP AC97 P3
Address:
0x8093 0080 - Read/Write, Software locked
Default:
0x0000_0000
Definition:

Device Configuration Register. This register controls the operation of major
system functions.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.
0: This bit must be written as “0”.
SHena: Standby/Halt enable. When 1, allows the system to enter

Standby or Halt on a read from the Standby and Halt
registers, respectively.

KEYS: Key matrix inactive.
1 - Key Matrix controller inactive,
0 - Key Matrix controller active.

ADCPD: ADC Power Down.
1 - ADC and clocks are powered down.
0 - ADC and clocks are active. ADCPD must be zero for
normal touch screen operation and for direct ADC
operation.

RAS: Raster inactive.
1 - Disables video pixel clock to most of the Raster engine,
0 - Normal video clock to Raster engine.

RasOnP3: Raster On SDRAM Port 3.
1 - The Raster video refresh SDRAM accesses use the
system primary AHB to get video data.
0 - Raster video refresh uses the private AHB on SDRAM
Port 0.

DS785UM1 5-25
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

I2SonAC97: Audio - 1°S on AC97 pins. The IS block uses the AC97
pins. See Audio Interface pin assignments in Table 5-7.

Note: The I?S should be enabled on only one set of pins. Therefore 12SonAc97 and 12SonSSP
are mutually exclusive. Setting both 12SonAc97 and 12SonSSP will cause unexpected
behavior.

12SonSSP: Audio - 1S on SSP pins. The I°S block uses the SSP pins.
MCLK is not available in this pin option. See Audio
Interface pin assignments in Table 5-7.

Note: The I?S should be enabled on only one set of pins. Therefore 12SonAc97 and 12SonSSP
are mutually exclusive. Setting both 12SonAc97 and 12SonSSP will cause unexpected

behavior.
Table 5-7. Audio Interfaces Pin Assignment
2 2 .
_ Normal Mode 1“S on SSP 1“S on AC'97
Pin Mode Mode
Name Pin . . . _
L Pin Description Pin Description
Description
SCLK1 SPI Bit Clock 12S Serial Clock SPI Bit Clock
SFRM1 SPI Frame Clock 12S Frame Clock SPI Frame Clock
SSPRX1 SPI Serial Input 12S Serial Input SPI Serial Input
SSPTX1 | SPI Serial Output 12S Serial Output SPI Serial Output
(No 12S Master
Clock)
ARSTn AC'97 Reset AC'97 Reset 12S Master Clock
ABITCLK | AC'97 Bit Clock AC'97 Bit Clock 12S Serial Clock
ASYNC AC9TFrame | 97 Frame Clock | 12S Erame Clock
Clock
AC'97 Serial .
ASDI mpuf”a AC'97 Serial Input %S Serial Input
AC'97 Serial , . .
ASDO Output AC'97 Serial Output 12S Serial Output
EonIDE: GPIO Port E on IDE pins:
0 - GPIO Port E used for IDE
1 - GPIO Port E used for GPIO
PonG: PWM 1 output on EGPIO pin
GonlIDE: GPIO Port G on IDE pins
0 - GPIO Port G used for IDE
1 - GPIO Port G used for GPIO
HonIDE: GPIO Port H on IDE pins
5-26 DS785UM1

Copyright 2007 Cirrus Logic

I

HC3IN:

HC3EN:

HC1IN:

HC1EN:

TIN:

U1EN:

EXVC:

UZ2EN:

DS785UM1

System Controller
EP93xx User’s Guide

0 - GPIO Port H used for IDE
1 - GPIO Port H used for GPIO

HDLC3 clock in. This bit has no effect unless HC3EN is 1.
1 = pin EGPIOI3] is an input and drives an external HDLC
clock to UARTS3.

0 = pin EGPIO[3] is an output driven by UART3.

HDLC3 clock enable.

1 = pin EGPIO[3] is used to for an HDLC clock with
UARTS3.

0 = pin EGPIO[3] is not used.

HDLCL1 clock in. This bit has no effect unless HC3EN is O
and HC1EN is 1.

1 = pin EGPIO[3] is an input and drives an external HDLC
clock to UARTL.

0 = pin EGPIO[3] is an output driven by UART1.

HDLCL1 clock enable. This bit has no effect unless HC3EN
is 0.

1 = pin EGPIOJ3] is used for an HDLC clock with UART1.
0 = pin EGPIO[3] is not used.

Touchscreen controller inactive.

1 - Touchscreen controller to inactive state,

0 - Touchscreen controller active.

To use the ADC converter independent of the Touch
screen controller, the Touchscreen controller must be
enabled and set inactive. The ADC can then be operated
using the direct access registers. The TIN bit does not
affect the ADC power state. ADC power down is directly
controlled by the ADCPD bit.

UART1 Enable.
1 - UART1 baud rate clock is active.
0 - UART1 clock is off.

External Video Clock.

1 - Raster engine uses external pixel clock and the SPCLK
pin is configured as an input,

0 - Raster engine uses internal pixel clock and the SPCLK
pin is configured as an output.

UART2 Enable.
1 - UART2 baud rate clock is active.
0 - UART2 clock is off.

5-27

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

AlonG: IS Audio Port 1 on GPIO.

1-12S Port 1 pins are mapped to EGPIO. SDI1 is on
5 EGPIO[5], SDO1 is on EGPIO[4].
0 - EGPIO[5:4] are not used.

A20NnG: IS Audio Port 2 on GPIO.

1-12S Port 2 pins are mapped to EGPIO. SDI2 is on
EGPIO[13], SDO2 is on EGPIOI6].
0 - EGPIO[13] and EGPIO[6] are not used.

CPENA: Co-processor Enable.
1 - MaverickCrunch co-processor is enabled.
0 - Co-processor is disabled and will not accept
instructions.

U3EN: UARTS3 Enable.
1 - UART3 baud rate clock is active.
0 - UARTS3 clock is off.

MonG: Modem on GPIO.
1 - Modem support signals use EGPIO[0] pins.
0 - Modem support signals do not use EGPIO[0] pins

TonG: TENnN on GPIO. This bit has no effect unless HC3EN and
HCI1EN are O.
1 - UART3 TENRN signal drives EGPIO[3].
0 - EGPIO[3] used by GPIO.

GonK: GPIO on Key Matrix.
1 - Key Matrix pins are configured for GPIO operation,
0 - Key Matrix pins are controlled by other options.
The GonK has precedence over the Key Matrix controller.
The SPI0, when mapped to Key Matrix pins, has
precedence over GPIO. When the Key Matrix pins are
configured for SPIO, the pins unused by SPIO can be used
for GPIO.

lonU2: IrDA on UART2.
1- UART2 is used as an IrDA interface,
0 - UART2 is a normal UART.

DOonG: External DMAO hardware handshake signals mapped to
EGPIO pins.
1 - Signals mapped.
0 - Signals not supported.

DlonG: External DMAL1 hardware handshake signals mapped to
EGPIO pins.
1 - Signals mapped.
0 - Signals not supported.

5-28 DS785UM1
Copyright 2007 Cirrus Logic

I

System Controller
EP93xx User’s Guide

SWRST: Software reset. A one to zero transition of this bit initiates
a software reset.
VidCIkDiv
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VENA ESEL PSEL RSVD PDIV RSVD VDIV

Address:

Default:

Definition:

Bit Descriptions:

DS785UM1

0x8093 0084 - Read/Write, Software locked

0x0000_0000

Configures video clock for the raster engine. Selects input to VCLK dividers
from either PLL1 or PLL2, and defines a programmable divide value.

RSVD:
VENA:
ESEL:

PSEL:

PDIV:

VDIV:

Reserved. Unknown During Read.
Enable VCLK divider.

External clock source select.

0 - use the external XTALI clock input as the clock source.
1 - use one of the internal PLLs selected by PSEL as the
clock source.

PLL source select.
1 - select PLL2 as the clock source.
0 - select PLL1 as the clock source.

Pre-divider value. Generates divide by 2, 2.5, or 3 from the
clock source.

00 - Disable clock

01 - Divide-by-2

10 - Divide-by-2.5

11 - Divide-by-3

VCLK divider value. Forms a divide-by-N of the pre-divide
clock output. VCLK is the source clock divided by PDIV
divided by N. Must be at least two.

5-29

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

MIRCIkDiv

31 30 29

28 27 26

il

25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13

12 11 10

MENA ESEL PSEL

RSVD

PDIV RSVD MDIV

Address:

Default:

Definition:

Bit Descriptions:

5-30

0x8093 0088 - Read/Write, Software locked

0x0000_0000

Configures MIR clock for the MIR IrDA. Selects input to MIR clock dividers
from either PLL1 or PLL2, and defines a programmable divide value.

RSVD:
MENA:
ESEL:

PSEL:

PDIV:

MDIV:

Reserved. Unknown During Read.
Enable MIR_CLK divider.

External clock source select.

0 - Use the external XTALI clock input as the clock source.
1 - Use one of the internal PLLs selected by PSEL as the
clock source.

PLL source select.
1 - Select PLL2 as the clock source.
0 - Select PLL1 as the clock source.

Pre-divider value. Generates divide by 2, 2.5, or 3 from the
clock source.

00 - Disable clock

01 - Divide-by-2

10 - Divide-by-2.5

11 - Divide-by-3

MIR_CLK divider value. Forms a divide-by-N of the pre-
divide clock output. MIR_CLK is the source clock divided
by PDIV divided by N.

DS785UM1

Copyright 2007 Cirrus Logic

!

12SCIkDiv

31

30

29

28 27

26

System Controller
EP93xx User’s Guide

25

23

21 20

19

18

17

16

SENA

SLAVE

ORIDE

RSVD

DROP

SPOL

LRDIV

SDIvV

15

13

12 11

10

MENA

PSEL

RSVD

PDIV

RSVD

MDIV

Address:

0x8093_008C - Read/Write, Software locked
Default:

0x0000_0000
Definition:

Bit Descriptions:

DS785UM1

Configures the 12S block audio clocks MCLK, SCLK, and LRCLK.

RSVD:
SENA:

SLAVE:

ORIDE:

DROP:

SPOL:

LRDIV:

Reserved. Unknown During Read.

Enable audio clock generation.

1°S slave. Configures the 1°S clock system to operate as a
slave. SCLK and LRCLK are chip inputs. The clock

configuration controls in this register are ignored in slave
mode.

Override 1S master configuration.

1 - Override the SAI_ MSTR_CLK_CFG from the 12S block
and use the 12SCIkDiv Register settings.
0 - Use the 12S SAI_ MSTR_CLK_CFG signals.

Drop SCLK clocks.
1 - When in 64x mode, drop 8 SCLKs.
0 - Do not drop SCLKs.

SCLK polarity. Defines the SCLK edge that aligns to
LRCLK transitions.

1 - LRCLK transitions on the falling SCLK edge.

0 - LRCLK transitions on the rising SCLK edge.

LRCLK divide select.

00 - LRCK = SCLK /32
01 - LRCK = SCLK / 64
10 - LRCK = SCLK /128
11 - Reserved

5-31

Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

SDIV: SCLK divide select.
1-SCLK=MCLK/4,
0 -SCLK =MCLK /2.
MENA.: Enable master clock generation.
ESEL: External clock source select.

0 - Use the external XTALI clock input as the clock source.
1 - Use one of the internal PLLs selected by PSEL as the
clock source.

PSEL: PLL source select.
1 - Select PLL2 as the clock source.
0 - Select PLL1 as the clock source.

PDIV: Pre-divider value. Generates divide by 2, 2.5, or 3 from the
clock source.
00 - Disable clock

01 - Divide-by-2
10 - Divide-by-2.5
11 - Divide-by-3
MDIV: MCLK divider value. Forms a divide-by-N of the pre-divide
clock output. MCLK is the source clock divided by PDIV
divided by N.
KeyTchClkDiv
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TSEN RSVD ADIV
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEN RSVD KDIV

Address:

0x8093 0090 - Read/Write, Software locked
Default:

0x0000_0000
Definition:

Configures the Key Matrix, Touchscreen, and ADC clocks. Touchscreen clock
is a fixed divide-by-4 from the ADC clock. Touch Filter clock is a fixed divide-
by-2 from the ADC clock.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.
TSEN: Touchscreen and ADC clock enable

5-32 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

I

ADIV: ADC clock divider value.
0 - ADC Clock is divide-by-16 from the external oscillator.
1 - ADC Clock is divide-by-4 from the external oscillator.

KEN: Key matrix clock enable. This clock is divided from the

slow clock source.

KDIV: Key matrix clock divider value.
0 - Key Matrix Clock is divide-by-16 from the external
oscillator.
1 - Key Matrix Clock is divide-by-4 from the external
oscillator.
CHIP_ID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
REV RSVD 0 RSVD 0 RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID
Address:
0x8093_0094 - Read Only
Definition:

Chip ID register.

Bit Descriptions:
RSVD: Reserved. Unknown During Read.

REV: Revision: Reads chip Version humber:
0011 - Rev DO
0100 - Rev D1
0101 - Rev EO
0110 - Rev E1l
0111 - Rev E2

0: Reads zero.

ID[15:0]: Chip ID Number, reads 9213.

DS785UM1 5-33
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

p—)
—
SysCifg
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
REV RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD SBOOT LCSn7 LCSn6 LASDO | LEEDA | LEECLK RSVD LCSn2 LCSn1
Address:
0x8093_009C - Read/Write, Software locked
Default:
0x0000_0000
Definition:
System Configuration Register. Provides various system configuration
options.
Bit Descriptions:
RSVD: Reserved. Unknown During Read.
REV: Revision: Reads chip Version number:
0000 - Rev A
0001 - Rev B
0010 -Rev C
0011 - Rev DO
0100 - Rev D1
0101 - Rev EO
SBOOT: Serial Boot Flag.

1 - hardware detected Serial Boot selection,
0 - hardware detected Normal Boot. This bit is read-only.

LCSn7,LCSn6: Latched version of CSn7 and CSn6 respectively. These
are used to define the external bus width for the boot
code.

LASDO: Latched version of ASDO pin. Used to select synchronous
versus asynchronous boot device.

LEEDA: Latched version of EEDAT pin.

LEECLK: Define Internal or external boot:
1 - Internal
0 - External

5-34 DS785UM1
Copyright 2007 Cirrus Logic

I

System Controller
EP93xx User’s Guide

LCSnl, LCSn2: Define Watchdog startup action:
00 - Watchdog disabled, Reset duration disabled
01 - Watchdog disabled, Reset duration active
10 - Watchdog active, Reset duration disabled
11 - Watchdog active, Reset duration active

SysSWLock
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD LOCK
Address:
0x8093_00CO0 - Read/Write
Default:
0x0000_0000
Definition:

Bit Descriptions:

DS785UM1

Syscon Software Lock Register. Provides software control port for all Syscon
locked registers. Writing the LOCK field to OXAA opens the lock. Reading the
register will return 0x0000_0001 when the lock is open, and all zeros when the
lock is closed (locked).

RSVD: Reserved. Unknown During Read.

LOCK: Lock code value. This field must be written to a value of
OxAA to open the software lock. Reads 0x01 when the
lock is open, 0x00 when the lock is closed.

5-35
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

il

5-36 DS785UM1
Copyright 2007 Cirrus Logic

Chapter 6
Vectored Interrupt Controller ﬂ

6.1 Introduction

The EP93xx processors contain two cascaded Vectored Interrupt Controllers (VIC). A
Vectored Interrupt has improved latency compared with a simple interrupt controller, since it
provides direct information about where the interrupt’s service routine is located and
eliminates levels of software arbitration.

Each individual Vectored Interrupt Controller can handle up to 32 interrupts, but there are
more than 32 interrupts in this design. Therefore two VICs are connected in a daisy-chain,
which allows the system to handle up to 64 interrupt sources.

There are up to 16 vectored interrupts and 16 non-vectored interrupts available on each VIC.
Vectored interrupts can only generate an IRQ interrupt. Non-vectored interrupts can generate
either an IRQ interrupt or a FIQ interrupts. Vectored Interrupt Requests (IRQ) provide an
address for an Interrupt Service Routine (ISR). Reading from the vector interrupt address
register, VICxVectAddr, provides the address of the ISR, and indicates to the interrupt priority
hardware that the interrupt is being serviced. Writing to the VICxVectAddr register indicates
to the interrupt priority hardware that the interrupt has been serviced, allowing lower priority
interrupts to go active.

Reqgisters in the VIC use a bit position for each different interrupt source. The bit position is
fixed, but the handling of each interrupt is configurable by the VIC. Software can generate
software interrupts by controlling each request line.

The VIC provides a software interface to the interrupt system. Two levels of interrupts are
available:

« Fast Interrupt Request (FIQ) for fast, low latency interrupt handling
« Interrupt Request (IRQ) for more general interrupts

All interrupt inputs to the VIC are presented as active-high level sensitive signals. Any
conditioning needed to achieve this is performed by the block generating the interrupt
request. In the case of external interrupts, the GPIO block takes care of the conditioning.

Note: Some GPIO signals are not configurable but are used as inputs by other functional
blocks. EGPIO[2:1] are routed to the DMA controller to allow for external DMA requests.

Note: An interrupt vector may be overwritten when two interrupts occur simultaneously. If a
VIC2 interrupt is immediately followed by a VIC1 interrupt, the VIC1 address will
incorrectly be the default handler address for 2 HCLK cycles. To work around this
problem, first check for pending non-vectored VIC1 interrupts in the interrupt routine. If
there are none then return from interrupt. The interrupt will immediately re-occur with the
correct vector address.

DS785UM1 6-1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller

EP93xx User’s Guide

——.
—r
—rf
—rt
—
——
P __
| |
|
| ector Addr from VIC2 :
' |
' |
! . |
: VICINTSOURCE[63:32] Vector Address and FIQ from VIC2 |
I Priority Logic :
: IRQ from VIE 2 :
'] |
' |
' |
' |
' |
' |
' |
: VIC2 I
o I
|_ ________________________ e e il
I
| y v V¥ | ARM920T
|
: VIC Daisy Chain |
|
' |
' |
' |
| | IRQ
| | >
' |
| VICINTSOURCE([31:0] > Vector Address and Priority I
: Logic :
| FIQ
I -
| | Ll
' |
' |
' |
' |
' |
' |
' |
: VIC1 |
. !

Figure 6-1. Vectored Interrupt Controller Block Diagram

6.1.1 Interrupt Priority

6-2

A FIQ interrupt has the highest priority (because the ARM9 core will always treat FIQ as
higher priority), followed by vectored interrupt O to vectored interrupt 15. Non-vectored IRQ
interrupts have the lowest priority. Any of the non-vectored Interrupts can be either FIQ or
IRQ (the interrupt type is determined by programming the appropriate register,
‘VICxIntSelect’ on page 6-11).

DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

i

Any 16 of the 32 interrupts (per VIC) can be designated as ‘vectored’ by programming the
Vector address registers, ‘VICxVectAddr0’ on page 6-15 and the Vector Control registers,
‘VICxVectCntlO," on page 6-17.

An interrupt is designated as either IRQ or FIQ by programming the VICxIntSelect register.
The IRQ and FIQ request logic has an asynchronous path. This allows interrupts to be
asserted when the clock is disabled.

Software can generate a specific interrupt by writing a ‘1’ to the associated bit in the
VICxSoftInt register.

6.1.2 Interrupt Configuration
Table 6-1 shows Interrupt Configuration.

Table 6-1. Interrupt Configuration

VIC Interrupt Name Description
Source
0 - Unused
1 - Unused
2 COMMRX ARM Communication Rx for Debug
3 COMMTX ARM Communication Tx for Debug
4 TC1UI TC1 under flow interrupt (Timer Counter 1)
5 TC2UI TC2 under flow interrupt (Timer Counter 2)
6 AACINTR Advanced Audio Codec interrupt
7 DMAM2P0O DMA Memory to Peripheral Interrupt O
8 DMAM2P1 DMA Memory to Peripheral Interrupt 1
9 DMAM2P2 DMA Memory to Peripheral Interrupt 2
10 DMAM2P3 DMA Memory to Peripheral Interrupt 3
11 DMAM2P4 DMA Memory to Peripheral Interrupt 4
12 DMAM2P5 DMA Memory to Peripheral Interrupt 5
13 DMAM2P6 DMA Memory to Peripheral Interrupt 6
14 DMAM2P7 DMA Memory to Peripheral Interrupt 7
15 DMAM2P8 DMA Memory to Peripheral Interrupt 8
16 DMAM2P9 DMA Memory to Peripheral Interrupt 9
17 DMAM2MO DMA Memory to Memory Interrupt O
18 DMAM2M1 DMA Memory to Memory Interrupt 1
19 - Reserved
20 - Reserved
21 - Reserved
22 - Reserved
23 UART1RXINTR1 UART 1 Receive Interrupt
24 UARTITXINTR1 UART 1 Transmit Interrupt
25 UART2RXINTR2 UART 2 Receive Interrupt
26 UART2TXINTR2 UART 2 Transmit Interrupt
27 UART3RXINTR3 UART 3 Receive Interrupt
28 UART3TXINTR3 UART 3 Transmit Interrupt
29 INT_KEY Keyboard Matrix Interrupt
30 INT_TOUCH Touch Screen Controller Interrupt
31 - Reserved
DS785UM1 6-3

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

il

Table 6-1. Interrupt Configuration

VIC Interrupt Name Description
Source

32 INT_EXT[O] External Interrupt O
33 INT_EXT[1] External Interrupt 1
34 INT_EXT[2] External Interrupt 2
35 TINTR 64 Hz Tick Interrupt
36 WEINT Watchdog Expired Interrupt
37 INT_RTC RTC Interrupt
38 INT_IrDA IrDA Interrupt
39 INT_MAC Ethernet MAC Interrupt
40 - Reserved
41 INT_PROG Raster Programmable Interrupt
42 CLK1HZ 1 Hz Clock Interrupt
43 V_SYNC Video Sync Interrupt
44 INT_VIDEO_FIFO Raster Video FIFO Interrupt
45 INT_SSP1RX SSP Receive Interrupt
46 INT_SSP1TX SSP Transmit Interrupt
47 - Reserved
48 - Reserved
49 - Reserved
50 - Reserved
51 TC3UI TC3 under flow interrupt (Timer Counter 3)
52 INT_UART1 UART 1 Interrupt
53 SSPINTR Synchronous Serial Port Interrupt
54 INT_UART2 UART 2 Interrupt
55 INT_UART3 UART 3 Interrupt
56 USHINTR USB Host Interrupt
57 INT_PME Ethernet MAC PME Interrupt
58 INT_DSP ARM Core Interrupt
59 GPIOINTR GPIO Combined interrupt
60 I2SINTR 12S Block Combined interrupt
61 - Unused
62 - Unused
63 - Unused

6.1.3 Interrupt Details

Details of the interrupts described in Table 6-1 are:

COMMRX ARM Communication Channel Receive. When high,
COMMRX indicates that the communications channel
receive buffer contains data waiting to be read by the ARM
Core. Refer to the ARM Technical Reference Manual.

COMMTX ARM Communication Channel Transmit. When high
COMMTX indicates that the communications channel
transmit buffer is empty. Refer to the ARM Technical
Reference Manual.

6-4 DS785UM1
Copyright 2007 Cirrus Logic

I

DS785UM1

TC1lUI

TC2UI

AACINTR

DMAM2PO

DMAM2P1

DMAM2P2

DMAM2P3

DMAM2P4

DMAM2P5

DMAM2P6

DMAM2P7

DMAM2P8

DMAM2P9

DMAM2MO

DMAM2M1

UART1RXINTR1

Vectored Interrupt Controller
EP93xx User’s Guide

Timer Counter 1 Under Flow Interrupt. When Timer
Counter 1 has underflowed (reached zero), this interrupt
becomes active on the next falling edge of the timer’s
clock. The interrupt is cleared by writing any value to the
“TimerlClear,” register. See Chapter 18, "Timers".

Timer Counter 2 Under Flow Interrupt. When Timer
Counter 2 has underflowed (reached zero), this interrupt
becomes active on the next falling edge of the timer’s
clock. The interrupt is cleared by writing any value to the
“Timer2Clear,” register. See Chapter 18, "Timers".

Advanced Audio CODEC Interrupt. See Chapter 22,
"AC’97 Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel O Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel 1 Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel 2 Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel 3 Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel 4 Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel 5 Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-peripheral and Peripheral-to-memory
Channel 6 Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel 7 Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel 8 Interrupt. See Chapter 10, "DMA Controller".

Internal Memory-to-Peripheral and Peripheral-to-Memory
Channel 9 Interrupt. See Chapter 10, "DMA Controller".

Memory-to-Memory (incorporating external M2P/P2M)
Channel O Interrupt. See Chapter 10, "DMA Controller".

Memory-to-Memory (incorporating external M2P/P2M)
Channel 1 Interrupt. See Chapter 10, "DMA Controller".

UART 1 Receive Interrupt. See Chapter 14, "UART1 With
HDLC and Modem Control Signals"

6-5

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller

EP93xx User’s Guide

6-6

UARTITXINTR1

UART1RXINTR2
UARTITXINTR2
UART1RXINTRS3

UARTITXINTR3

INT_KEY
INT_TOUCH

INT_EXT[O]
INT_EXT[1]
INT_EXT[2]
TINTR

WEINT

INT_RTC

INT_IrDA
INT_MAC

INT_PROG

———.

—
~——————

UART 1 Transmit Interrupt. See Chapter 14, "UART1 With
HDLC and Modem Control Signals".

UART 2 Receive Interrupt. See Chapter 15, "UART2"™.
UART 2 Transmit Interrupt. See Chapter 15, "UART2"".

UART 3 Receive Interrupt. See Chapter 16, "UART3 With
HDLC Encoder".

UART 3 Transmit Interrupt. See Chapter 16, "UART3 With
HDLC Encoder".

Key Matrix Interrupt. See Chapter 26, "Keypad Interface".

Touch Screen Controller Interrupt. This is the general
interrupt from the TSC. See Chapter 25, "Analog Touch
Screen Interface".

External Interrupt O.
External Interrupt 1.
External Interrupt 2.

64Hz TICK Interrupt. This interrupt becomes active on
every rising edge of the internal 64Hz clock. The 64Hz
clock is derived from a 15-stage ripple counter that divides
the 32.768kHz oscillator input down to 1Hz for the real
time clock. This interrupt is cleared by writing any value to
the “RTCSts” register. See Chapter 20, "Real Time Clock
With Software Trim"

Watchdog Expired Interrupt. This interrupt will become
active on a rising edge of the periodic 64Hz tick interrupt
clock if the TICK interrupt (TINT) is still active. That is, if a
tick interrupt has not been serviced for a complete tick
period. Both WEINT and TINT interrupts are cleared by
writing any value to the “RTCSts” register, see Chapter 20,
"Real Time Clock With Software Trim". Failure to service
this interrupt does not cause a system reset and the action
taken on receipt of this interrupt is system dependent.

Real Time Clock interrupt. See Chapter 20, "Real Time
Clock With Software Trim".

IrDA Interrupt. See Chapter 17, "IrDA".

Ethernet MAC Interrupt. See Chapter 9, "1/10/100 Mbps
Ethernet LAN Controller".

Programmable Interrupt. See Chapter 7, "Raster Engine
With Analog/LCD Integrated Timing and Interface”.

DS785UM1

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

I

CLK1HZ 1 Hz clock interrupt. See Chapter 20, "Real Time Clock
With Software Trim".

Chapter 7, "Raster Engine With Analog/LCD Integrated E

V_SYNC Vertical or Composite Sync/Frame Pulse Interrupt. See
Timing and Interface".

INT_VIDEO_FIFO Video FIFO Interrupt. See Chapter 7, "Raster Engine With
Analog/LCD Integrated Timing and Interface"

INT_SSP1RX SSP Receive Interrupt. See Chapter 23 "Synchronous

Serial Port".

INT_SSP1TX SSP Transmit Interrupt. See Chapter 23 "Synchronous
Serial Port".

TC3UI Timer Counter 3 Underflow Interrupt. This interrupt

becomes active on the next falling edge of the timer
counter 3 clock after the timer counter has under flowed
(reached zero). The interrupt is cleared by writing any
value to the “Timer3Clear” register. See Chapter 18,
"Timers".

INT_UART1 UART 1 General Interrupt. This interrupt is active if any
UART1 interrupt is active. Interrupt service routines will
need to read the relevant status bits within UARTL1 to
determine the source of the interrupt. All these sources
are individually maskable within UART1. See Chapter 15,
“UARTL1".

SSPINTR Synchronous Serial Port (SSP) Interrupt. See Chapter 23
"Synchronous Serial Port".

INT_UART2 UART 2 General Interrupt. This interrupt is active if any
UART?2 interrupt is active. Interrupt service routines will
need to read the relevant status bits within UART2 to
determine the source of the interrupt. All these sources
are individually maskable within UART2. See Chapter 15,
"UART2".

INT_UART3 UART 3 General Interrupt. This interrupt is active if any
UART3 interrupt is active. Interrupt service routines will
need to read the relevant status bits within UART3 to
determine the source of the interrupt. All these sources
are individually maskable within UART3. See Chapter 16,
"UART3 With HDLC Encoder".

USHINTR USB Host Interrupt. See Chapter 11, “USB Host
Controller”.
INT_PME PME interrupt. See Chapter 23 "Synchronous Serial
Port".
DS785UM1 6-7

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

il

INT_DSP ARM Core interrupt.

GPIOINTR Combined Interrupt from Any Bit in Ports A or B. See
Chapter 28, "GPIO Interface"

I2SINTR Combined Interrupt of All Sources from the 12S Controller.
See Chapter 21, "I°S Controller"

6.2 Registers

The 2 VIC blocks have an identical register definition. The offset from the respective base
address is the same:

« VIC1 Base address: 0x800B_0000
* VIC2 Base Address: 0x800C_0000

Using the ARM MMU, it is possible to remap the VIC base address to OxFFFF_F000, giving a
lower interrupt latency. Table 6-2 indicates the address offset from the base address.

Table 6-2. VICx Register Summary

Address Type Width | Reset Value Name Description
VIC base + 0000 Read 32 0x0000_0000 | VICxIRQStatus IRQ status register
VIC base + 0004 Read 32 0x0000_0000 | VICxFIQStatus FIQ status register
VIC base + 0008 Read 32 - | VICxRawIntr Raw interrupt status register
VIC base + 000C Read /Write 32 0x0000_0000 | VICxIntSelect Interrupt select register
VIC base + 0010 Read /Write 32 0x0000_0000 | VICxIntEnable Interrupt enable register
VIC base + 0014 Write 32 - | VICxIntEnClear Interrupt enable clear register
VIC base + 0018 Read /Write 32 0x0000_0000 | VICxSoftint Software interrupt register
VIC base + 001C Read /Write 32 - | VICxSoftIntClear Software interrupt clear register
VIC base + 0020 Read /Write 1 0x0 | VICxProtection Protection enable register
VIC base + 0030 Read /Write 32 0x0000_0000 | VICxVectAddr Vector address register
VIC base + 0034 Read /Write 32 0x0000_0000 | VICxDefVectAddr Default vector address register
VIC base + 0100 Read /Write 32 0x0000_0000 | VICxVectAddrO Vector address O register
VIC base + 0104 Read /Write 32 0x0000_0000 | VICxVectAddrl, Vector address 1 register
VIC base + 0108 Read /Write 32 0x0000_0000 | VICxVectAddr2, Vector address 2 register
VIC base + 010C Read /Write 32 0x0000_0000 | VICxVectAddr3, Vector address 3 register
VIC base + 0110 Read /Write 32 0x0000_0000 | VICxVectAddr4, Vector address 4 register
VIC base + 0114 Read /Write 32 0x0000_0000 | VICxVectAddr5, Vector address 5 register
VIC base + 0118 Read /Write 32 0x0000_0000 | VICxVectAddr6 Vector address 6 register
VIC base + 011C Read /Write 32 0x0000_0000 | VICxVectAddr7, Vector address 7 register
VIC base + 0120 Read /Write 32 0x0000_0000 | VICxVectAddr8, Vector address 8 register
VIC base + 0124 Read /Write 32 0x0000_0000 | VICxVectAdd9, Vector address 9 register
VIC base + 0128 Read /Write 32 0x0000_0000 | VICxVectAddrl10, Vector address 10 register
VIC base + 012C Read /Write 32 0x0000_0000 | VICxVectAddrll, Vector address 11 register
VIC base + 0130 Read /Write 32 0x0000_0000 | VICxVectAdd12, Vector address 12 register
VIC base + 0134 Read /Write 32 0x0000_0000 | VICxVectAddrl3, Vector address 13 register
VIC base + 0138 Read /Write 32 0x0000_0000 | VICxVectAddrl4, Vector address 14 register
VIC base + 013C Read /Write 32 0x0000_0000 | VICxVectAddrl5 Vector address 15 register
VIC base + 0200 Read /Write 6 0x00 | VICxVectCntlO, Vector control O register
VIC base + 0204 Read /Write 6 0x00 | VICxVectCntl1, Vector control 1 register

6-8 DS785UM1

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

I

Table 6-2. VICx Register Summary

Address Type Width | Reset Value Name Description
VIC base + 0208 Read /Write 6 0x00 | VICxVectCntl2, Vector control 2 register
VIC base + 020C Read /Write 6 0x00 | VICxVectCntl3, Vector control3 register
VIC base + 0210 Read /Write 6 0x00 | VICxVectCntl4, Vector control 4 register
VIC base + 0214 Read /Write 6 0x00 | VICxVectCntl5, Vector control 5 register
VIC base + 0218 Read /Write 6 0x00 | VICxVectCntl6, Vector control 6 register
VIC base + 021C Read /Write 6 0x00 | VICxVectCntl7, Vector control 7 register
VIC base + 0220 Read /Write 6 0x00 | VICxVectCntl8, Vector control 8 register
VIC base + 0224 Read /Write 6 0x00 | VICxVectCntl9, Vector control 9 register
VIC base + 0228 Read /Write 6 0x00 | VICxVectCntl10, Vector control 10 register
VIC base + 022C Read /Write 6 0x00 | VICxVectCntl11, Vector control 11 register
VIC base + 0230 Read /Write 6 0x00 | VICxVectCntl12, Vector control 12 register
VIC base + 0234 Read /Write 6 0x00 | VICxVectCntl13, Vector control 13 register
VIC base + 0238 Read /Write 6 0x00 | VICxVectCntl14, Vector control 14 register
VIC base + 023C Read /Write 6 0x00 | VICxVectCntl15 Vector control 15 register
VIC base + OFEO | Read 8 0x90 | VICxPeriphlDO E/S'ece'ai't‘gf';;g% register bits 7:0
VIC base + OFE4 | Read 8 0x11 | VICxPeriphiD1 VIC Identification register bits 15:8
(see Note below)
VIC base + OFE8 | Read 8 0x04 | VICxPeriphiD2 \z’éﬁffs”gg"ﬁg'f;”bﬁgﬁ;er bits
VIC base + OFEC | Read 8 0x00 | VICxPeriphiD3 gl:czf(es”ég'cl\la:t‘;”bzgﬁ;er bits

Note: The Reset Values of the VICxPeriphlD[3:0] registers collectively show the identification
number for the Vectored Interrupt Controller (VIC). The read-only Reset Values are hard-
wired. Consequently, the VICxPeriphID[3:0] registers are not included in the following
Register Descriptions.

Register Descriptions

VICXIRQStatus

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IRQStatus
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IRQStatus
Address:

VIC1IRQStatus: 0x800B_0000 - Read Only
VIC2IRQStatus: 0x800C_0000 - Read Only

DS785UM1 6-9
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

il

Definition:
IRQ Status Register. The VICxIRQStatus register provides the status of

interrupts after IRQ masking.

Interrupts O - 31 are in VIC1IRQStatus.

Interrupts 32 - 63 are in VIC2IRQStatus.
Bit Descriptions:

IRQStatus: Shows the status of the interrupts after masking by the
VICxIntEnable and VICxIntSelect registers. A “1” indicates
that the interrupt is active, and generates an interrupt to
the ARM Core.

VICxFIQStatus

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FIQStatus
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FIQStatus
Address:

VIC1FIQStatus: 0x800B_0004 - Read Only
VIC2FIQStatus: 0x800C_0004 - Read Only
Definition:
FIQ Status Register. The VICxFIQStatus register provides the status of the
interrupts after FIQ masking.

Bit Descriptions:

FIQStatus: Shows the status of the interrupts after masking by the
VICxIntEnable and VICxIntSelect registers. A “1” indicates
that the interrupt is active, and generates an interrupt to
the ARM Core.

VICxRawlIntr
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RawIntr
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
RawIntr
Address:
VIC1RawIntr: 0x800B_0008 - Read Only
VIC2RawlIntr: 0x800C_0008 - Read Only
6-10 DS785UM1

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

I

Definition:
The VICxRawlntr register provides the status of the source interrupts (and
software interrupts) to the interrupt controller.

Bit Descriptions:

Rawilntr: Shows the status of the interrupts before masking by the
enable registers. A “1” indicates that the corresponding
interrupt request is active before masking.

VICxIntSelect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IntSelect
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IntSelect
Address:

VIC1lIntSelect: 0x800B_000C - Read/Write
VIC2IntSelect: 0x800C_000C - Read/Write
Definition:
Interrupt Select Register. The VICxIntSelect register selects whether the
corresponding interrupt source generates an FIQ or an IRQ interrupt.

Bit Descriptions:

IntSelect: Selects type of interrupt for interrupt request:
1 = FIQ interrupt
0 = IRQ interrupt.

VICxIntEnable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IntEnable
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IntEnable
Address:

VIClintEnable: 0x800B_0010 - Read/Write
VIC2IntEnable: 0x800C 0010 - Read/Write

Default: 0x0000_0000

DS785UM1 6-11
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

i

Definition:
Interrupt Enable Register. The VICxIntEnable register enables the interrupt

reqguests by unmasking the interrupt sources. On reset, all interrupts are
disabled (masked).

Bit Descriptions:

IntEnable: Enables the interrupt request lines:
1 - Interrupt enabled. Allows interrupt request to ARM
Core.

0 - Interrupt disabled.

VICxIntEnClear

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IntEnable Clear
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IntEnable Clear
Address:

VIC1lIntEnClear: 0x800B_0014 - Write Only
VIC2IntEnClear: 0x800C_0014 - Write Only

Default: Don’'t Care

Definition:
Interrupt Enable Clear Register. The VICxIntEnClear register clears bits in the
VICxIntEnable register.

Bit Descriptions:

IntEnable Clear:. Clears bits in the VICxIntEnable register. Writing a bit to
“1” clears the corresponding bit in the VICxIntEnable
register. Any bits written to “0” have no effect.

VICxSoftint
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Softint
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Softint
Address:
VIC1Softint: 0x800B_0018 - Read/Write
VIC2Softint: 0x800C_0018 - Read/Write
6-12 DS785UM1

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

I

Default: Don’t Care

Software Interrupt Register. The VICxSoftint register is used to generate
software interrupts.

Definition:

Bit Descriptions:

Softint: Writing a bit to “1” generates a software interrupt for the
corresponding source interrupt before interrupt masking.
Writing a bit to “0” has no effect.
VICxSoftIntClear
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SoftIntClear
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SoftIntClear

Address:

VIC1SoftintClear: 0x800B_001C - Write Only
VIC2SoftIntClear: 0x800C_001C - Write Only

Default: Don’t Care
Definition:

Software Interrupt Clear Register. The VICxSoftintClear register clears bits in
the VICxSoftint register.

Bit Descriptions:

SoftintClear: Clears bits in the VICxSoftInt register. Writing a bit to “1”
clears the corresponding bit in the VICxSoftint register.
Writing a bit to “0” has no effect.
VICxProtection
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD Protecti
Address:
VIC1Protection: 0x800B_0018 - Read/Write
VIC2Protection: 0Ox800C_0018 - Read/Write
DS785UM1 6-13

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

il

Definition:
Protection Enable Register. The VICxProtection register enables or disables

protected register access. If the bus master cannot generate accurate
protection information, leave this register in its reset state to allow User mode

access.

Bit Descriptions:
RSVD: Reserved. Unknown During Read.

Protection: Enables or disables protected register access. When
enabled, only Privileged mode accesses (reads and
writes) can access the interrupt controller registers. When
disabled, both User mode and Privileged mode can
access the registers. This bit is cleared to ‘0’ on reset, and
can only be accessed in Privileged mode.

VICxVectAddr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
VectorAddr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VectorAddr
Address:

VIC1VectAddr: 0x800B_0030 - Read/Write
VIC2VectAddr: 0x800C_0030 - Read/Write

Definition:
Vector Address Register. The VICxVectAddr register contains the Interrupt

Service Routine (ISR) address of the currently active interrupt.

Note: Reading from this register provides the address of the ISR, and indicates to the priority
hardware that the interrupt is being serviced. Writing to this register indicates to the
priority hardware that the interrupt has been serviced. The register should be used as
follows:

* The ISR reads the VICxVectAddr register when an IRQ interrupt is generated

« Atthe end of the ISR, the VICxVectAddr register is written with any value in order to
update the priority hardware.

Reading or writing to the register at other times can cause incorrect operation.

Note: If you are using the VIC and a program/debugger ever reads address VIC_BASE + 0x30,
a value must be written to VIC_BASE + 0x30. If not, only higher priority interrupts are
enabled and there are no higher priority interrupts. Therefore, no more interrupts will
occur. If you use the VIC in Vectored Interrupt mode, this is not an issue.

6-14 DS785UM1
Copyright 2007 Cirrus Logic

I

Bit Descriptions:

VICxDefVectAddr

Vectored Interrupt Controller
EP93xx User’s Guide

If you are not using the priority level in the VIC, write the VICxVectAddr
register with any value (in order to disable the interrupt priority) at the
beginning of your program.

It is not always clear when the ARM debuggers read the VICxVectAddr
register, so it is recommended that if you are using a debugger, do not read
the VIC registers via a memory window. If you must read the VIC registers,
read only the VIC registers that are needed.

VectorAddr: Contains the address of the currently active ISR. Any
writes to this register clear the interrupt.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DefaultVectorAddr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DefaultVectorAddr
Address:
VIC1DefVectAddr: 0x800B_0034 - Read/Write
VIC2DefVectAddr: 0x800C_0034 - Read/Write
Definition:

Bit Descriptions:

VICxVectAddrO
VICxVectAddr1,
VICxVectAddr2,
VICxVectAddr3,
VICxVectAddr4,
VICxVectAddr5,
VICxVectAddr6

DS785UM1

Default Vector Address Register. The VICxDefVectAddr register contains the
default ISR address.

DefaultVectorAddr: Contains the address of the default ISR handler.

6-15
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

il

VICxVectAddr7,

VICxVectAddr8,

VICxVectAdd9,

VICxVectAddr10,

VICxVectAddrll,

VICxVectAdd12,

VICxVectAddr13,

VICxVectAddr14,

VICxVectAddr15

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
VectorAddr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VectorAddr
Address:

VIC1VectAddrO: 0x800B_0100 - Read/Write
VIC1VectAddrl: 0x800B 0104 - Read/Write
VIC1VectAddr2: 0x800B_0108 - Read/Write
VIC1VectAddr3: 0x800B_010C - Read/Write
VIC1VectAddr4: 0x800B_0110 - Read/Write
VIC1VectAddr5: 0x800B_0114 - Read/Write
VIC1VectAddr6: 0x800B_0118 - Read/Write
VIC1VectAddr7: 0x800B_011C - Read/Write
VIC1VectAddr8: 0x800B 0120 - Read/Write
VIC1VectAddr9: 0x800B 0124 - Read/Write
VIC1VectAddrl10: 0x800B_0128 - Read/Write
VIC1VectAddrll: 0x800B_012C - Read/Write
VIC1VectAddrl12: 0x800B_ 0130 - Read/Write
VIC1VectAddrl13: 0x800B 0134 - Read/Write
VIC1VectAddrl4: 0x800B_ 0138 - Read/Write
VIC1VectAddrl5: 0x800B_013C - Read/Write
VIC2VectAddrO: 0x800C_0100 - Read/Write
VIC2VectAddrl: 0x800C_0104 - Read/Write
VIC2VectAddr2: 0x800C_0108 - Read/Write
VIC2VectAddr3: 0x800C_010C - Read/Write
VIC2VectAddr4: 0x800C_0110 - Read/Write
VIC2VectAddr5: 0x800C_0114 - Read/Write

6-16 DS785UM1

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

I

VIC2VectAddr6: 0x800C_0118 - Read/Write
VIC2VectAddr7: 0x800C_011C - Read/Write
VIC2VectAddr8: 0x800C_0120 - Read/Write
VIC2VectAddr9: 0x800C_0124 - Read/Write
VIC2VectAddrl0: 0x800C 0128 - Read/Write
VIC2VectAddrll: 0x800C _012C - Read/Write
VIC2VectAddr12: 0x800C_0130 - Read/Write
VIC2VectAddr13: 0x800C_0134 - Read/Write
VIC2VectAddrl4: 0x800C 0138 - Read/Write
VIC2VectAddrl5: 0x800C_013C - Read/Write

Definition:
Vector Address Registers. The 32 VICxVectAddO through VICxVectAdd15
registers contain the ISR vector addresses, that is, the addresses of the ISRs
for the particular 16 interrupts that are vectored.

Bit Descriptions:

VectorAddr: Contains ISR vector address.
VICxVectCntlO,
VICxVectCntl1,
VICxVectCntl2,
VICxVectCntl3,
VICxVectCntl4,
VICxVectCntl5,
VICxVectCntl6,
VICxVectCntl7,
VICxVectCntl8,
VICxVectCntl9,
VICxVectCntl10,
VICxVectCntl11,
VICxVectCntl12,
VICxVectCntl13,
VICxVectCntl14,

DS785UM1 6-17
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

il

VICxVectCntl15

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD E IntSource

Address:

VIC1VectCntlO:
VIC1VectCntll:
VIC1VectCntl2:
VIC1VectCntl3:
VIC1VectCntl4:
VIC1VectCntl5:
VIC1VectCntl6:
VIC1VectCntl7:
VIC1VectCntl8:
VIC1VectCntl9:

0x800B_0200 - Read/Write
0x800B_0204 - Read/Write
0x800B_0208 - Read/Write
0x800B_020C - Read/Write
0x800B_0210 - Read/Write
0x800B_0214 - Read/Write
0x800B_0218 - Read/Write
0x800B_021C - Read/Write
0x800B_0220 - Read/Write
0x800B_0224 - Read/Write

VIC1VectCntl10: 0x800B_0228 - Read/Write
VIC1VectCntl11l: 0x800B_022C - Read/Write
VIC1VectCntl12: 0x800B_0230 - Read/Write
VIC1VectCntl13: 0x800B 0234 - Read/Write
VIC1VectCntl14: 0x800B 0238 - Read/Write
VIC1VectCntl15: 0x800B_023C - Read/Write

VIC2VectCntlO:
VIC2VectCntll:
VIC2VectCntl2:
VIC2VectCntl3:
VIC2VectCntl4:
VIC2VectCntl5:
VIC2VectCntl6:
VIC2VectCntl7:
VIC2VectCntl8:
VIC2VectCntl9:

0x800C_0200 - Read/Write
0x800C_0204 - Read/Write
0x800C_0208 - Read/Write
0x800C_020C - Read/Write
0x800C_0210 - Read/Write
0x800C 0214 - Read/Write
0x800C_0218 - Read/Write
0x800C_021C - Read/Write
0x800C_0220 - Read/Write
0x800C_0224 - Read/Write

VIC2VectCntl10: 0x800C 0228 - Read/Write
VIC2VectCntl11: 0x800C_022C - Read/Write
VIC2VectCntl12: 0x800C_0230 - Read/Write
VIC2VectCntl13: 0x800C_0234 - Read/Write
VIC2VectCntl14: 0x800C 0238 - Read/Write
VIC2VectCntl15: 0x800C _023C - Read/Write

Definition:
Vector Control Registers. The 32 VICxVectCntlO through VICxVectCntl5
registers select the interrupt source for the vectored interrupt.

6-18 DS785UM1

Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

I

Note: Vectored interrupts are only generated if the interrupt is enabled. The specific interrupt is
enabled in the VICxIntEnable register, and the interrupt is set to generate an IRQ interrupt
in the VICxIntSelect register. This prevents multiple interrupts being generated from a
single request if the controller is incorrectly programmed.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.
E: Enables vector interrupt. This bit is cleared to ‘0’ on reset.
IntSource: Selects interrupt source by number. You can select any of

the 32 interrupt sources.

DS785UM1 6-19
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

il

6-20 DS785UM1
Copyright 2007 Cirrus Logic

I

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

Chapter 7

Raster Engine With Analog/LCD Integrated
Timing and Interface

7.1

Introduction

Note: This chapter applies only to the EP9307, EP9312, and EP9315 processors. For additional
information regarding the use of t he EP93XX Raster Engine, see the application note,
AN269, “Using the EP93xx’s Raster Engine” at:

http://www.cirrus.com/en/pubs/appNote/AN269REV1.pdf.

The Raster engine is capable of providing data and timing signals for a variety of displays.
The engine has fully programmable video interface timings for progressive, dual scan, and
interlaced displays. This programmable interface also allows the raster engine to generate a
First Line Marker on the VSYNC line required by many low cost passive LCD displays.
Separate DAC interface signals are provided to allow analog RGB signhal generation for
analog LCD displays or CRTs. The circuitry is also designed to generate CCIR656 4:2:2
YCrCb digital video output signals for interfacing with an NTSC encoder.

The Raster engine has an 18-bit pixel output bus. The engine also includes support for an 8-
bit parallel display interface for attaching to low-end display modules with integrated
controller and frame buffer. All control register accesses are memory mapped as single word
values and cannot be accessed as 8-bit or 16-bit memory values.

The Raster engine also provides hardware accelerated cursor support. The cursor size is
programmable up to 64 pixels wide by 64 pixels in height, and it can be stored anywhere in
memory as a 2 bpp bitmap image. The Raster Cursor accesses system memory to fetch the
cursor image data that will be automatically blended with the video image.

The Raster Display AHB bus master can be attached directly to SDRAM Port 0 via a side-
band bus or to any SDRAM port connected to the system AHB. If the raster engine is
connected to the system AHB, the selection bits in the VideoAttribs register determine which
of the 4 SDRAM chip selects are used for display buffer access. The choice of which bus to
use should be based on video bandwidth requirements and should be selected before video
services are activated. For systems with low to moderate video bandwidth, the Raster
Display can be attached to SDRAM Port 0 via the side-band bus. This setup allows some
parallelism in bus traffic, but suffers from slow AHB access to external memory. If the video
bandwidth requirements are high, or there is an expectation of low competing traffic, then the
Raster Display should be attached to the AHB and the Arbiter priority should be set to give
the Raster Display highest priority. This attachment gets the best bandwidth available for the
display, but other system performance will suffer.

DS785UM1 7-1

Copyright 2007 Cirrus Logic

http://www.cirrus.com/en/pubs/appNote/AN269REV1.pdf

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

The Raster engine also supports several hardware blinking modes, and 8-bit addressed
lookup tables for grayscale or expanding color depth. The Raster also includes a video
stream signature generator for built in self-testing.

Examples for some of the possible output modes are shown in Table 7-1.

Table 7-1. Raster Engine Video Mode Output Examples

Pixel

Video Frame Displa Pixels Shift Vertical
Display Horizontal Vertical Clock Buffer play Per Frame
. . Data - Clock Notes
Type Resolution Resolution | Freq. | Storage Shift Rate
(MHz) | Format Format Clock Freq. (Hz)
(MHz)
VFD 128 32 2 4 bpp Monochrome 8 0.25 400
Parallel
LCD 128 x 64 2 4bpp | Monochrome | 4 05 230 | Command
Word
interface
LCD 256 128 2 4 bpp Monochrome 4 0.5 60 -
QVGA" TFT 320 234 6.4 8 bpp Analog 1 6.4 80 -
LCD
QV(iéDSTN 320 240 4 4-bit RGB 4-bit RGB 1 4 50 -
HV(EéDSTN 640 240 8 4-bit RGB 4-bit RGB 1 8 50 -
VGA”DC 640 400 16 4 bpp Monochrome 4 4 60 -
Plasma
VGA EL 640 480 24 4 or 8 bpp Grayscale 8 3 75 -
VGLACSDTN 640 480 24 8or16 bpp| 18-bit RGB 1 24 75 -
VGATFT 640 x 480 o4 |B:16:0r24) g i RGB 1 24 75 -
LCD bpp
8,16, 0r24 External
VGA CRT 640 480 32 bpp Analog 1 NA 85 DAC
SVGA TFT 800 x 600 a0 |B160r24) e hiiroE 1 40 80 -
LCD bpp
8,16,0r24 External
SVGA CRT 800 600 50 bpp Analog 1 NA 85 DAC
XGA CRT 1024 x 768 75 8,16, or Analog 1 NA 80 External
24 bpp DAC
SXGA TFT 1280 x 1024 gs |B160r24) g roareE| 1 85 60 24-bits
LCD bpp
7-2 DS785UM1

Copyright 2007 Cirrus Logic

——— Raster Engine With Analog/LCD Integrated Timing and Interface
——————— EP93xx User’s Guide
—mmmml
—
Table 7-1. Raster Engine Video Mode Output Examples
. . Pixel .
Video Frame Displa Pixels Shift Vertical
Display Horizontal Vertical Clock Buffer play Per Frame
. : Data : Clock Notes
Type Resolution Resolution | Freq. | Storage Shift Rate
(MHz) | Format Format Clock Freq. (Hz)
(MHz)
8, 16, or External
SXGA CRT 1280 x 1024 110 24bpp Analog 1 NA 70 DAC
HDTV-2 LCD 1280 x 720 s0 |® 1%[) ?Or 24| 24bit RGB 1 50 50 | 24-bits
8,16, 0r 24 External
HDTV-2 CRT 1280 x 720 66 bpp Analog 1 NA 60 DAC

Since the frame buffer is stored in SDRAM memory, supporting displays with high frame rates
at high resolutions will not be practical and sometimes not possible without using displays
that have an integrated frame buffer.

7.2 Features
« Hardware pixel blinking
e Dual 256-color Look-up-tables (LUT)
» Grayscale/Color Generation for Monochrome/Passive Low Color Displays
» Flexible frame buffer architecture
» Supports video information in DIB (Device Independent Bitmap) format
« Hardware support for left and right panning of the displayed information

e Supports screen sizes up to 1280 x 1024 pixels, with a pixel depth of 4 bpp, 8 bpp, 16
bpp, 24 bpp packed, or 32 bpp (24 bpp unpacked)

Note: Using the Maximum Resolution causes system performance to slow.
» Pulse Width Modulated output that can be used to provide a DC voltage level for
brightness control
« Hardware cursor support with bottom and right edge clipping performed by hardware

« 24-bit color depth, but only 18 bits is bond-out
7.3 Raster Engine Features Overview

7.3.1 Hardware Blinking

The raster engine pipeline contains hardware pixel blinking logic. This circuitry will blink
pixels based on the Rate field in the BlinkRate register. For 4 bpp and 8 bpp modes, either
multiple or single bit planes may be used to specify blinking pixels by look up in the LUT. This
will allow the number of definable blinking pixels to range from all pixel combinations blinking

DS785UM1 7-3
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

to one pixel combination blinking. For 16 bpp and 24 bpp modes, the LUT blink circuitry is
usually bypassed and the blink functions are logic transformations of the pixel data. In
addition to logical AND/OR/XOR LUT address translations, the circuitry will support logical
blink to background, blink dim, blink bright, and blink to reverse.

7.3.2 Color Look-Up Tables

The raster engine block contains dual color pixel LUTs (Look-Up-Tables). Each LUT will allow
the engine to output 256 different pixel combinations of 24-bit pixels in lower color depth
modes.

7.3.3 Grayscale/Color Generation for Monochrome/Passive Low Color
Displays

The video pipeline includes circuitry that can be configured to provide grayscale or color
generation for generating grayscales on monochrome displays or adding color depth on low
color LCD displays, respectively. For monochrome displays, the circuitry supports up to 8
grayscale shades including on and off. For low color LCD displays, the circuitry supports up
to 512 colors. The circuitry does this by rapidly turning on and off (dithering) pixels based on
frame count, screen location, and pixel value. For grayscale displays, the pixel gray
appearance is determined by 3 bits of the pixel data. For color depth expansion on LCD
displays, the pixel color appearance is determined by 3 bits each from the red, green, and
blue portions of the pixel data.

7.3.4 Frame Buffer Organization

The Raster Engine is designed to support video information as DIB (Device Independent
Bitmap) format stored in a packed pixel architecture. However, the engine does not require
that video information be stored in a packed line architecture. The circuitry allows a different
memory organization between video scan out and graphic image memory. Therefore,
memory gaps can exist between lines. This means that the graphics memory may be
organized wider than the video frame. This type of feature could be used for left and right
panning of the displayed information. The video frame buffer can be located in main memory,
or in a dedicated video frame area. The beginning of video lines can be located on any word
boundary. This architecture allows efficient use of memory regardless of the active video line
length. Video screen start registers determine the upper left corner of the video screen. Video
word addressing in screen memory is from left to right and then from top to bottom. Four-bit
pixels packed within video words are organized in DIB format with the left most pixel in the

7-4 DS785UM1
Copyright 2007 Cirrus Logic

I

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

most significant location on a per byte basis. Table 7-2 demonstrates pixel packing within
words in a byte oriented Frame Buffer organization.

Table 7-2. Byte Oriented Frame Buffer Organization

As stored in memory In pixel output order (progressive scan)
4 bits per pixel Pixel O is first pixel out (upper left corner of screen) -->
32-bit Word gixel Pixe]! Pixel 2 Pix%l Zixel PixeSI gixel Pixe7l
Byte 3 Byte 2 Bytel Byte O bit 7 bit 0 | bit 15 bit 8| bit 23 | bit 16 | bit 31 | bit 24
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8 | bit 7 bit 0 Byte 0 Bytel Byte 2 Byte 3
Pixel 6 | Pixel 7 | Pixel 4 | Pixel 5| Pixel 2 | Pixel 3| Pixel 0| Pixel 1 32-bit Word
8 bits per pixel
32-bit Word Pixel 0 Pixel 1 Pixel 2 Pixel 3
Byte 3 Byte 2 Bytel Byte 0 bit 7 bit 0 | bit 15 bit 8| bit 23 | bit 16 | bit 31 | bit 24
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8 | bit 7 bit 0 Byte 0 Bytel Byte 2 Byte 3
Pixel 3 Pixel 2 Pixel 1 Pixel 0 32-bit Word
15 or 16 bits per pixel
32-bit Word Pixel 0 Pixel 1
Byte 3 Byte 2 Bytel Byte 0 bit 15 | hbit 8| bit 7 bit 0| bit31 | bit24 | bit23 | bit 16
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8 | bit 7 bit 0 Bytel Byte 0 Byte 3 Byte 2
Pixel 1 Pixel 0 32-bit Word
24 bits per pixel packed
32-bit Word 0 Pixel 0 Pixel 1 Pixel 2 Pixel 3
Byte 3 Byte 2 Byte 1 Byte O Red Red Red Red
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8 | bit7 bit O] | bit 23 | bit 16 | bit 15 bit 8 | bit 7 bit0| bit31 | bit24
Pixel 1 Blue Pixel 0 Red Pixel 0 Green Pixel 0 Blue Byte 2 Byte 5 Byte 8 Byte B
Word 0 Word 1 Word 2 Word 2
32-bit Word 1 Green Green Green Green
Byte 7 Byte 6 Byte 5 Byte 4 bit15| bit8| bit7 bit O | bit 31 | bit24 | bit 23 | bit 16
bit31 | hbit24| bit23 | bit16 | bit 15 bit 8 | bit 7 bit O Byte 1 Byte 4 Byte 7 Byte A
Pixel 2 Green Pixel 2 Blue Pixel 1 Red Pixel 1 Green Word 0 Word 1 Word 1 Word 2
Blue Blue Blue Blue
32-bit Word 2 bit7 | bit0 | bit31 | bit24 | bit 23 | bit 16 | bit 15 | bit 8
Byte B Byte A Byte 9 Byte 8 Byte O Byte 3 Byte 6 Byte 9
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8 | bit 7 bit 0 Word 0 Word 0 Word 1 Word 2
DS785UM1 7-5

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

Table 7-2. Byte Oriented Frame Buffer Organization (Continued)

il

As stored in memory In pixel output order (progressive scan)
Pixel 3 Red Pixel 3 Green Pixel 3 Blue Pixel 2 Red
32 bits per pixel (24 bits per pixel unpacked)
32-bit Word 0 Pixel 0 Pixel 1 Pixel 2 Pixel 3
Byte 3 Byte 2 Byte 1 Byte O Red Red Red Red
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8 | bit 7 bitO] | bit23 | bit16 | bit23 | bit16 | bit 23 | bit 16 | bit 23 | bit 16
Unused Pixel 0 Red Pixel 0 Green Pixel 0 Blue Byte 2 Byte 6 Byte B Byte E
Word 0 Word 1 Word 2 Word 3
32-bit Word 1 Green Green Green Green
Byte 7 Byte 6 Byte 5 Byte 4 bit 15 | hit 8| bit 15 bit8| bit 15 | bit8| bit15 | bit 8
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8 | bit 7 bit 0 Byte 1 Byte 5 Byte A Byte D
Unused Pixel 1 Red Pixel 1 Green Pixel 1 Blue Word 0 Word 1 Word 2 Word 3
Blue Blue Blue Blue
32-bit Word 2 bit 7 bit 0 | bit 7 bit 0 | bit 7 bit 0| bit 7 bit 0
Byte B Byte A Byte 9 Byte 8 Byte O Byte 4 Byte 8 Byte C
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8 | bit 7 bit O Word 0 Word 1 Word 2 Word 3
Unused Pixel 2 Red Pixel 2 Green Pixel 2 Blue
Compressed images for remapping
1 bit per pixel
32-bit Word
Byte 3 Byte 2 Bytel Byte O
bit 31 bit 24 | bit 23 bit 16 | bit 15 bit 8| bit 7 bit 0
Pixel Pixel | Pixel Pixel Pixel 8 Pixel | Pixel Pixel
24 31| 16 23 15| 0 7

7.3.5 Frame Buffer Memory Size

Several screens may be available for video display depending on screen size, pixel depth,
and amount of memory dedicated to video images. The screen size can be up to 1280 x 1024
pixels, the pixel depth can be 4 bpp, 8 bpp, 16 bpp, 24 bpp packed, or 32 bpp (24 bpp
unpacked).

7.3.6 Pulse Width Modulated Brightness

The circuitry provides a pulse width modulated brightness control output, Bright, that can be
used in conjunction with an external resistor and capacitor to provide a DC voltage level for

Copyright 2007 Cirrus Logic

DS785UM1

I

7.3.7 Hardware Cursor

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

brightness control. The Bright output signal can also be used for direct pulse width modulated

CCFL brightness control that can be synchronized to the display frame rate. -

The Raster Engine provides hardware cursor support. The cursor size is programmable up to
64 pixels wide by 64 pixels in height. The cursor is stored anywhere in memory as a 2 bpp
image. The 2 bpp image pixel information implies transparent, inverted, cursor color 1, or
cursor color 2. The cursor hardware must be supplied this information:

* Image starting address

e Two cursor colors

« An X screen location and a Y screen location
e A cursor size

Using this information, the hardware overlays the cursor in the output video stream. Bottom
and right edge clipping is performed by hardware. Some extra calculations and register
setups are required for cursor support during dual scan display mode.

Functional Details

The Raster Engine’s block diagram is shown in Figure 7-1. The video pipeline consists of
several major sections; VILOSATI, video FIFO, pixel mux, blink logic, color LUT, RGB mux,
output shift logic, grayscale circuitry, hardware cursor logic, YCrCb encoder, and video timing
section. A video stream signature generator is also included for built in self testing.

DS785UM1 7-7

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

P
e t—
e —
e ———
e
——
E— 4
~———en
24
YCrCbh
-_———_-— Encoder]]
I P[17:0]
I I 256x24
64 . SRAM Gra
8 y 24
DAT(31:0) | N / L\ E‘(')'”ikc Look Scale PELEN
I 7] 7 | 7] MU g Up Gen Colo Pixel []
| Table MU Shifting CCIREN
. Video I Two ; togie
ADR(31:0) ol 32x32 | 24 [PCLK
n 9 | IN Dual ouT 7
Oqueut ADR] Port ADR I T PCLKEN
TR
Scanner I CTR RAMs ¢ I
And I
Transfer I 24 To
Interface /A > DAC
| nowr N_RD | vi
I FULL I Video Stream
I Signature Analyzer|
HEULL Control I
I N CLR Logic [— I
HADR(31:0 L
Cursor Horizontal Compare N/VICSYNC
Ad,\‘d;eRss and and HSYNC/LP
c s Vertical register BLANK
HDAT(31:0) Counters logic BRIGHT
Cursor
Line
CREQ
& éngr Cursor Buffer Cursor SYNCEN
Bus State e Output
Master Machs CNTRs
ZN

Figure 7-1. Raster Engine Block Diagram

7.4.1 VILOSATI (Video Image Line Output Scanner and Transfer

7-8

Interface)

The Raster Engine’s video image line output scanner and transfer interface connects to a
either a dedicated DMA port on the SDRAM controller or to AHB access to the SDRAM
controller and reads the video image from SDRAM to the video FIFO. VILOSATI keeps track
of image location, width, and depth for both progressive and dual scanned images. It
responds to controls from the FIFO for more video information. During single scan operation,
when the FIFO level falls below a programmable fill level (FIFOLevel defaults to a value of 16
words), the FULL signal is inactive and VILOSATI attempts to initiate an unspecified length
incrementing burst of at least 16 words. The VILOSATI will initiate incrementing unspecified
length bursts until the FIFO is full. When the FIFO signals that it has emptied below the
FIFOLevel again, the image reading process from the frame buffer continues.

Note: FIFOLevel values of greater than 16 words are not recommended due to the possibility of
FIFO underflow.

For dual scan operation, the FIFO is split into two halves, where each halve operates with a
separate FULL indicator. In dual scan mode, selected by writing DSCAN = ‘1’ to the
PixelMode register, the FULL and DS_FULL indicators trigger when either has room for a
burst of 8 words (the LSB of FIFOLevel is ignored). For dual and single scan displays,
information for the upper left corner of the display begins at the word address stored in the

DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

register, “VidScrnPage” on page 7-46. For a dual scan display, information from the upper left
corner of the lower half of the display begins at the word address stored in the
“VidScrnHPage” register. The “VidScrnPage” and “VidScrnHPage” registers are used to pre-
load address counters at the beginning of the video frame.

The VILOSATI continues to service the video FIFO until it has transferred an entire screen
image from memory. The size of the screen image is controlled by the values stored in the
“ScrnLines” and “LineLength” registers. The “ScrnLines” register defines the total number of
displayed (active) lines for the video frame. The “LineLength” register defines the number of
words for each displayed (active) video line. A separate register, “VLineStep” on page 7-48,
defines the word offset in memory between the beginning of each line and the next line.
Setting the VLineStep value larger than the LineLength value provides the capability for
image panning as shown in Figure 7-2.

Frame Buffer

\ Displayed Portion

VIDSCRNPAGE
start address

VIDSCRHPG
start address
(Dual Scan mode only)

SCRNLINES + 1

LINELENGTH + 1

A
v

VLINESTEP

Figure 7-2. Video Buffer Diagram

7.4.2 Video FIFO

The video FIFO is used to buffer data transferred from the image memory to the Video output
circuitry without stalling the video data stream. The FIFO consists of a dual port RAM with
input and output index counters and control circuitry to operate it as a FIFO memory. The
input data bus width to the FIFO is 32 bits. During half page mode, when the display requires
scan out of the bottom and top half of the screen at the same time (dual scan), top half (or
bottom half) data is stored in every other FIFO location.

When the screen is single scan (scanned out as a single progressive image), FIFO data is
stored sequentially. The FIFO output data bus is 64 bits wide and can output even and odd

DS785UM1 7-9
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

il

words on both the upper and lower half of the bus. The FIFO has an underflow interrupt
indicator that can be used to determine if the system is providing adequate bandwidth and
low enough latency to support the selected display pixel depth, resolution, and refresh rate.

7.4.3 Video Pixel MUX

The pixel reconstruction circuitry uses multiplexers and pipe-line registers to 'unpack’ the
video pixels that are output from the video FIFO. The stored FIFO words are transferred 2 at
a time across a 64-bit bus. The multiplexers select a single pixel to go on the 24-bit output
bus based on the P value that is written to the “PixelMode” register. The multiplexers are
controlled by a pixel counter that also increments based on the PixelMode.P value. The
amount and frequency of data read from the FIFO is dependent on the number of bits per
pixel. For example, in 8 bpp configuration (PixelMode.P = 0x2), the 64-bit FIFO output is
changed for every eight pixels. In dual scan mode, selected by writing DSCAN = ‘1’ to the
“PixelMode” register, the upper 32 bits and lower 32 bits are read out in parallel and the
upper-half screen and lower-half screen pixels are unpacked and loaded into the video
stream sequentially.

7.4.4 Blink Function

7-10

The Raster Engine provides blinking pixel control circuitry. This circuitry provides a means to
blink pixels at a rate specified by a programmable count of video frames. The number of
video frames for a blink cycle is controlled by the “BlinkRate” register. There is only a single
blink state bit, so all blinking pixels blink at the same programmed frequency. The most
flexible way to blink pixels is to use a look-up-table (LUT). This is done by logically
transforming the address into the look-up-table based on whether the pixel is a blink pixel,
and whether it is currently in the blink state. For example, a red blinking pixel may be set up
to normally address location 0x11 in the look-up-table. When not in the blink state, the color
output from this location would be red. In the blink state, the address could be logically
modified to 0x21. The color stored at the 0x21 location could be green or black or whatever
other color that it is to be used in place of red in the blink state. To define a pixel as blink,
some color information must be sacrificed. For every pixel color, there could be a blinking
version. This would cut the possible number of system colors in half.

For LUT blinking, the address is modified by using a masked AND/OR/XOR function. The
mask is defined in the “BlinkMask” register. Selection of whether the pixel data is ANDed,
ORed, or XORed with the mask is set by writing to the M field in the “PixelMode” register.

The LUT blinking solution is only useful for 4 bpp and 8 bpp modes because the total number
of colors is limited to 256. The extra bit width in 16 bpp and 24 bpp modes is not used.
Therefore, for 16 bpp, and 24 bpp modes, the LUT blink circuitry is usually bypassed (based
on the C field in the “PixelMode” register) and the blink function is performed by logical or
mathematical operations on the pixel data. These operations can be programmed for Blink to
Background, Blink Dimmer, Blink Brighter, or Blink to Offset by writing the appropriate value
to the M field in the “PixelMode” register.

When Blink to Background mode is enabled, the blink circuitry replaces any blinking pixel
with the “BkgrndOffset” register value. Setting this register to the background screen color in

DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

this mode will cause an object to appear and disappear. A drawback to this mode is that it
may cause problems with correctly viewing overlapping objects. Blink Brighter and Blink
Dimmer modes shift the pixel data values by one bit position. For Blink Brighter, the LSB is
dropped, the MSBs are all shifted one bit lower, and the MSB is set to a “1”. For Blink
Dimmer, the LSB is dropped, the MSBs are all shifted one bit lower, and the MSB is set to a
“0“. Blink to Offset is simply adding the value in the BkgrndOffset register to blinking pixels.
The shifting and offsetting can be programmed to be compatible with the selected pixel
organization mode.

Defining blink pixels in 16 bpp and 24 bpp modes also may sacrifice the total number of
colors available. A blinking pixel is defined by the “PattrnMask” and “PattrnMask” registers.
By using the PattrnMask register, either multiple or single bit planes may be used to specify
blinking pixels. This will allow the number of definable blinking pixels to range from all pixel
combinations blinking to only one pixel that blinks. This approach allows the option of
minimizing the number of lost colors by reducing the number of blinking colors. BlinkPattrn is
then used to define the value of the PATTRNMASK bits in the “BlinkPattrn” register that
should blink.

7.4.5 Color Look-Up-Tables

The Raster Engine contains two 256 x 24-bit RAMSs that are used as color pixel LUTs to
provide a selection of 256 colors from a palette of 16 million colors. One LUT is inserted in the
video pipeline, while the other is accessible via the AHB. Changing the SWITCH bit in the
“LUTSwWCtr!” register toggles which LUT is in the pipe and which is accessible by the AHB.
The LUTs are mapped to memory addresses and are accessible from the AHB one at a time.
During active video display, the LUT switch command is synchronized to the beginning of the
next vertical frame. When the video state machine is disabled the LUT switch occurs almost
immediately. The status of actual switch occurrence can be monitored by reading the SSTAT
bit in the “LUTSwCtrl" register. This bit can be polled, or the frame interrupt can be enabled
and used to time the switching. Each LUT can be used for 4 bpp and 8 bpp modes and is
usually bypassed for 16 bpp and 24 bpp modes. Control for whether or not the LUTs are used
or bypassed altogether in the video pipeline is performed by writing to the appropriate value
to C field (Color field) in the “PixelMode” register.

7.4.6 Color RGB Mux

The color RGB mux is necessary for selecting the appropriate pixel format and routing it to
the appropriate video output stream. The Color RGB mux formats data for the pixel shift logic,
a color DAC interface, or the YCrCb interface. The color RGB mux primary mode of operation
is controlled by the “C” value (color value) in the “PixelMode” register. The primary mode of
operation selects data from the grayscale generator, from the LUT, or from the video pipeline
after the blink logic. When the hardware cursor is enabled by writing CLHEN = ‘1’ in the
“CursorDScanLHYLoc” register or CursorXYLoc.CEN = ‘1" in the “CursorXYLoc” register,
CursorColorl/2 data values may be injected into the pipeline, or the primary incoming data
may be inverted. The data formatting performed by the color RGB mux also depends on the
“C” value (color value) in the “PixelMode” register. When in 16-bit 555 or 565 data modes,
the pixel data is reformatted to fit into a 24-bit bus. This includes copying the MSBs for the

DS785UM1 7-11
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

———.
——ER.
——

data into the unused LSBs of the bus to support the full color intensity range. This part of the
multiplexing circuitry actually occurs before the blink logic stage. Once selected and
conditioned, output data is sent to the pixel shift logic and the YCrCb logic. The data is further
conditioned with blanking in another pipeline operation before being sent to a color DAC.

7.4.7 Pixel Shift Logic

7-12

The pixel shifting logic on the output of the Video controller circuitry allows for reduced
external data and clock rates by performing multiple pixel transfers in parallel. The output can
be programmed to transfer a single pixel mapped to an 18-bit pixel output per clock (triple 6
RGB on 18 active data lines), 2 pixels per clock up to 9 bits wide each (18 pixel data lines
active), 4 pixels per clock up to 4 bits wide each (16 pixel data lines active), or 8 pixels per
clock up to 2 bits wide each (16 pixel data lines active). The interface can be programmed to
output 2 2/3 - 3-bit pixels on the lower 8 bits of the bus per pixel clock. The interface can be
programmed to operate in dual scan 2 2/3 pixel mode, placing 2 2/3 pixels from the upper
and lower halves of the screen on the lower 8 bits of the bus and the next 8 bits of the bus per
clock respectively. In dual scan mode, selected by writing DSCAN = ‘1’ to the “PixelMode”
register, every other pixel in the pipeline is from the other half of the display. Therefore, the
dual scan output transfer modes that are supported are 1 upper/1 lower pixel, 2 upper/2 lower
pixels, and 4 upper/4 lower pixels corresponding to the 2 pixels per clock, 4 pixels per clock
and 8 pixels per clock modes.

Table 7-3 shows output pixel transfer modes based on the shift mode “S” value (shift value)
and the color mode “C” value (color value) in the “PixelMode” register:

DS785UM1
Copyright 2007 Cirrus Logic

21607 snund 200z wblAdod

TINNS8.SA

€T-L

Shift

Color

Output

Table 7-3. Output Pixel Transfer Modes

Vodeodel Mone [P@3|P(22)|P21)|P(20)|P(19)P(18)|P(17) [P(16)|P(15)|P(14) P(13)|P(12)|P(11) | P(10)| P(9) | P(8) | P(7) | P(6) | P(5) | P(4) | P(3) | P() [P(D) | P(0)
0x0 single pixel
0x0 | Ox4 pfg;’g%ﬁtgp R | RO) | 6@) | 60) | BQW) | BO) | R(?) | R®) | RB) | RA) | RB) | RE@) | 6(7) | 66) | G(5) | 6(4) | 6G@3) | 62) | B(7) | B®) | BG) | BM) | BEB) | BER)
08 | yide
single 16-bit
0x0 | 0x5 |565 pixel per| R@3) | RQ2) | 6G) | 64) | B®) | B@) | R@) | RE) | R@) | RO | RO) | R@) | 665) | 64) | 63 | 62) | 6wy | 60) | B@) | B®) | BE) | BQ) | BO) | B®Y)
clock
single 16-bit
ox0 | ox6 555 pixel per| R©3) | R@2) | 6B3) | 62 | B®) | P@) | R@) | RB) | R@) | RO | RO) | R@) | 64) | 63) | 62) | 61) | 60) | 6@y | B@) | BE) | B | BQ) | BO) | B®Y)
clock
0x0 s_ingle 24-bit
oxi | ox4 p";g'ﬁagfsed x| x| x| x| x| x |roy|re) | RrRE)|R@) |RE) | RD | c) | a6) | c65) | 6@) | @) | C@ | BO) | BE6) | BEG) | BWY) | BE) | BP?
0x8 each clk
single 16-bit
565 pixel
oxt | 0x5 | mappedto | X | x | x | x | x | x |Rr@ |rR® |[R@ |rRW) RO | R? |c6) | 6@ | e | 6@ | ey | CO | 8w | BE) | 8@ | BOY) | BO) | B
18 hits each
clk
single 16-bit
555 pixel
oxt | 0x6 | mappedto | X | x | x | x | x | x |Rr@® |rR® |[R@ |rRW RO | R? |c@) | c@) |c@ | ew | o) | @ | 8w | BE) | B@) | BOY) | BO) | B
18 hits each
clk
_PL20)P1(12) P1(4) POR0)PO(L2) PO4) |51 351 (20)p1 (21)P1(15)P1(14)P1(13)| PL(7) | PL(6) | P1(5) [PO(23)PO(22)fPO21)| PO(15) [PO(14)PO(13)| PO(7) | PO(6) | PO(S)
0x2 progressive | R1(4)| G1(4)| BI(4) | RO)|GOM)| BOM) ['R1(7) | c1(6) | 61(5) | G1(7)| GA(6) | G1(5) | BL(7) | BL(E) | BL(5) | RO(7) | RO(6) | RO(5) | GO(7) | GO(6) | G0(5) | BO(7) | BO(6) | BO(S)
0x0
0x8 | 2 pixels per Ié?gg)r Il;(z\iv;)r Lg\(/:(;\r L;?gg)r L;;()fg)r UPp(%er Lower |Lower |Lower|Lower|Lower|Lower|Lower|Lower|Lower |Upper|Upper|Upper| Upper | Upper |[Upper|Upper|Upper|Upper
G 0) B) 8 e 2 o e o R R
dual scan * N N N * M (7) | R(6) | R(5) | G(7) | G(6) | G(5) | B(7) | B(6) | B(5) | R(7) | R(6) | R(5) | G(7) (6) | G(5) | B(7) | B(6) | B(S)
—|P3(14) P3(6) |P2(14)| P2(6) [P1(14) P1(6) [PO(14)| PO(6) P3(22) P2(22) P1(22) P0(22)
0 | |POEERE 6a(e)| B3(6) | B2(6) | B2(E) G1(6) B(6) | GO | BU) o5 R3(6) (37| s | may| RO [c2(r) s | i) | RO wiry | (7 oy | OO [G0r) | ot
812 4 pixels per Lower|Lower Upper Upper Lower) Lower Upper Upper Lower Lower Lower|Lower|Upper Upper Upper|Upper|Lower Lower Lower | Lower [Upper UpperU er|Upper:
shiftclock PL(14) P1(6) [P1(14)| P1(6) [PO(14) PO(6) |PO(14) PO(6) P13 L22)51 (15 P17y [P1 (23 L2Dp1(13) P1(7) Por2a)” 22 poin)| Pory o3l *22po(is) por)
dual scan |CG1(6)| B1(6)| G1(6) | B1(6)| GO(6) | BO(6) | GO(6) | BO(E) [y (7y| RL6) | c1(7y| B1(7) | R1(7) | RO | G1(7) | BL(7) [RO(7) | RO | GO(7) | BO(7) [RO(7) |ROE) [G0(7)| BO(7)
—P7(23)P6(23)|P5(23)[P4(23)P3(23)P2(23)|P1(23)|PO3)P7(15) P7(7) [P6(15)| P6(7) [P5(15)| P5(7) [PA(15) P4(7) [P3(15) P3(7) |P2(15)| P2(7) [P1(15)| P1(7) [PO(15) PO(7)
ox4 progg‘;s“’e R7 | R6 | R5 | R4 | R3 | R2 | RL | RO | G7 | B7 | G6 | B6 | G5 | B5 | G4 | B4 | G3 | B3 | G2 | B2 | G1 | BL | GO | BO
8;3 8 pixels per |-oWer|Upper| Lower [Upper|Lower|Upper|Lower|Upper|Lower|Lower|Upper[Upper|Lower|Lower|Upper|Upper|Lower[Lower| Upper [Upper Lower|Lower|Upper|Upper
e P3(23)P3(23) P2(23) P2(23)P1(23)P1(23)P0(23) PO(23)P3(15) P3(7) [P3(15) P3(7) [P2(15) P2(7) [P2(15) P2(7) [P1(15) P1(7) |PL(15) | P1(7) [PO(L5) PO(7) PO(15) PO(7)
oo | R3 | R3 | R2 | R2 | R1 | RL | RO | RO | G3 | B3 | G3 | B3 | G2 | B2 | G2 | B2 | GL | BL | GI | BL | GO | BO | GO | BO
ool | x| x| x [x [x [x| x | x| x| x| x| x| x| x| x| x |c2|B2| R |GL|BL|RO|GO]|BO
0x5 | 0x8 széfcﬁ’gxcek's X | x X X | x | x| x| x| x| x| x| x| x| x| x| x|e5|RrRa| ca |B4]|R3|G3]|B3]|R2
X | X | X | x| x| x| X | X | X | X | X]| x| X]| x| x| X |rr|Gr |87 |R6|G6]|B6|R5]| G5

\l

DIDOT SIRID,

aoepiaiu] pue Bulwi) parelbaiu] go/boreuy Yyip suibul laisey

3pINg S,18SN XXE6dT

21607 snund 200z wblAdod

TINNS8.SA

v1-L

Table 7-3. Output Pixel Transfer Modes (Continued)

ﬁggte f\:/l‘(’)'gé QUIPLT p(23)|P(22)|P(21) [P(20)[P(19)[P(18)|P(17) |P(16) P(15)P(14)[P(13)[P(12)| P(D)|P(10)| P(9) | P(8) | P(7) | P(6) | P(5) | P(4) | P(3) | P(2) | P(1) | P(O)

0x0 | dualz2m | X | X | X | X | X | X | X | X [LG2|LB2|LRI|LGL|LBL|LRO|LGO|LBO|UG2|UB2|URL |UGL|UBL|URO|UGO|UBO

0x6 | Ox8 | pixels per X X X X X X X X |LB5|LR4|LG4|LB4|LR3|LG3|LB3|LR2|UB5|UR4|{UG4|UB4 | UR3|UG3|UB3|UR2

clock X X X X X X X X |LR7|LG7|LB7|LR6|LG6|LB6|LR5[LG5|UR7|UG7|UB7 |UR6|UG6(UB6|UR5|UGS5

*%k *% C(;LIJEEN *% *% *% *% *% *%k *% *%k *% *k *% *k *% *k *% *k D(7) D(G) D(5) D(4) D(3) D(2) D(l) D(O)
*%k *% LCDEN Subs *% *% *% *% *% *%k *% XECL YSCL *k *% *%k *% *%k *% *%k *%k *%k *% *% *k *%k *k *%
*%k *% ACEN Subs *% *% *% *% *% *k AC *k *% *k *% *k *% *k *% *k *k *k *% *% *%k *%k *%k *%

*These bits are an ORed combination of the bit value shown and the next significant bit below (This rounds the color value to nearest

**These bits do not get a substitute and are defined to the values controlled by the pixel output mode in the upper part of the table.

color).

DIDOT SIRID,

aoepiaiu] pue Bulwi) parelbaiu] go/boreuy Yyip suibul laisey

3pINg S,18SN XXE6dT

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

!

7.4.8 Grayscale/Color Generator for Monochrome/Passive Low Color
Displays

The hardware raster engine has three built in matrix programmable grayscale generators.
One generator is located on each of the red, green, and blue internal channels. These

generators can be enabled to expand color depth or turn monochrome into grayscale through

both spatial and temporal dithering. Dithering means that the circuit turns monochrome pixels

on and off in a specific pattern and at a high toggle rate, and uses the integration perception

of the human eye along with display persistence to achieve an average luminance between

full on and full off. Using one of these generators allows creation of grayscale pixels on a

monochrome display. Using all three of the generators with one on each red, green, and blue

channel allows generation of additional colors on an 8 color LCD display.

Grayscale shading is accomplished on each channel by altering when and how often a given
pixel is active. The setup for when and how often pixels of each value 0-7 are active is
programmed into the grayscale look-up-table memory for each channel. The look-up-table for
each RGB channel is indexed by 4 values: 3 bits from the input pixel value (0-7), and for each
input pixel value either the 3 frame or 4 frame counter, the 3 line or 4 line vertical counter, and
the 3 column or 4 column horizontal pixel counter. Pixel values 0-7 in each channel are
programmed as to whether a count by 3 or count by 4 counter is used for frame, horizontal,
and vertical.

The grayscale circuits are inserted into the video pipeline after the color LUT. The circuitry
takes three bits from the output of the color LUT (one from each color) and uses them as the
inputs for the grayscale LUT. These three bits are then processed by the grayscale circuitry to
generate a new three bit output, based on the configuration of the grayscale LUT. The three
bit output of the grayscale LUT is then fed through the pixel shifting logic and out to the Pixel
Bus Pins. This provides 8 shades of gray per channel, including all off (black) and full on
(white). Each circuit operates six separate 2-bit index counters; FRAME_CNT3,
FRAME_CNT4, VERT_CNT3, VERT_CNT4, HORZ_CNT3, and HORZ_CNT4. Based on
value of these counters, each grayscale look-up-table is programmed with values that define
the on/off dithering operation for their respective three bits of the pixel value.

For example, in color mode 8 with shift mode 0:

Color LUT[23:21] -> Grayscale LUT[2] -> P[17:12] (All pins with Red color data)
Color LUT[15:13] -> Grayscale LUT[1] -> P[11:6] (All pins with Green color data)
Color LUT[7:5] -> Grayscale LUT[0] -> P[5:0] (All pins with Blue color data)

The following setup description refers to a single channel. First, the matrix size for each 3 bits
of the pixel value (0 through 7) is defined. The matrix size is from 3 horizontal rows x 3
vertical columns x 3 frames to 4H x 4V x 4F or any combinations of 3 or 4. The grayscale
look-up-table is then filled in for each pixel with this matrix information. Because the look-up-
table is indexed by 4 values, it can be perceived as a multi-dimensional array. For each of the
input pixel values 0-7, a 3H (Horizontal) x 3V (Vertical) x 3F (Frame) cube up to a

4H (Horizontal) x 4V (Vertical) x 4F (Frame) cube can be defined.

Setting the grayscale matrix values in a channel for full off and full on is very straight forward.

DS785UM1 7-15
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

Assuming that pixel input value 0 is off, setting raster engine base + grayscale LUTx offset +
0x00, 0x20, 0x40, and 0x60 to all ‘0’s ensures that a O pixel never turns on. Assuming that
pixel 7 is full on, setting raster engine base + grayscale LUTXx offset + 0x1C, 0x3C, 0x5C, and
0x7C to all ‘1's ensures that the value is always on. Table 7-6 shows the format for
programming.

7.4.8.1 HORZ_CNT3, HORZ_CNT4 Counters

These free running counters increment after displaying each pixel.

7.4.8.2 VERT_CNT3, VERT_CNT4 Counters

These free running counters increment at the end of every vertical line.

7.4.8.3 FRAME_CNT3, FRAME_CNT4 Counters

These free running counters increment at the end of each frame.

The GryScILUT supports 3-bit pixel input. Each of the pixel combinations can define a unique
combination of VERT, HORZ and FRAME counters, which provides for maximum flexibility in
defining the rate at which a given pixel is manipulated as it is being displayed on the screen.

7.4.8.4 HORZ_CNTX (pixel) timing

This timing is controlled by the HORZ_CNTx counter and will indicate what pixel count values
will cause a given pixel to be turned on. It is possible to have a pixel turned on for all HORZ
counts, zero HORZ counts, or a defined pattern of HORZ counts. This counter is incremented
by the pixel clock.

7.4.8.5 VERT_CNTX (line) timing

This timing is controlled by the VERT_CNTx counters and will indicate what line count values
will cause a given pixel to be turned on. It is possible to have a pixel turn on for all VERT
counts, zero VERT counts, or a defined pattern of VERT counts. This counter is incremented
at the end of each line.

7.4.8.6 FRAME_CNTX timing

7-16

This timing is controlled by the FRAME_CNTx counters and will indicate when a full frame of
video has been displayed. It is possible to have a pixel turn on for all FRAME counts, zero
frame counts, or a combination of frame counts. This counter is incremented at the end of
each frame.

The GrySclLUT combines all of the above information into a single table. In this way, it is
possible to define a pixel to be on in all conditions (all HORZ, VERT, and FRAME counts),
zero conditions, or any combination.

DS785UM1
Copyright 2007 Cirrus Logic

!

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

7.4.8.7 Grayscale Look-Up Table (GrySclLUT)

Table 7-4. Grayscale Lookup Table (GryScILUT)

VENT 1 11| 12 |12 |12 | 10| 10 |10 | 10 |01 | 01| 01 |01 | 00 | 00 | 00 | 00 | CTYSCILUT
Frame | Vert | Horz (Lines) Address *4
Cr | Crp Cr ol penT Pixel
(Pinels) | 11 [20 [01 [00 [11 |10 |01 |00 | 12 | 10 | 01 | 00 | 11 | 20 | 01 | 00 |Frame | 1%
D18 D17 D16 base+80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000
D18 D17 D16 base+84 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 00 001
D18 D17 D16 base+88 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 00 010
D18 D17 D16 base+8C | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 00 011
D18 D17 D16 base+90 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 00 100
D18 D17 D16 base+94 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 00 101
D18 D17 D16 base+98 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 00 110
D18 D17 D16 base+9C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 111
X X X base+A0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 000
X X X base+A4 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 01 001
X X X base+A8 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 01 010
X X X base+AC | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 01 011
X X X base+B0 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 01 100
X X X base+B4 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 01 101
X X X base+B8 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 01 110
X X X base+BC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 111
X X X base+CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 000
X X X base+C4 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 10 001
X X X base+C8 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 10 010
X X X base+CC | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 10 011
X X X base+D0 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 10 100
X X X base+D4 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 10 101
X X X base+D8 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 10 110
X X X base+DC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 111
X X X base+EO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 000
X X X base+E4 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 11 001
X X X base+E8 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 11 010
X X X base+EC | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 11 011
X X X base+F0 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 11 100
X X X base+F4 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 11 101
X X X base+F8 | D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO 11 110
X X X base+FC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 111
DS785UM1 7-17

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

i

~——————

Where FRAME[1:0] = FRAME_CNT3 or FRAME_CNT4 as defined by FRAME at address
Pixel_In,

VCNTI[1:0] = VERT_CNT3 or VERT_CNT4 as defined by VERT at address Pixel_In, and
HCNT[1:0] = HORZ_CNT3 or HORZ_CNT4 as defined by HORZ at address Pixel_In.

This is the GrySclLUT table in an easily readable form. To understand how to use this table
and to know how to fill the table with correct values requires a good understanding on how
the table is used by the grayscale logic.

7.4.8.8 GrySclLUT Timing Diagram

7-18

Table 7-5 shows the timing diagram. The clock column represents a free running master
clock for the display. This clock controls which pixel is being accessed as the image is being
rasterized on the display.

Assume that the first 8 registers have the HCNT, VCNT and FRAME counter registers set up
for 4 counts. The last column shows which register is used to retrieve the look up value and
the bit position within that register that is used as the source to send to the COLORMUX for
the given clock.

Clocks 4, 9, 14, and 19 represent all remaining pixels on the line. Clocks 24 and 29 represent
all remaining pixels for the frame. These entries will keep this example table to a manageable
size.

The FRAME count and PIXEL value are used to indicate which register contains the data.
HCNT and VCNT are used to indicate which bit in the identified register is to be used for the
given grayscale value.

Table 7-5. Grayscale Timing Diagram

Clock HCNT VCNT FRAME PIXEL Register Address / Value
Clock HCNT VCNT FRAME PIXEL Register Address / Value

0 0 0 0 5 (base + 94) / DO
1 1 0 0 5 (base +94) / D1
2 2 0 0 5 (base +94) / D2
3 3 0 0 5 (base +94) / D3
2 P P

5 0 1 0 5 (base +94) / D4
6 1 1 0 5 (base + 94) / D5
7 2 1 0 5 (base +94) / D6
8 3 1 0 5 (base + 94) / D7
9 P

10 0 2 0 5 (base +94) / D8
11 1 2 0 5 (base +94) / D9
12 2 2 0 5 (base +94) / D10
13 3 2 0 5 (base + 94) / D11
14 “

15 0 3 (base + 94) / D12
16 1 3 0 5 (base + 94) / D13
17 2 3 0 5 (base + 94) / D14

DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

Table 7-5. Grayscale Timing Diagram (Continued)

Clock HCNT VCNT FRAME PIXEL Register Address / Value
18 3 3 0 5 (base + 94) / D15
19 “ “ “

20 0 0 1 5 (base + b4) / DO
21 1 0 1 5 (base + b4) / D1
22 2 0 1 5 (base + b4) / D2
23 3 0 1 5 (base + b4) / D3
24 “

25 0 0 2 5 (base + d4) / DO
26 1 0 2 5 (base + d4) / D1
27 2 0 2 5 (base + d4) / D2
28 3 0 2 5 (base + d4) / D3
29 “

30 0 0 3 5 (base + f4) / DO
31 1 0 3 5 (base + f4) / D1
32 2 0 3 5 (base + f4) / D2
33 3 0 3 5 (base + f4) / D3

At clock 0, the HCNT, VCNT and FRAME counters are 0x0. The pixel to display is a 5, which
translates to register base + 0x94, bit DO. At the next clock tick, the fastest running counter
(HCNT) has incremented, but VCNT and FRAME remain the same. Given the same pixel
value (5), bit position D1 is used as the value that is sent to the display.

Table 7-6. Programming Format

GrySclLU
Fra | Ve | Ho | VCNT 1/1/0]lo|ojo|o|lo|o]oO T
me | rt | rz | (ines)y || {000 601 111 0 0| Address
*4
Ct HCNT olol1|1]o]ol1]2|0]0 Pix
Ctr ; Ctr (pixels) 11 (10|01 (00|11 | 10 1lol1lol1lol1lol1lo Frame el
b1g | D | D1 | register | D D D |D|D|D1|{D|D|D|D|D|D|D|D|D|D val
17| 6 | address |15 |14 |13 |12 |11 | 0 |9|8|7|6|5|4|3|2]|1]0 ue
X | x| x base+ | 5 | o1 9| 0o o] o|o|o|o|o|o]lo]|o]|o]o]o 00 000
0x00
base + ololo|o|lo|o|o|lo|lo|lo|lo|lo|o|o|o]|o 01 000
0x20
base+ | v | 5| ol o|o|o|olo|lo|olo|lo|o|o|olo 10 000
0x40
base+ | 5 | o1 9| 0o o] o|o|o|o|o|o]lo]|o]|o]o]o 1 000
0x60
X X | x base + NN N N 00 m
0x1C
base +
oac NN NN N N 01 111
base +
e T T T T T T N T NN A T A O T A O T A AT 10 111
base +
o NN NN N N 1 111
DS785UM1 7-19

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

The values in between full on and full off are more difficult to determine and depend on the
display characteristics such as persistence, turn on time, and refresh rate. To achieve
7 difference in shades of gray, it is typical to have more values below the half luminance
average due to the higher sensitivity to luminance variations by the human eye at lower
levels. Other problems that occur with choosing patterns and the operating matrix parameters
are flickering (temporal distortion), walking patterns (spatial distortion), and spatial
interference patterns.

Take, for example, a 50% duty cycle. We could define the matrix as a 4Hx4Vx4F as shown in
Figure 7-3. However, we effectively halved the refresh rate of these pixels and, depending on
the refresh rate of the display, are likely to see flickering for this shade.

Frame O H OR Z Frame 1
V 1(1(1]|1 o|jo0oj|jo0]|o0
E 11111 o|j0jo0f|oO0
R 1(11(1(1 o|j0jo0f|oO0
T 1(11(1(1 o|j0jo0f|oO0
Frame 2 Frame 3
1(1(1]1 o|j0jo0f|oO0
1(1(1]1 0o|j0j0f|oO0
1(1(1]1 o0|j0j0f|oO0
1(1(1]1 o0|0j0f|oO0

Figure 7-3. Graphics Matrix for 50% Duty Cycle

To avoid flickering, it is better to play a spatial trick and turn on every other pixel so that the
eye integrates the on and off pixels between two consecutive frames. However, in the case
given in Figure 7-3, a spatial interference can be caused if an image displayed in this
grayscale consists of every other column activated. For this case, we would be right back to
the flickering problem shown in Figure 7-4. This would be true if we switched to a checker
board pattern and displayed a checker board image or almost any other pattern.

7-20 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

Frame O H OR Z Frame 1
\Y 11]0|1]|0 o101
E 1/10|1(0 o|1|0(1
R 1/10|1(0 o|1|0(1
T 1/10|1(0 o|1|0(1
Frame 2 Frame 3
1/10|1(0 o|1|0(1
1/0|1(0 o|1|0(1
1/10|1(0 o|1|0(1
1/10|1(0 o|1|0(1

Figure 7-4. Sample Matrix Causing Flickering

To minimize these type of spatial interference patterns, it is better to mix up the pattern
sequence similar to that shown in Figure 7-5. Note that the pattern mixes sets of two adjacent
pixels with sets of every other pixel. Depending on the display and patterns displayed, this
may create another type of apparent image distortion referred to as a walking pattern. One of
the matrix indices may need to be changed to count by 3 to eliminate this combination of
temporal and spatial distortion.

H OR Z
Frame 00 0 0 1 1 Frame 01
010 1
vV 00 1(1({0/|O0 o|(o0|1]|1
E 01 1(0(1]|0 0O(1|0]|1
R 10 o(o|1|1 111|0{0
T 11 110(1]0 0|1(0]|1
Frame 10 Frame 11
1(0(1]|0 0O(1|0]|1
1(1({0/|O0 ojo0|1]|1
1(0(1]|0 0O(1|0]|1
o(o0|1|1 111|0(0

Figure 7-5. Sample Matrix That Avoids Flickering

DS785UM1 7-21
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

Assuming the 3 bit input pattern that represents this 50% duty cycle grayscale is 0x3 (or
011b), the values in Table 7-7 should be used to program this pattern into the grayscale look-

up-table.
Table 7-7. Programming 50% Duty Cycle Into Lookup Table
. 1(1(1{1{1(2(12/1|0|0|{0|0|0|0|0O|O0O| GrySclLUT
Frame | Vert | Horz | VENT(lines) | | 11 1| 1)0lofo|o|1|1|1|1|0|0]|0]|0| Address*4
HCNT 1(1/{0{0j2j2|0|0|2|2|0|0|1|1|/0/|0 .
Ctr | Ctr | CUr mixels) |1|0|1]o|l1|0|1]ol1|0|1]|0|1|0|1|0| Frame Pixel
. DD/ D|D|D|D
Register DD/ DD D/ D|D|D|D|D
D18 D17 | D16 1(1)1(1(1|1 Value
Address slalal2]1]0 9(8|7|6|5|4(3(2|1|0
1 1 1 base+0x0C |[O|1|o0|1[1][21[o|o]o[1]Oo[1]o0f0O[1]1 00 011
base+0x2C |1 |0|1({0fofof1|2|1|0o|1|0|1|1]|0]O 01 011
base+0x4C |1 |1|0|0fo|1f0o|12|0|l0|1|1]|0f1]|0]1 10 011
base+0x6C |0 |O|1|1|1{0of1|0|1|12|0f0|1f0|1]0 11 011

Since all patterns must be evaluated against their specific use, no more examples for half
intensity will be offered. Instead, another example will be used to make a walking distortion
more obvious.

Take the example of a one-third luminous intensity grayscale pattern. Assume a 3Hx3Vx3F
matrix for this definition. Wanting the intensity to be evenly distributed and given the three
frame interval, any cell in the matrix should only be active for one frame. The matrix could be
filled in as in Figure 7-6.

Frame O H ORZ Frame 1
\Y 1100 0o(1|0
E o|1|0 0|01
R 0|01 1/{0|0
T
Frame 2
0|01
1{0]|0
o|1|0

Figure 7-6. Programming for One-third Luminous Intensity

7-22 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

Please note that as the frame number progresses, the bit pattern in each row moves to the
right one pixel. This type of pattern shown in an area may cause diagonal lines to appear as
though they are moving to the right. As previously stated, any image distortion greatly
depends on the application. However, the pattern shown in Figure 7-7 will have less of a
tendency to demonstrate a walking distortion.

Frame O HORZ Frame 1
\% 1(0|0 o|1]0
E 0|01 o|1]0
R o|j1(0 0(0|1
T
Frame 2
0|01
1(0|0
110]0

Figure 7-7. Creating Bit Patterns that Move to the Right

Assuming that the 3-bit input pattern that represents this 33% duty cycle grayscale is 0x2 (or
010b), the values in Table 7-8 are used to program this pattern into the grayscale look-up-
table. In this mode, the X locations are ignored by the grayscale generation.

Table 7-8. Programming 33% Duty Cycle into the Lookup Table

. 1l1laf2l2]2]2]2]o]o]o]o]o|o]o|o]| GrysciLuT
Frame | Vert | Horz | VCNT (lines) | 4\ 31 1|9 |0lo|0lo|1|1]|1|1]|0|0|0|0]| Address*a
HCNT 1]1]/olol1|1|o]o|1|1]0]|0]2]|2]|0]0
Ctr | Ctr | Ccur (ixels) |1|ol1|o|1]ol1|o|1|0|1]0l1l0|1]0
Frame Pixel
register DI DI DIDIDI Dl bl 5l bl p|b|D|D| Dl D| D Value
D18 | D17 D16 | .qdress | XY 2|L|%|t|ols|7|6|5|a|3|2]1]0
5/4|3[2]1]0
0 0 0 base + 0x08 XX X|X|X|0|1]O0|X|1|O0O|O|X|O|O|1 00 010
base + 0x28 XX X|X|X|1|]0|j]Oo|X|O|1|O0O|X|O|1]O 01 010
base + 0x48 XX X|X|X|0|O0o|1|X|O|O|1|X|1|0]O 10 010
base + 0x68 XX X| X X| X[X| X|X|X|X]X]|X]|X|X|X 11 010

Finally, just for demonstration purposes, a matrix with mixed 3 and 4 count axes is shown in
Figure 7-8.

DS785UM1 7-23
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

Pr—————
—r
—rf
—rt
—
——
Frame O H OR Z Frame 1
\Y 1/0|0]|O0 o(1(0/|0
E 0|0|11 o|1|0]0
R o|1|0]0 0O|0|1]1
T
Frame 2
o|jo|1|1
1(0|0(1
1(0|0(0

Figure 7-8. Three and Four Count Axis

Assuming that the 3-bit input pattern that represents this 33% duty cycle grayscale is 0x2 or
010b, the values in Table 7-9 are used to program this pattern into the grayscale look-up-
table. In this mode, the X locations are ignored by the grayscale generation.

Table 7-9. Programming 33% Duty Cycle into the Lookup Table

. 1l1l2l2l2l2|2|2]0|0]0|0|0|0]|0]0]| GrysclLuT
Frame | Vert | Horz | VCNT(lines) | 71 1\ 3171 ol0lo|o|2]1]1/1]|0]0|0|0| Address*a
HCNT 111]/o|lo|1l1]o]|ol1|1]|0]|ol1]1]0]0 .
Ctr | Ctr | Ctr @ixels) [1]o0|1]|o|1lo0|1]|o|1|o|1]|0|1|0|1]|0| Frame Pixel
. D|D|D|D|D|D
D18 | D17 | D16 Zgg'rztsesr 11111155?5??55?8 Value
5043|210
0 0 0 base + 0x08 X| X| X[X|0lO0|1(0|2|1|/0|]0Of0]|]O0O|O]|1 00 010
base + 0x28 X| X| X|X|1l1|0(0|0|O|2]|]O0Of(0O]O0O|1]|O 01 010
base + 0x48 X| X| X[Xx|0l0o|Of1|12|0|0O|1f(1|1]|0]|O0 10 010
base + 0x68 X X| X[X| X[X| X[X]|X]|X|X]|X|X]| X|X]| X 11 010

7.4.9 Hardware Cursor

The raster engine provides support for a hardware cursor. The hardware cursor has a
separate bus mastering interface that allows it's image to be stored anywhere in memory.
Software provides a location start, reset, size, X and Y position, and two cursor colors. The
hardware loads a line at a time from memory and multiplexes the video stream data based on
the cursor values. The X and Y locations are compared to the horizontal and vertical counters
and trigger the state machine to enable the cursor output overlay.

7-24 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

“Start” is the beginning word location of the part of the cursor image to be displayed first. The
image is 2-bits per pixel, and is stored linearly. The amount of storage space is dependent on

the width and height of the cursor. The two bits per pixel stored define screen image 7
(transparent), invert screen image, display colorl, and display color2.

The 2-bits per pixel stored cursor image is displayed as:

00 - Transparent

01 - Invert video stream

10 - CursorColorl during no blink or CursorBlinkColorl during blink
11 - CursorColor2 during no blink or CursorBlinkColor2 during blink

Table 7-10. Cursor Memory Organization

32-bit Word

Byte 3 2 1 0

Bit 30 | 28 | 26 | 24 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 6 4 2 0

Pixel 15|14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

“Reset” is the beginning word location of the part of the cursor which is displayed next after
reaching the last line of the cursor. These locations are necessary for dual scan display of
cursor information. If the cursor is totally in the upper half or lower half of the screen, the Start
and Reset locations are the same. Otherwise, the cursor will start being overlaid on the video
information at the start address, and when the dual scan height counter generates a carry,
the cursor overlay will jump to the reset value. The cursor will then continue to be overlaid
when the Y location is reached, and will jump to the start address value when the height
counter for the upper half generates a carry.

Offsetting these values and changing the width of the cursor to be different from the cursor
step value allows the right 48, 32, or 16 pixels of a larger cursor to be displayed only.
Furthermore, offsetting the starting X location off of the left edge of the screen will allow pixel
placement of the cursor off of the screen edge.

The size is specified as: width adjustable to 16, 32, 48, or 64 pixels, a height in lines up to 64
pixels (controls the top half of the screen only in dual scan mode), a step size for the number
of words in a cursor line (up to 4), and a height of up to 64 lines on the bottom half of the
screen (used in dual scan mode only).

The Y location value controls the starting vertical Y location of the cursor image. The value is
compared to the vertical line counter and should be set by software to be between the active
start and active stop vertical line values. The cursor hardware will clip the cursor at the
bottom of the screen. To prevent cursor distortion, the new Y location value will not be used
until the next frame.

DS785UM1 7-25
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

———.
——ER.
——

~——————

The X location value controls the starting horizontal X location of the cursor image. The value
is compared to the horizontal pixel counter and should be set by software to be between the
active start and active stop horizontal pixel values. The cursor hardware will clip the cursor at
the right edge of the screen. This value is also used to control the starting location for the
cursor image on the upper half of the screen during dual scan mode. To prevent cursor
distortion, the new X location value will not be used until the next frame.

During dual scan display mode, selected by writing DSCAN = ‘1’ to the “PixelMode” register,
the lower half Y value controls the starting vertical Y location on the lower half of the screen
for the cursor image. The value is compared to the vertical line counter and should be set by
software to be between the active start and active stop vertical line values. The cursor
hardware will clip the cursor at the bottom of the screen. To prevent cursor distortion, the new
location value will not be used until the next frame.

The hardware cursor circuitry has a separate blinking function. The rate is a 50% duty cycle
programmable number of vertical frame intervals. When a blink frame is active, the color
RGB mux switches in 24-bit “CursorBlinkColorl,” or “CursorBlinkColor2” values for
“CursorColorl,” or “CursorColor2,” respectively.

7.4.9.1 Registers Used for Cursor

The registers used for configuring the Hardware Cursor are: “CursorAdrStart” ,
“CursorAdrReset” , “CursorSize” , “CursorColorl,” “CursorColor2,” , “CursorXYLoc” and
CursorDScanLHYLoc. The following subsections describe the function of each of these
registers.

7.4.9.1.1 CursorAdrStart Register

This register contains the memory starting address for the cursor image.

7.4.9.1.2 CursorAdrReset Register

This register contains the address for the part of the cursor that is displayed next after
reaching the last line of the cursor. This register is needed to support DUAL scan displays.
For non-dual scan displays, this address is the same as that in the CursorAdrStart register.

7.4.9.1.3 CursorSize Register

7-26

This register selects four parameters that will impact the cursor size: CSTEP, CLINS, CWID,
and DLNS.

CSTEP

Two bits select the cursor step size:

00 Step by 1 word or 16 pixels

01 Step by 2 words or 32 pixels
10 Step by 3 words or 48 pixels
11 Step by 4 words or 64 pixels

DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

CLINS

Six bits select the height of the cursor image. The height is measured in lines and should be
set to a value of one less then the desired number of lines.

CWID

Two bits select the cursor width:

00 Width is 1 word or 16 pixels

0 1Width is 2 words or 32 pixels

10 Width is 3 words or 48 pixels

11 Width is 4 words or 64 pixels
DLNS

Six bits are used in DUAL SCAN mode, where DUAL SCAN mode is selected by writing
DSCAN = ‘1’ to the “PixelMode” register.

7.4.9.1.4 CursorColorl Register

This register is set to the cursor color value that is used when the pixel color value is a 0x2
(10 binary).

7.4.9.1.5 CursorColor2 Register

This register is set to the cursor color value that is used when the pixel color value is a 0x3
(11 binary).

7.4.9.1.6 CursorXYLoc Register

This register provides the place in the X and Y position of the image where the cursor should
be inserted. The X position is represented by the XLOC bits and the Y position is represented
by the YLOC bits in the “CursorXYLoc” register. The XLOC bits and YLOC bits are compared
with the respective counter (YLOC is the line counter, XLOC is the pixel counter). These
values must fall between the active start and stop parameters for the display.

This register also contains the enable bit, CEN, for the hardware cursor. Writing a ‘1’ to this bit
enables the hardware cursor.

Note: Very rarely, a vertical line appears when the hardware cursor becomes enable or
disabled. This line is a few pixels wide and only lasts for one frame. It is hard to catch. In
order to prevent this problem: 1. Do not enable/disable the cursor when changing the
cursor bitmaps, and 2. When disabling the cursor, change the CursorXYLOc register to
point to a blank cursor image.

7.4.9.1.7 CursorDScanLHYLoc Register

See “CursorDScanLHYLoc” register.

DS785UM1 7-27
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

il

7.4.10 Video Timing

7-28

The video timing circuitry consists of a horizontal down counter and a vertical down counter.
Signal timing for a specific video format is generated by programmable values that are
compared to the count values.

An AC signal is generated to support either bias voltage switching for LCDs or a field
indicator for interlaced video. The An AC signal, if ACEN = ‘1" in the “VideoAttribs” register, is
output on the P[17] pin. The toggle rate of the AC signal is selected by writing to the “ACRate”
register.

LCD shifting signals, XECL and YSCL, are generated to support simple LCDs. These signals,
if LCDEN = ‘1’ in the “VideoAttribs” register, are output on pixel data pins P[16] and P[15],
respectively. XECL is generated every 64 pixel clocks. YSCL is the inversion of HSYNChn.

The Raster Engine provides an end of frame interrupt, when enabled, to the interrupt
controller. This interrupt defines when the last information has been sent to the display for the
current frame. It indicates the start of an interval when changes can be made to the LUT or
source for the displayed image without affecting the display. It must be configured as an edge
triggered interrupt. Changes such as a new cursor location or a new screen image location
automatically change at this time, under hardware control. The interval for making LUT
changes, etc. without affecting the displayed image depends on the display’s technology. The
time duration is equal to the vertical blanking interval (VLinesTotal duration - VACTIVE
duration).

In addition, the programmable VCLR and HCLR fields in the “SigCIrStr” register are used as
a secondary interrupt during normal operation, where the interrupt can be programmed to
trigger at any vertical and horizontal counter combination.

The frequency of the clock used for video timing and the entire video pipeline must meet the
requirements of the display type. The video clock frequency is selected by writing to the
VidCIkDiv register (see Chapter 5). The video circuitry is targeted to run up to 132MHz. This
corresponds to a 1280 pixels by 1024 pixels display size, and non-interlaced video at a 80Hz
frame refresh.

Note: Total Bus/SDRAM bandwidth is shared between the Raster Engine and other device
controllers. The pixel depth, display size, and display refresh rate can be limited by the
Bus/SDRAM bandwidth that is available to the Raster Engine.

The programmed values for the video timing section of the raster engine are shown in
Figure 7-9, "Progressive/Dual Scan Video Signals" and Figure 7-10, "Interlaced Video
Signals”. Independent horizontal and vertical down counters are used as a reference for all
other signals. The synchronization, blanking, and active video control signalling is generated
by comparing programmed values to the counters.

DS785UM1
Copyright 2007 Cirrus Logic

I

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

Vertical VLINESTOTAL
down { Oh Yvunestota{viNesTOTAL-1 —— —— } 1h ' Oh JVLINESTOTALY
counter R \

| . VSYNCSTART———
. \ +———— VSYNCSTOP
| L VCLKSTOP ——
) _ +————— VCLKSTART
.I . l&——— VACTIVESTRT —
| 4 \ VACTIVESTOP —
/ \
| \~ »| Vertical Back Porch Vertical Front
l' \ ‘ Porch
VSYNCh 1 \ R \
! <
N . \ Vertical Active
| Vertical Sync- [Video —>
II Interval \
VACTIVE \ / \
I A
p .
VBLANKn | — \
II ‘\ ‘ VBLANKSTRT ___
. . VBLANKSTOP
| \
SPCLK '
T T T
DURING I,WVWWWNNMWMWWWN“N\MNHMMNWMNWMWN | L
X LINECARRY (CLKS) \
| T
. y \)| HCLKSTOTAL
Horizontal HCLKSTOTAL * /C STO
wn 4
down TTORZINT T] L K
\ HCLKSTOTAL -1
HSYNCSTART
e HSYNCSTOP
= HCLKSTOP
< HCLKSTART
HACTIVESTRT
— HACTIVESTOP
HSYNCn \ / \
Horizontal Active
¢ Video >
Horizontal Back Hérizontal Front
Porch Porch
HACTIVE
HBLANKnN
HBLANKSTRT
le—| HBLANKSTOP
SPCLK
DURING - - —
Horizontal
Figure 7-9. Progressive/Dual Scan Video Signals

DS785UM1

Copyright 2007 Cirrus Logic

7-29

il

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide
Vertical VLINESTOTAL >
down Oh JVLINESTOTAL {—)Y —) — X —) 1h) Oh){vnestoTALY
counter B \
/ e VSYNCSTART
h \J‘ «— | VSYNCSTOP
I
VSYNCn 'l h i FIELDO \ FIELDL
[\ le VCLKSTRT
| : le——| vcLksTOP
. . VACTIVESTOP
.I \ VACTIVESTRT
| \
. ‘\ < VLINESTOTAL/2
,I '\ *—— CURSORDSCANHYLO(Q
| . +——— HSIGSTOP
| \ HSIGSTRT
' \ ———1—— VSIGSTOP
/ \
] . N VSIGSTRT
VACTIVE 4—\ /—ﬁ
| ~\
VBLANKn *—\ <
I , Vol /
| \ < VBLANKSTOP
. « s VBLANKSTRT
| \
SPCLK N
ourive {GHNNNIAN N AT T
Vertical I'
I' LINECARRY (CLKS) ‘\
. \
Horizontal HCLKSTOTAL * H/CLKSTOTAL
down Yo~ \Y [X L
counter \
HCLKSTOTAL -1
le HSYNCSTART
HSYNCSTOP ———————
| HCLKSTOP
< HCLKSTART
HACTIVESTRT
| HACTIVESTOP
HSYNCn \
Horizontal Active
Video -
Horizontal Back H'éurizomal Front
Porch Porch
HACTIVE
HBLANKR
HBLANKSTRT
le—{ HBLANKSTOP
SPCLK
DURING — — —
DURING JUUUL UL
Figure 7-10. Interlaced Video Signals

DS785UM1

Copyright 2007 Cirrus Logic

7-30

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

7.4.10.1 Setting the Video Memory Parameters

The Raster Engine uses SDRAM for video frame buffers. The SDRAM locations for the video
frame buffers are defined by four registers: “VidScrnPage” , “ScrnLines” , “LineLength” , and
“VLineStep” .

7.4.10.1.1 Setting up the VidScrnPage Register

The VidScrnPage register provides the starting address for the video memory relative to the
beginning of SDRAM memory space. With the combination of SDSEL in VideoAttribs register,
it forms the absolute address for the starting location of the video memory. It is possible to
provide for a panning feature by altering the address of the start location at run time. This
address also represents the 0,0 pixel position, which is in the upper left corner of the video
image.

7.4.10.1.2 Setting up the ScrnLines Register

The “ScrnLines” register is used by the Raster Engine to specify the number of lines of
LineLength size that are to be fetched and forwarded to the FIFO. The ‘number of lines’ must
be programmed to be one less than the desired number of lines, because a programmed
value of 0x0 specifies a single line. The maximum value is 0x7FF for 2048 lines.

7.4.10.1.3 Setting up the LineLength Register

The “LineLength” register contains the number of 32-bit words that the Raster Engine must
fetch from SDRAM for each scan line. This value is always one less than the needed number
of 32-bit words because a programmed value of 0x0 specifies a single 32-bit word.

For example, a display width of eighty 8-bit pixels requires that twenty 32-bit words be
fetched from the SDRAM video frame buffer for each scan line, since four 8-bit pixels can be
packed into a single 32-bit word (80/4=20).

7.4.10.1.4 Setting up the VLineStep Register

At the end of fetching LineLength of data for the first scan line, the Raster Engine will take the
value in the “VLineStep” register and add it to the base address (“VidScrnPage”) to
determine the starting SDRAM address for the next scan line. Generally, this value is the
same as LineLength + 0x1. However, it is possible to have an image in SDRAM that is larger
then the current display. This larger image can be cropped by the proper programming of
“VidScrnPage” , “VLineStep” , and “ScrnLines” registers.

7.4.10.1.5 Memory Setup Example

Assume that a video display is 640 x 480 with a color depth of 4 bpp and that the start of
video memory (display pixel coordinate 0,0) is the address determined by SDSEL + 0x1000.
The register settings for this example are:

VidScrnPage = 0x1000 (assume SDSEL = 0)
ScrnLines =480 - 1 = 479 = Ox1DF
LineLength = (640 x 4bpp / 32) - 1 = 79 = Ox4F

DS785UM1 7-31
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

VLineStep = 640 x 4bpp/32

7.4.10.2 PixelMode

Pixel data is transferred from the FIFO to the Video Pixel Mux two 32-bit words at a time (total
of 64 bits). Bits[2:0] of the “PixelMode” register specify the pixel depth as shown in Table 7-
11. The Video Pixel MUX uses the “PixelMode” register to determine how many pixels are
contained in the 64 bits of data. The Video Pixel Mux extracts pixel data from the 64-bits and
passes that pixel data to the BLINK logic one pixel at a time.

Table 7-11. Bits P[2:0] in the PixelMode Register

bit P2 bit P1 bit PO Function
0 0 0 Pixel Multiplexor disabled
0 0 1 4 hits per pixel
0 1 0 8 bits per pixel
1 0 0 16 bits per pixel
1 1 0 24 bits per pixel

Note: All other combinations for these three bits are illegal.

7.4.11 Blink Logic

The blink logic facilitates blinking of individual pixels as they move through the video pipeline.
The blink frequency is controlled by the “BlinkRate” register. All blinking pixels blink at the
same rate.

7.4.11.1 BlinkRate

This value is used to control the number of video frames that occur before the pixel value that
is assigned to blink is switched between its non-blinked and blinked values. The actual rate is
calculated by:

Blink cycle = 2 x (1 / VCLK) x HClkTotal x VLinesTotal x (255 - BlinkRate)
where:
VCLK is the basic clock rate of the video logic
HClkTotal is the value contained in the “HClkTotal” register
VLinesTotal is the value contained in the “VLinesTotal” register

BlinkRate is the value contained in the “BlinkRate” register

7.4.11.2 Defining Blink Pixels

A blink pixel must be defined before the blink logic is applied to a given pixel. The
“BlinkPattrn” and “PattrnMask” registers are used to define the blink pixels.

7-32 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

7.4.11.2.1 PattrnMask Register

This register defines which bits in a pixel are blink bits. To enable an individual bit for
comparison requires setting that corresponding bit to “1”. To disable an individual bit for
comparison set the bit position to “0".

For example, in 8bpp mode, the PattrnMask is defined as 0x0000_0080. This means that the
MSB of a pixel is used to assist is defined as a blink bit.

7.4.11.2.2 BlinkPattrn Register

The “BlinkPattrn” register is used to further refine which pixel pattern defines a blink pixel.
The pixel value is first masked by the PattrnMask value in the “PattrnMask” register and the
result is compared to BlinkPattrn value in the “BlinkPattrn” register. If the comparison results
in a match, the pixel is considered to be a valid blink pixel.

For example:

An 8-bit pixel is defined as OXAF (0b1010_1111b).
PattrnMask is defined as 0x0000_00CO.
BlinkPattrn is defined as 0x0000_0080.

PattrnMask = OxCO defines the two MSBs of 8-bit pixels as potential blink bits. If the two
corresponding MSBs in the BlinkPattrn register are ‘10’ and the two MSBs of the pixel value
are ‘'10’, then the pixel of value = OXAF is a blink pixel. In fact, all pixel values of 10xx_XXxx

are blink pixels. If BlinkPattrn was changed to 0x0000_0048 above, a pixel of value OxAF
would not be a blink pixel.

7.4.11.2.3 BlinkMask Register

The “BlinkMask” register is only used if the blink mode definition bits M[3:0] in the
“PixelMode” register are set for an AND, OR, or XOR operation. The value in the “BlinkMask”
register is ANDed (clearing bits), ORed (setting bits), or XORed (inverting bits) with a pixel
that addresses the LUT. The mask allows a blinking pixel to jump from a normal color
definition location to a blink color definition location in the LUT.

7.4.11.3 Types of Blinking

Once a pixel has been defined as a blink pixel, it is necessary to provide information on how
that pixel will blink. The blink type provides determines what operations are performed on the
pixel data as it moves through the blink logic to transform it into a blinking pixel.

There are 10 ways to blink a pixel once it has been defined as a blinking pixel. The blink type
is defined by the M[3:0] bits in the “PixelMode” register:

0000 - Blink Disabled
0001 - AND Blinking.

The pixel data is ANDed with the “BlinkMask” register. The modified pixel data will
continue through the pipeline.

LUT Blink:

DS785UM1 7-33
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

If the LUT is enabled, the pixel data is passed to the LUT. The new pixel data value will
be used to index into the LUT. The value at that index location will be passed on to the

Color Mux.
Non LUT Blink:

If the LUT is not enabled, the modified pixel data is moved directly into the Color Mux.
This new pixel value is used by the Color Mux as the 'new' value for the blinking pixel.

0010 - OR Blinking:

The pixel data is ORed with the BlinkMask register. The modified pixel data will continue
through the pipeline. See AND blinking for details on the differences between LUT and

non-LUT blinking.
0011 - XOR BIlinking:

The pixel data is XORed with the “BlinkMask” register. The modified pixel data will
continue through the pipeline. See AND blinking for details on the differences between
LUT and non-LUT blinking.

0100 - Background Blinking:

The pixel data is replaced with the value in the “BkgrndOffset” register and the new
pixel value is placed into the pipeline and sent to the Color Mux.

0101 - Offset Single Blinking:

The pixel data is manipulated by adding the value of the “BkgrndOffset” register with
the pixel data. The resulting pixel data will be placed into the pipeline and then sent to
the Color Mux.

0110 - Offset 888 Blinking:

The 24 bits of data is made up of three 8-bit values that represent the RGB colors. This
mode will treat each of the 8 bit values as a single value, and apply the blinking rules
defined for the Offset Single Blinking mode.

The “BkgrndOffset” value is itself treated as an 888 pixel where each of the
corresponding 8 bits represent the value that will be added to the corresponding color.

0111 through 1011 - Not used
1100 - Dim Single Blinking:
The pixel that is identified as a blinking pixel is manipulated:
1.The LSB is dropped
2.The remaining bits are shifted right by one
3.The MSB is set to ‘0’
1101 - Bright Single Blinking:

The pixel that is identified as a blinking pixel is manipulated:

7-34 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

1. The MSB is dropped

2. The remaining bits are shifted left by one 7
3.The LSB is set to ‘1’

1110 - Dim 888 Blinking:

The 24 bits of data is made up of three 8-bit values that represent the RGB colors. Each
of the 8 bit values is treated as a single value, and the blinking rules defined for the Dim
Single Blinking mode are applied.

1111 - Bright 888 Blinking:

The 24 bits of data is made up of three 8-bit values that represent the RGB colors. Each
of the 8 bit values is treated as a single value, and the blinking rules defined for the
Bright Single Blinking mode are applied.

7.4.12 Color Mode Definition

One of four modes may be selected to define pixel color: Pixel Look-Up Table Mode, Triple 8-
Bit Mode, 16-Bit 565 Mode, and 16-Bit 555 Mode.
7.4.12.1 Pixel Look-up Table Mode

The Raster Engine contains a 256 x 24 bit RAM that is used as pixel look-up-table (LUT) for
pixel depths up to 8-bits. Appropriate blink operations, if any, are performed on the pixel data
fetched from the video memory and the resulting pixel data value is used as an index into the
LUT. The pixel value located at the index position continues through the video pipeline.

The LUT is memory mapped and may be written at any time. However, if it is written during a
non-blanking interval, the display may be momentarily corrupted.

Writing 0x0 to the C[3:0] bits (color bits) in the PixelMode register to Ox0 enables the LUT.

7.4.12.2 Triple 8-bit Color Definition Mode

The 24 bits of data is divided into three color planes, where the RED, GREEN, and BLUE
each have 8 bits of color definition.

7.4.12.3 16-bit 565 Color Definition Mode

The 16 bits of data is divided into three color planes, where the RED and BLUE each have 5
bits for color definition and the GREEN has 6 bits for color definition.

7.4.12.4 16-bit 555 Color Definition Mode

The 16 bits of data is divided into three color planes, where the RED, GREEN, and BLUE
each have 5 bits of color definition. The MSB of the 16-bit data is not used.

DS785UM1 7-35
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

7.5 Registers

il

Table 7-12. Raster Engine Register List

Address Name Ioi\li\éd Type Size Description
0x8003_0000 VLinesTotal Write | Read/Write 11 bits Total Number of vertical frame lines
0x8003_0004 VSyncStrtStop Write | Read/Write 22 bits Vertical sync pulse setup
0x8003_0008 VActiveStrtStop Write | Read/Write 22 bits Vertical active setup
0x8003_0228 VBlankStrtStop Write | Read/Write 22 bits Vertical blanking setup
0x8003_000C VCIkStrtStop Write | Read/Write 22 bits Vertical clock active frame
0x8003_0010 HClkTotal Write | Read/Write 11 bits Total Number of horizontal line clocks
0x8003_0014 HSyncStrtStop Write | Read/Write 22 bits Horizontal sync pulse setup
0x8003_0018 HActiveStrtStop Write | Read/Write 22 bits Horizontal active setup
0x8003_022C HBlankStrtStop Write | Read/Write 22 bits Horizontal blanking setup
0x8003_001C HCIkStrtStop Write | Read/Write 22 bits Horizontal clock active frame
0x8003_0020 Brightness No Read/Write 16 bits PWM brightness control
0x8003_0024 VideoAttribs Write | Read/Write 16 bits Video state machine parameters
0x8003_0028 VidScrnPage No Read/Write 32 bits Starting address of video screen
0x8003_002C VidScrnHPage No |ReadMWrite | 32bits | >2ring addresspg;‘gdeo screen half
0x8003_0030 ScrnLines No | ReadMWrite | 11bits |\umberofactive lines scannedto the

screen
0x8003_0034 LineLength No Read/Write 12 bits Length in words of data for lines
0x8003_0038 VLineStep No Read/Write 13 bits Memory step for each line
0x8003_003C LineCarry Write | Read/Write 11 bits Horizontal/vertical offset parameter
0x8003_0040 BlinkRate No Read/Write 8 bits Blink counter setup
0xB8003_0044 BlinkMask No | ReadMWrite | 24 bits Logic mask applied to pixel to
perform blink operation

0x8003_0048 BlinkPattrn No | ReadWrite | 24 bits Comparimi“nzfg& gi_ermi”i”g
0x8003_004C PattrnMask No Read/Write 24 bits Mask to limit pattern.
0x8003_0050 BkgrndOffset No | ReadWrite | 24 bits Background \C/‘;'Iﬁgor blink offset
0x8003_0054 PixelMode No Read/Write 15 bits Pixel mode definition setup register.
0x8003_0058 Parliifout No |ReadMrite | 9 bits Parallel interface write/control

- register.
0x8003_005C Parlllfin No Read/Write 8 + 8 hits Parallel interface read/setup register.

7-36

Copyright 2007 Cirrus Logic

DS785UM1

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

Table 7-12. Raster Engine Register List (Continued)

SwW . Lo
Address Name Type Size Description
locked yp P
0x8003_0060 CursorAdrStart No | ReadMWrite | 32bits | 'Wordlocation ofthe top left corner of
cursor to be displayed.
0x8003_0064 CursorAdrReset No Read/Write 32 bits Location of first word of cgrsor to be
scanned after last line.
0x8003_0068 CursorSize No | Read/Write 16 bits Cursor height, width, and step size
register.
0x8003_006C CursorColord, No | ReadMrite | 24 bits Cursor color overlaid when cursor
value is 10.
0x8003_0070 CursorColord, No | ReadMrite | 24 bits Cursor color overlaid when cursor
value is 11.
0x8003_0074 CursorXYLoc No Read/Write |11 +1 + 11 bits| Cursor X and Y location register
0x8003_0078 CursorDScanLHYLoc No | ReadMWrite | 1+ 11 bits Cursor dual scan lower half ¥
location register
0x8003_021C CursorColor2, No | ReadMrite | 24 bits Color when cursor value is 10 and
cursor is in blink state.
0x8003_0220 CursorBlinkColord, No | ReadMrite | 24 bits Color when cursor value is 11 and
cursor is in blink state.
0x8003_0224 CursorBlinkRateCtrl No Read/Write 1+8 bits Enable and rate for cursor blinking.
Software Lock register. This register
0x8003_007C RasterSWLock Read | Read/Write 8 bits unlocks registers that have a
SWLOCK.
0x8003_0080 - 0x8003_00FC GrySclLUTR, No Read/Write 32x19 Grayscale matrix Red
0x8003_0200 VidSigRsiltVal No Read Only 16 bits Video signature result value.
0x8003_0204 VidSigCtrl No |Read/ Write 32 bits Video signature Control register.
0x8003_0208 VSigStrtStop No Read/Write | 11 + 11 bits vertical signature bounds setup
0x8003_020C HSigStrtStop No Read/Write | 11 + 11 bits Horizontal signature bounds setup
0x8003_0210 SigClrStr No Read/Write | 11 + 11 bits Signature clear and store location
0x8003_0214 ACRate No | ReadMrite | 11bis | -CPAC "O'tages:ﬁ; control counter
0x8003_0218 LUTSwCtrl No Read/Write 2 bits LUT switching control
0x8003_0230 EOLOffset No Read/Write 16 bits End of line offset register
0x8003_0234 FIFOLevel No Read/Write 6 bits FIFO fill level register
0x8003_0280 - 0x8003_02FC GryScILUTG, No Read/Write 32x19 Grayscale matrix Green
0x8003_0300 - 0x8003_037C GrySclLUTB No Read/Write 32x19 Grayscale matrix Blue
0x8003_0400 - 0x8003_07FC ColorLUT No Read/Write | 256 x 24 RAM Color Look-Up-Table

Note: The raster engine registers are intended to be word accessed only. Since the least
significant bytes of the address bus are not decoded, byte and half word accesses are
illegal and may have unpredictable results.

DS785UM1

Copyright 2007 Cirrus Logic

7-37

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

f———
—
—
—
—
Vertical Frame Timing Registers
VLinesTotal
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD TOTAL
Address: 0x8003_0000
Default: 0x0000_0000
Definition: Total horizontal lines that compose a vertical frame
Bit Descriptions:
RSVD: Reserved - Unknown during read

TOTAL: VLines Total - Read/Write

The VLines Total value written to this field specifies the
total number of horizontal lines for a video frame including
synchronization, blanking, and active lines. This value is
used to preset the Vertical down counter. Please refer to
video the signalling timing diagrams shown in Figure 7-9
and Figure 7-10.

VSyncStrtStop
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD STOP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD STRT

Address: 0x8003_0004

Default: 0x0000_0000

Definition: Vertical Sync Pulse Start/Stop register
Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

7-38 DS785UM1
Copyright 2007 Cirrus Logic

I

STRT:

VActiveStrtStop

31 30 29 28 27

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

When the Vertical counter counts down to the written
STOP value, the VSYNC signal on the V_CSYNC pin will
go inactive if CSYNC = '0’ and SYNCEN = ‘1’ in the
VideoAttribs register. Please refer to the video signalling
timing diagrams shown in Figure 7-9 and Figure 7-10.

Start - Read/Write

When the Vertical counter counts down to the written
STRT value, the VSYNC signal on the V_CSYNC pin will
go active if CSYNC = ‘0’ and SYNCEN = ‘1" in the
VideoAttribs register.

25 24 23 22 21 20 19 18 17 16

RSVD

STOP

15 14 13 12 11

RSVD

STRT

Address: 0x8003_0008
Default: 0x0000_0000

Definition: Vertical Active Start/Stop register

Bit Descriptions:
RSVD:

STOP:

STRT:

DS785UM1

Reserved - Unknown during read
Stop - Read/Write

The STOP value is the value of the Vertical down counter
at which the VACTIVE signal becomes inactive (stops).
This indicates the end of the active video portion for the
Vertical frame. Please refer to the video signalling timing
diagrams in Figure 7-9 and Figure 7-10. VACTIVE is an
internal block signal. The active video interval is controlled
by the logical OR of VACTIVE and HACTIVE.

Start - Read/Write

The STRT value is the value of the Vertical down counter
at which the VACTIVE signal becomes active (starts). This
indicates the start of the active video portion for the
Vertical frame. Please refer to the video signalling timing
diagrams in Figure 7-9 and Figure 7-10. VACTIVE is an
internal block signal. The active video interval is controlled
by the logical OR of VACTIVE and HACTIVE.

7-39

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

f———
——
—r
—
—
VBlankStrtStop
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD STOP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD STRT
Address: 0x8003_0228
Default: 0x0000_0000
Definition: Vertical BLANK signal Start/Stop register
Bit Descriptions:
RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Vertical down counter
at which the VBLANKnN signal becomes inactive (stops).
This is used to generate the BLANKn signal that is used
by external devices and indicates the end of the active
video portion for the Vertical frame. Please refer to video
signalling timing diagrams in Figure 7-9 and Figure 7-10.
VBLANKn is an internal block signal. The NBLANK output
is a logical AND of NVBLANK and HBLANKnN.

STRT: Start - Read/Write

The STRT value is the value of the Vertical down counter
at which the VBLANKnN signal becomes active (starts).
This is used to generate the BLANKn signal that is used
by external devices and indicates the start of the active
video portion for the Vertical frame. Please refer to video
signalling timing diagrams in Figure 7-9 and Figure 7-10.
VBLANKAn is an internal block signal. The NBLANK output
is a logical AND of NVBLANK and HBLANKnN.

7-40 DS785UM1
Copyright 2007 Cirrus Logic

!

VCIkStrtStop

31

30 29 28 27

26

25 24 23 22 21 20 19 18 17 16

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

RSVD

STOP

15

14 13 12 11

10

RSVD

STRT

Address: 0x8003_000C
Default: 0x0000_0000

Definition: Vertical Clock Start/Stop register

Bit Descriptions:
RSVD:

STOP:

DS785UM1

Reserved - Unknown during read
Stop - Read/Write

The STOP timing register contains the value of the Vertical
down counter at which the VCLKEN signal goes inactive
(stops). This indicates the end of the video clock for the
Vertical frame. Please refer to video signalling timing
diagrams in Figure 7-9 and Figure 7-10. VCLKEN is an
internal block signal. The SPCLK output is enabled by the
logical AND of VCLKEN and HCLKEN.

STRT:Start - Read/Write

The STRT timing register contains the value of the Vertical
down counter at which the VCLKEN signal becomes
active (starts). This indicates the start of the video clock for
the Vertical frame. Please refer to video signalling timing
diagrams in Figure 7-9 and Figure 7-10. VCLKEN is an
internal block signal. The SPCLK output is enabled by the
logical AND of VCLKEN and HCLKEN.

7-41

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

f———
—
—
—
—
Horizontal Frame Timing Registers
HClkTotal
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD TOTAL
Address: 0x8003_0010
Default: 0x0000_0000
Definition: Total pixel clocks that compose a horizontal line
Bit Descriptions:
RSVD: Reserved - Unknown during read

TOTAL: Total - Read/Write

The HCIk Total timing register contains the total number of
clocks for a horizontal video line including synchronization,
blanking, and active clocks. This value is used to preset
the Horizontal down counter. Please refer to video
signalling timing diagrams in Figure 7-9 and Figure 7-10.

HSyncStrtStop
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD STOP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD STRT

Address: 0x8003_0014

Default: 0x0000_0000

Definition: HorizontaL Sync Start/Stop Register
Bit Descriptions:

RSVD: Reserved - Unknown during read
STOP: Stop - Read/Write

7-42 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

The STOP value is the horizontal down counter value at
which the HSYNCn signal becomes inactive (stops). When
the Horizontal counter counts down to the STOP value,
the HSYNChn signal goes inactive. Please refer to video
signalling timing diagrams in Figure 7-9 and Figure 7-10.

STRT:Start - Read/Write

The STRT value is the horizontal down counter value at
which the HSYNCnh signal becomes active (starts). When
the Horizontal counter counts down to the STRT value, the
HSYNCn signal goes active (starts). Please refer to video
signalling timing diagrams in Figure 7-9 and Figure 7-10.

HActiveStrtStop

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD STOP

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
RSVD STRT

Address: 0x8003_0018
Default: 0x0000_0000
Definition: Horizontal Active period Start/Stop register

Note: When horizontal clock gating is required, set the STRT and STOP fields in the
HActiveStrtStop register to the STRT and STOP values in HCIkStrtStop + 5. This is a
programming requirement that is easily overlooked.

Bit Descriptions:
RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Horizontal down
counter at which the HACTIVE signal becomes inactive
(stops). This indicates the end of the active video portion
for the Horizontal line. Please refer to video signalling
timing diagrams in Figure 7-9 and Figure 7-10. HACTIVE
is an internal block signal. The active video interval is
controlled by the logical OR of VACTIVE and HACTIVE.

DS785UM1 7-43
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

STRT: Start - Read/Write

The STRT value is the value of the Horizontal down
counter at which the HACTIVE signal becomes active

(starts). This indicates the start of the active video portion
for the Horizontal line. Please refer to video signalling
timing diagrams in Figure 7-9 and Figure 7-10. HACTIVE

is an internal block signal. The active video interval is
controlled by the logical OR of VACTIVE and HACTIVE.

HBlankStrtStop

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT

Address: 0x8003_022C
Default: 0x0000_0000
Definition: Horizontal Blank signal Start/Stop register
Bit Descriptions:
RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Horizontal down
counter at which the HBLANK signal becomes inactive
(stops). This is used to generate the BLANKnN signal that is
used by external devices to indicate the end of the active
video portion for the Horizontal line. Please refer to video
signalling timing diagrams in Figure 7-9 and Figure 7-10.
HBLANK is an internal clock signal. The BLANKnN output is
a logical AND of VBLANK and HBLANK.

STRT:Start - Read/Write

The STRT value is the value of the Horizontal down
counter at which the HBLANK signal becomes active
(starts). This is used to generate the BLANKnN signal that is
used by external devices to indicate the start of the active
video portion for the Horizontal line. Please refer to video
signalling timing diagrams in Figure 7-9 and Figure 7-10.
HBLANK is an internal clock signal. The BLANK output is
a logical AND of VBLANK and HBLANK

7-44 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

!

HCIkStrtStop

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD STRT

Address: 0x8003_001C
Default: 0x0000_0000
Definition: Horizontal Clock Active Start/Stop register

Note: When horizontal clock gating is required, set the STRT and STOP fields in the
HActiveStrtStop register to the STRT and STOP values in HCIkStrtStop + 5. This is a
programming requirement that is easily overlooked.

Bit Descriptions:
RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Harizontal down
counter at which the HCLKEN signal becomes inactive
(stops). This indicates the end of the video clock for the
Horizontal frame. Please refer to video signalling timing
diagrams in Figure 7-9 and Figure 7-10. HCLKEN is an
internal clock signal. The SPCLK output is enabled by the
logical AND of VCLKEN and HCLKEN.

STRT: Start - Read/Write

The STRT value is the value of the Horizontal down
counter at which the HCLKEN signal becomes active
(starts). This indicates the start of the video clock for the
Horizontal frame. Please refer to video signalling timing
diagrams in Figure 7-9 and Figure 7-10. HCLKEN is an
internal clock signal. The SPCLK output is enabled by the
logical AND of VCLKEN and HCLKEN.

DS785UM1 7-45
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

—
—
Frame Buffer Memory Configuration Registers
VidScrnPage
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD PAGE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PAGE NA
Address: 0x8003_0028
Default: 0x0000_0000
Definition: Video Screen Page Register
Bit Descriptions:
RSVD: Reserved - Unknown during read
PAGE: Video Screen Page Starting SDRAM Address - Read/Write

Corresponds to the word address relative to the beginning
of SDRAM of the upper left corner of the video screen to
be scanned out. The absolute AHB address for the video
screen page is determined by the combination of this bit
field as well as the SDSEL bit held in the “VideoAttribs”

register.
NA: Not Assigned. Will return written value during a read.
VidScrnHPage
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD PAGE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PAGE NA

Address: 0x8003_002C
Default: 0x0000_0000
Definition: Video Screen Half Page Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

7-46 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

I

PAGE: Video Screen Half-page Starting SDRAM Address -
Read/Write

If DSCAN = ‘1’ in the PixelMode register, the Video Screen
Half-page Starting SDRAM Address value written to this
field corresponds to the upper left corner of the bottom half
of the video screen.

NA: Not Assigned. Will return written value during a read.
ScrnLines
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD LINES

Address: 0x8003_0030

Default: 0x0000_0000

Definition: Video Screen Lines Register
Bit Descriptions:

RSVD: Reserved - Unknown during read
LINES: Lines - Read/Write

The Lines value written to this field specifies the number of
lines to be scanned to the display during normal and half-
page mode operation.

LineLength
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD LEN

Address: 0x8003_0034

Default: 0x0000_0000

Definition: Video Line Length Register
Bit Descriptions:

RSVD: Reserved. Unknown during read.

DS785UM1 7-47
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

LEN: Length - Read/Write

The Length value written to this field specifies, in 32-bit
words, the length of video lines that are scanned to the

display. Please see “Setting up the LineLength Register”
on page 7-31 and “Memory Setup Example” on page 7-31.

The remainder of the last word in a video line may not be
used as long as the blanking time is greater than the
remaining number of pixels. The extra pixels will enter the
video chain, but will exit the pipeline during the blanking
interval. When the end of LEN is reached, STEP in the
VLineStep register is added to the address for video data.

VLineStep

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STEP

Address: 0x8003_0038
Default: 0x0000_0000
Definition: Video Line Step Size Register
Bit Descriptions:
RSVD: Reserved - Unknown during read

STEP: Step - Read/Write

When the end of the video line is reached (see LEN in
LineLength register), the Step value written to this field
(specified in 32-bit words) is added to the address for
every video line that is scanned to the display. Please see
“Memory Setup Example” on page 7-31.

This allows the screen width to be smaller than the video
image width in SDRAM.

7-48 DS785UM1
Copyright 2007 Cirrus Logic

!

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

LineCarry
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD LCARY

Address: 0x8003_003C
Default: 0x0000_0000

Definition: Horizontal Line Carry Value register

Bit Descriptions:

RSVD: Reserved - Unknown during read
LCARY: Line Carry - Read/Write
When the Horizontal down counter counts down to the
written LCARY value, a carry is sent to increment the
Vertical counter. This provides for timing skew between
the vertical and horizontal video signals. Please refer to
the video signalling timing diagrams in Figure 7-9 and
Figure 7-10.
EOLOffset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OFFSET

Address: 0x8003_0230
Default: 0x0000_0000

Definition: End-of-line Offset Register.

Bit Descriptions:
RSVD:

OFFSET:

DS785UM1

Reserved - Unknown during read
Offset - Read/Write

The Offset value written to this field is added to the
address at the end of every other video line if the Offset
value is not 0x0. This allows splitting the left and right
halves of the display.

7-49

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

Other Video Registers

il

If the Offset value is 0x0, no offset is used and addressing
proceeds normally.

Brightness

31

30 29 28 27

26 25 24 23 22 21 20 19 18 17 16

RSVD

15

14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

CMP

CNT

7-50

Address: 0x8003_0020
Default: 0x0000_0000

Definition: Brightness Control register.

Bit Descriptions:
RSVD:

CMP:

CNT:

Reserved - Unknown during read
Compare - Read/Write

The Compare value written to this field determines the
brightness control duty cycle (see CNT below) - that is,
when the brightness signal to the BRIGHT pin is ‘1’ or ‘0.

Count - Read/Write

The Count value written to this field specifies the number
of horizontal lines counted during a brightness waveform
period. The counter counts down from the Count value to
0x0.

The CNT value and the CMP value are used to construct a
brightness control waveform on the BRIGHT pin by this
relationship:

When Count > Compare, or Count = Compare, the
brightness signal to the BRIGHT pin is ‘0'.

When Count < Compare, the brightness signal to the
BRIGHT pinis ‘1.

The BRIGHT pin is ‘0’ (zero% brightness) after reset.

DS785UM1
Copyright 2007 Cirrus Logic

!

VideoAttribs

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD SDSEL BKPXD | DVERT | DHORZ | EQUSER | INTRLC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT INTEN PIFEN | CCIREN | RSVD LCDEN ACEN | INVCLK | BLKPOL | HSPOL | V/ICPOL | CSYNC | DATEN | SYNCEN | PCLKEN EN

Address: 0x8003_0024
Default: 0x0000_0000

Definition: Video Signal Attributes register.

Bit Descriptions:
RSVD:

SDSEL:

BKPXD:

DVERT:

DS785UM1

Reserved - Unknown during read
SDRAM Selector - Read/Write

Writing to these two bits defines which SDCSn[3:0] pin is
used to access the video frame buffer in SDRAM:

00 SDCSn[0]
01 SDCSn[1]
10 SDCSn[2]
11 SDCSn[3]

SDCSn[3] is selected by default on hardware reset.
Blank Pixel Data - Read/Write

Writing BKPXD = ‘1’ forces the pixel data on the P[17:0]
pins to be 0x0 when the blanking signal on the BLANK pin
is ‘0.

0 - Disable

1 - Enable

This allows the use of an inexpensive external DAC that
does not contain data blanking logic.

Double Vertical - Read/Write

Writing DVERT = ‘1’ forces the values of the defined bit-
fields in the VLinesTotal, VSyncStrtStop, VActiveStrtStop,
VBlankStrtStop, and VCIkStrtStop registers to be doubled
(2X programmed value) when used.

0 - Disable
1 - Enable

7-51
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

DHORZ:

EQUSER:

INTRLC:

INT:

INTEN:

PIFEN:

7-52

~——————

Double Horizontal - Read/Write

Writing DHORZ = ‘1’ forces the values of the defined bit-
fields in the HCIkTotal, HSyncStrtStop, HActiveStrtStop,
HBlankStrtStop, and HCIkStrtStop registers to be doubled
(2X programmed value) when used.

0 - Disable
1 - Enable
Equalization/Serration - Read/Write

If SYNCEN = 1" and CSYNC = ‘1’ (both defined below),
writing EQUSER = ‘1’ forces equalization and serration
pulses to be inserted into the composite synchronization
signal on the V_CSYNC pin.

0 - Disable

1 - Enable

Interlace - Read/Write

Writing INTRLC = ‘1’ enables interlaced frame timing.
0 - Disable

1 - Enable

Interrupt - Read/Write

If INTEN =‘1", an INT = ‘1’ status indicates that the end of
active video interrupt has occurred.

0 - No interrupt

1 - Interrupt occurred

Write “0” to clear, write “1” to test.
Interrupt Enable - Read/Write

Writing INTEN = ‘1’ enables the end of active video
interrupt.

0 - Disable
1 - Enable

Parallel Interface Enable - Read/Write

0 - Enable interface for normal display operation
1 - Enable interface for Smart Panel operation

Writing PIFEN = ‘1’ redefines the signals on these pins for
Smart Panel operation:

DS785UM1

Copyright 2007 Cirrus Logic

I

CCIREN:

LCDEN:

ACEN:

INVCLK:

DS785UM1

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

V_CSYNC --> D7 (Smart Panel)

HSYNC --> D6

BLANK --> D5
P17 --> D4

P3-->D3

P[2:0] --> D[2:0]
SPCLK > E

A Smart Panel has an integrated controller and frame
buffer. Smart Panel R/W and RS signals must be
implemented via GPIOs and controlled via software.

CCIR Enable - Read/Write

The value written to this bit selects which video output
signals are generated:

0 - Normal signals
1 - CCIR656 YCrCb digital video signals
LCD Enable - Read/Write

The value written to this bit specifies the function of the
signals to the P[16] pin and P[15] pin:

0 - Pixel data bits 16 and 15 are routed to pins P16 and
P15, respectively

1 - XECL and YSCL signals are routed to pins P16 and
P15, respectively. The XECL and YSCL signals are used
to enable LCD drivers and register shifting

AC Enable - Read/Write

Writing ACEN = ‘1’ routes an LCD AC Waveform to pin
P17.

0 - Pixel data bit 17 is routed to pin P17

1-LCD AC Wave Form is routed to pin P17. The
waveform toggles with each new vertical frame.

Invert Pixel Clock - Read/Write

The value written to this bit selects the active edge of
SPCLK on the SPCLK pin:

0 - Pixel data output changes on the rising edge of the
clock on the SPCLK pin

7-53

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

1 - Pixel data output changes on falling edge of the clock
on the SPCLK pin

BLKPOL.: Blank Polarity - Read/Write

The value written to this bit selects the polarity of the
blanking signal on the BLANK pin:

0 - BLANK is active LOW (default)
1 - BLANK is active HIGH
HSPOL: Horizontal Sync Polarity - Read/Write

The value written to this bit selects the polarity of the
horizontal synchronization signal on the HSYNC pin:

0 - HSYNC is active LOW (default)
1-HSYNC is active HIGH
V/CPOL.: Vertical / Composite Polarity - Read/Write

The value written to this bit selects the polarity of the
synchronization signal on the V_CSYNC pin:

0 - V_CSYNC is active LOW (default)
1-V_CSYNC is active HIGH
CSYNC: Composite Sync - Read/Write

The value written to this bit selects whether the Vertical
Sync or the Composite Sync signal is routed to the
V_CSYNC pin:

0 - Vertical Sync
1 - Composite Sync
DATEN: Pixel Data Enable - Read/Write

The value written to this bit selects whether pixel data is
output to the P[x] pins, or not:

0 - Pixel data output disabled
1 - Pixel data output enabled
SYNCEN: Video Sync Enable - Read/Write

The value written to this bit selects whether
synchronization signals are output to the H_SYNC and
V_CSYNC pins, or not:

0 - Video SYNC outputs disabled
1 - Video SYNC outputs enabled

7-54 DS785UM1
Copyright 2007 Cirrus Logic

——— Raster Engine With Analog/LCD Integrated Timing and Interface
___—__—__: EP93xx User’s Guide
PCLKEN: Pixel Clock Enable - Read/Write
The value written to this bit selects whether the pixel clock -
or smart panel clock are output to the SPCLK pin, or not: 7
0 - SPCLK pin at high impedance
1 - PCLK or SCLK active on SPCLK pin
The PIFEN bit above selects PCLK vs. SCLK.
EN: Enable Video State Machine - Read/Write
The value written to this bit selects whether the video state
machine is enabled, or not:
0 - Video state machine off
1 - Video state machine enabled
RasterSWLock
31 30 29 28 27 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 1 9 8 7 6 5 4 3 2 1 0
RSVD swiLck

Address: 0x8003_007C
Default: 0x0000_0000

Definition: Raster Software Lock register

Bit Descriptions:
RSVD:

SWLCK:

DS785UM1

Reserved - Unknown during read
Software Lock - Read/Write

WRITE: Writing 0X0000_00AA to this register will unlock
all locked registers until the next block access.

READ: During a read operation, SWLCK]JO0] has this
meaning:

1 - Unlocked for current bus access
0 - Locked

The Read feature of the RasterSWLock register is used for
testing the locking function.

7-55

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

———.
——ER.
—
—
—
—
———
~——————
ACRate
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD

RATE

Address: 0x8003_0214

Default: 0x0000_0000

Definition: AC Toggle Rate register
Bit Descriptions:

Copyright 2007 Cirrus Logic

RSVD: Reserved - Unknown during read
RATE: Rate - Read/Write
The RATE field must be written with a value that is one
less than the number of horizontal video lines before the
AC LCD bias signal is to toggle. Care must be taken when
choosing this value while using the grayscale dithering
algorithms, as a DC build-up may occur if the pixel timing
for the ‘on’ state of the pixel is concurrent with the bias
frequency.
FIFOLevel
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD LEVEL
Address: 0x8003_0234
Default: 0x0000_0010
Definition: FIFO Refill Level register
Bit Descriptions:
RSVD: Reserved - Unknown during read
LEVEL: Level - Read/Write
7-56 DS785UM1

I

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

This field should be written with a value that specifies the
number of words that the FIFO empties before the FIFO
requests that it be refilled. Values greater than 16 should
be used with extreme caution as they can cause the
Raster Engine to underflow, causing video jitter or other
visual defects.

PixelMode
31 30 29 28 27 25 24 23 22 21 20 19 18 17 16
RSVD 0
15 14 13 12 11 9 8 7 6 5 4 3 2 1 0
TRBSW DSCAN C M S P

Address: 0x8003_0054
Default: 0x0000_0000
Definition: Pixel Mode register
Bit Descriptions:

RSVD:

0:
TRBSW:

DSCAN:

DS785UM1

Reserved - Unknown during read
Must be written as ‘0’
Two and Two-Thirds Red/Blue Swap - Read/Write

Writing a Two and two-thirds Red/Blue Swap value to this
bit selects the ordering of Red and Blue pixels for data
shifted displays:

0 - Normal: Blue is the low order bits followed by green
and red

1 - Reverse: Red is low order bits followed by green and
blue

Dual Scan - Read/Write

7-57
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

il

Writing a Dual Scan value to this bit selects whether the
display is used in single scan mode, or dual scan mode
where the display is divided into a ‘top’ half and a ‘bottom’
half. In dual scan mode, the video frame buffer in SDRAM
must be organized such that ‘top’ and ‘bottom’ pixels
alternate in consecutive locations. ‘Top’ and ‘bottom’ pixels
are fetched and input to the Raster Engine’s video
pipeline. The output shifter is set up to drive the top and
bottom half screen data at the same time. Dual scan mode
is intended for passive matrix LCD screens that require
both halves of the screen to be scanned out at the same
time. However, dual scan mode could also be used to
drive two separate synchronized displays, each with
different data.

0 - Single Scan (full page)
1 - Dual Scan (two half pages)

C: Color - Read/Write
The Color Mode is specified by selecting a value from
Table 7-13 and writing it to this field.
Table 7-13. Color Mode Definition Table
C3 Cc2 C1 Cco Color Mode
0 0 0 0 Use LUT Data
0 1 0 0 Triple 8 bits per channel
0 1 0 1 16-bit 565 color mode
X 1 1 0 16-bit 555 color mode
1 X X X Grayscale Palettes Enabled
M: Mode - Read/Write

The Blink Mode is specified by selecting a value from
Table 7-14 and writing it to this field.

Table 7-14. Blink Mode Definition Table

M3 M2 M1 MO Blink Mode

0 0 0 0 Blink Mode Disabled

0 0 0 1 Pixels ANDed with Blink Mask

0 0 1 0 Pixels ORed with Blink Mask

0 0 1 1 XORed with Blink Mask

0 1 0 0 Blink to background register Value

7-58

DS785UM1

Copyright 2007 Cirrus Logic

I

DS785UM1

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

Table 7-14. Blink Mode Definition Table (Continued)

M3 M2 M1 MO Blink Mode

0 1 0 1 Blink to offset color single value mode

0 1 1 0 Blink to offset color 888 mode (555,565)

0 1 1 1 Undefined

1 1 0 0 Blink dimmer single value mode

1 1 0 1 Blink brighter single value mode

1 1 1 0 Blink dimmer 888 mode (555,565)

1 1 1 1 Blink brighter 888 mode (555,565)

S: Shift - Read/Write
The Shift Mode is specified by selecting a value from
Table 7-15 and writing it to this field.
Table 7-15. Output Shift Mode Table

S2 S1 SO0 Shift Mode

0 0 0 1 - pixel per pixel clock (up to 24 bits wide)

0 0 1 1 - pixel mapped to 18 bits each pixel clock

0 1 0 2 - pixels per shift clock (up to 9 bits wide each)

0 1 1 4 - pixels per shift clock (up to 4 bits wide each)

1 0 0 8 - pixels per shift clock (up to 2 bits wide each)

1 0 1 2 2/3 3-bit pixels per clock over 8 bit bus

1 1 0 Dual Scan 2 2/3 3-bit pixels per clock over 8-bit bus

1 1 1 Undefined - Defaults to 1 - pixel per pixel clock

P: Pixel - Read/Write
The number of bits per pixel that are output on the P[x]
pins is specified by selecting a value from Table 7-16 and
writing it to this field.
The Graphics Engine has a separate setting for this value,
which may or may not be the same.
Table 7-16. Bits per Pixel Scanned Out

P2 P1 PO Pixel Mode

0 0 0 pixel multiplexer disabled

0 0 1 4 bits per pixel

0 1 0 8 bits per pixel

0 1 1 do not use

7-59
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

Table 7-16. Bits per Pixel Scanned Out (Continued)

P2 P1 PO Pixel Mode
; 1 0 0 16 bits per pixel

1 0 1 do not use
1 1 0 24 bits per pixel packed
1 1 1 32 bits per pixel (24 bits per pixel unpacked)
ParlllifOut
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD RD DAT

Address: 0x8003_0058
Default: 0x0000_0000

Definition: Parallel Interface Output/Control Register. _))
This register, If PIFEN = ‘1’ in the VideoAttribs register, is used to access a

Smart Panel. A Smart Panel has an integrated controller and frame buffer.

Bit Descriptions:

RSVD: Reserved - Unknown during read
RD: Read control bit - Write Only

Writing a ‘0’ to this bit location will initiate a parallel
interface write cycle; writing a ‘1’ will initiate a parallel
interface read cycle:

1 - Start Smart Panel write cycle
0 - Start Smart Panel read cycle
DAT.: Data - Write Only

The value written to this field is output on the parallel
interface pins during a write cycle. Writing PIFEN = ‘1’ to
the VideoAttribs register redefines the signals on these
pins for Parallel Interface (Smart Panel) operation:

V_CSYNC --> D7 (Smart Panel)
HSYNC --> D6

BLANK --> D5

P17 --> D4

7-60 DS785UM1
Copyright 2007 Cirrus Logic

I

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

P3 --> D3
P[2:0] --> D[2:0]
SPCLK --> E

Smart Panel R/W and RS signals must be implemented
via GPIOs and controlled via software.

Parllifin
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD ESTRT CNT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD DAT

Address: 0x8003_005C
Default: 0x0000_0000

Definition: Parallel Interface Output/Control Register
This register, if PIFEN = ‘1’ in the VideoAttribs register, is used to access a

Smart Panel. A Smart Panel has an integrated controller and frame buffer.

Bit Descriptions:
RSVD:

ESTRT:

CNT:

DS785UM1

Reserved - Unknown during read
Enable Start - Read/Write

The Enable Signal Start Value for the parallel interface
down counter should be written to this field. When the
parallel interface counter counts down to this value during
a write cycle (see RD bit in the ParllifOut register for write
cycle), the E enable signal on the E pin goes active.

The E enable signal becomes inactive just before the
counter counts down to 0x0, although data remains driven
on the D[7:0] pins throughout the 0x0 count. This allows
data to be driven for one additional clock cycle, providing
data hold time to the Smart Panel.

Count - Read/Write

The counter preload value that is written to this field gets
loaded into the parallel interface down counter. When a
write or read cycle is initiated by writing to the RD bit in the
ParlllifOut register, the counter begins to count down from
this value.

7-61
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

Smart Panel R/W and RS signals must be implemented
via GPIOs and controlled via software. The difference

7 between the CNT[3:0] value and the ESTRT[3:0] value is
what guarantees set up time for these GPIO signals to the

Smart Panel before the rising edge of the E enable signal
on the E pin.

DAT: Data - Read Only

This parallel interface data is input to the EP93xx
processor from the Smart Panel during a read cycle (see
RD bit in the ParllifOut register for read cycle). The D[7:0]
bits from the Smart Panel are loaded into this DAT field,
respectively, on the falling edge of the ‘E’ enable control
signal on the E pin.

Writing PIFEN = *1’ to the VideoAttribs register redefines
the signals on these pins for Parallel Interface (Smart
Panel) operation:

V_CSYNC --> D7 (Smart Panel)
HSYNC --> D6

BLANK --> D5

P17 --> D4

P3 --> D3

P[2:0] --> D[2:0]

SPCLK --> E

Smart Panel R/W and RS signhals must be implemented
via GPIOs and controlled via software.

7-62 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

!

Blink Control Registers

BlinkRate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RATE

Address: 0x8003_0040
Default: 0x0000_0000
Definition: Blink Rate Control register
Bit Descriptions:
RSVD: Reserved - Unknown during read

RATE: Rate - Read/Write

The blink rate value that is written to this field controls the
number of video frames that occur before the LUT
addresses assigned to ‘blink’ change between masked
and unmasked (see “Blink Function” on page 7-10). The
on/off blink cycle is controlled by this equation:

Blink Cycle = 2 x (1/VCLK) x HClkTotal x VLinesTotal x
(255 - BlinkRate)

BlinkMask
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD MASK
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MASK

Address: 0x8003_0044
Default: 0x0000_0000

Definition: Blink Mask register
This register is used in conjunction with the BlinkPattrn register to determine

which pixels that are fetched from SDRAM are blink pixels.

DS785UM1 7-63
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

Bit Descriptions:

RSVD:

il

Reserved - Unknown during read
Mask - Read/Write

The Blink Mask value that is written to this field is logical
ANDed, ORed, or XORed with the pixel data that
addresses the LUT. The mask allows a blinking pixel to
jump from the normal color definition location to a blink
color definition location in the look-up-table.

The logical operator is selected by writing to the M field in
the PixelMode register. The functions of the BlinkMask
AND/OR/XOR operation can be viewed as:

ANDing modifies the LUT address by clearing bits
ORing modifies the LUT address by setting bits
XORing modifies the LUT address by inverting bits

BlinkPattrn
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD PATRN
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PATRN

Address: 0x8003_0048
Default: 0x0000_0000

Definition: Blink Pattern register

This register is used in conjunction with the BlinkMask register to determine
which pixels that are fetched from SDRAM are blink pixels (see “BlinkPattrn
Register” on page 7-33).

Bit Descriptions:
RSVD:

PATRN:

7-64

Reserved - Unknown during read
Pattern - Read/Write

The pixel value is first operated on by the Mask field in the
BlinkMask register. The result is then compared to the
blink pattern value that is written to this PATRN field. If the
comparison results in a match, the pixel is validated as a
blink pixel.

DS785UM1

Copyright 2007 Cirrus Logic

!

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

—
PattrnMask
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD PMASK
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PMASK

Address: 0x8003_004C
Default: 0x0000_0000

Definition: Blink Pattern Mask register

Bit Descriptions:
RSVD:

PMASK:

BkgrndOffset

Reserved - Unknown during read
Pattern Mask - Read/Write

The Blink Pattern Mask value that is written to this field
defines which bits of the PATRN field in the BlinkPattrn
register are used to validate a blink pixel:

0 - Bit used for comparison

1 - Bit not used for comparison

25 24 23 22 21 20 19 18 17 16

RSVD

BGOFF

15 14 13 12 11 10

BGOFF

Address: 0x8003_0050
Default: 0x0000_0000

Definition: Blink Background Color / Blink Offset value register

DS785UM1

7-65

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

il

Bit Descriptions:
RSVD: Reserved - Unknown during read
BGOFF: Background Off - Read/Write
The function of Background Off value that is written to this
field is defined by the selected blink mode.

When the value of the M field in the PixelMode is written to
select ‘blink to background’ mode, the BGOFF field
defines a 24-bit color for the background.

When the value of the M field in the PixelMode is written to
select ‘blink to offset’ mode, the BGOFF field defines the

mathematical offset value for the blink color. The format for
the mathematical offset is based on the color display mode
- that is, 888, 565, 555 (see “Types of Blinking” on page 7-

33).
Hardware Cursor Registers
CursorAdrStart
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ADR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADR NA

Address: 0x8003_0060

Default: 0x0000_0000

Definition: Cursor Image Address Start register

Bit Descriptions:

ADR: Address - Read/Write

The Cursor Address Start value that is written to this field
specifies the SDRAM location that contains the start of the
cursor image. The cursor image is 2-bits per pixel, and is

stored linearly. The amount of storage space is dependent
on the width and height of the cursor.

NA: Not Assigned - Will return the written value

7-66 DS785UM1
Copyright 2007 Cirrus Logic

!

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

CursorAdrReset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ADR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADR NA

Address: 0x8003_0064
Default: 0x0000_0000
Definition: Cursor Image Address Reset register

Bit Descriptions:

DS785UM1

ADR:

NA:

Address - Read/Write

The Cursor Address Reset value that is written to this field
specifies the SDRAM location of the part of the cursor that
will be displayed next after reaching the last line of the
cursor.

Both start and reset locations are necessary for Dual Scan
display of cursor information. If the cursor is totally in the
upper half or lower half of the screen, the Start and Reset
locations will be the same. Otherwise the cursor will start
being overlaid on the video information at the start
address, and when the dual scan height counter
generates a carry, will jump to the reset value. The cursor
will then continue to be overlaid when the Y location is
reached, and will jump to the start address value when the
height counter for the upper half generates a carry.

Offsetting the reset value and changing the width of the
cursor to be different from the cursor step value allows the
right 48, 32, or 16 pixels of a larger cursor to be displayed
only. Furthermore, offsetting the reset X location off of the
left edge of the screen will allow pixel placement of the
cursor off of the screen edge.

Not Assigned - Will return the written value

7-67

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

———.
——ER.
—
—
—
—
———
~——————
CursorSize
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 8 7 6 5 4 3 2 1 0
DLNS CSTEP CLINS CWID

Address: 0x8003_0068
Default: 0x0000_0000

Definition: Cursor Height, Width, and Step Size register

Bit Descriptions:
RSVD:

DLNS:

CSTEP:

CLINS:

CWID:

7-68

Reserved - Unknown during read
Dual Scan Lower Half Lines - Read/Write

If DSCAN = ‘1’ in the PixelMode register, the Dual Scan
Lower Half Lines value that is written to this field specifies
the number of cursor lines that are displayed in the lower
half of the display.

Cursor Step Size - Read/Write

The Cursor Step Size value that is written to this field
specifies the counter step size for the width of the cursor
image:

00 - Step by 1 word or 16 pixels at a time
01 - Step by 2 words or 32 pixels at a time
10 - step by 3 words or 48 pixels at a time
11 - Step by 4 words or 64 pixels at a time
Cursor Lines - Read/Write

The Cursor Lines value that is written to this field specifies
the height in lines of the cursor image. The value should
be set to ‘number of cursor lines minus one'.

In dual scan mode this field should be set to the ‘number
of cursor lines minus one’ to be displayed in the top half of
the display.

Cursor Width - Read/Write

The Cursor Width value that is written to this field specifies
the ‘displayed word width minus one’ of the cursor image:

DS785UM1

Copyright 2007 Cirrus Logic

I

CursorColorl,
CursorColor2,
CursorBlinkColor1,

CursorBlinkColor2

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

00 - Display 1 word (16 pixels)

01 - Display 2 words (32 pixels)
10 - Display 3 words (48 pixels)
11 - Display 4 words (64 pixels)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD COLOR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COLOR
Address: CursorColorl - 0x8003 _006C

CursorColor2 - 0x8003_0070
CursorBlinkColorl - 0x8003_021C
CursorBlinkColor2 - 0x8003_0220

Default: 0x0000_0000
Definition: Cursor Color registers
Bit Descriptions:

RSVD:

COLOR:

DS785UM1

Reserved - Unknown during read
Color - Read/Write

The Color value that is written to this field specifies the
cursor image color that is inserted directly into the video
pipeline. This color overlays all other colors when the
cursor is enabled. This color does not go through the LUT.

The 2-bits-per-pixel cursor image is stored anywhere in
SDRAM. When cursor pixels are fetched from SDRAM,
they are decoded and displayed as:

00 - Transparent

01 - Invert video stream

10 - CursorColorl during no blink; CursorBlinkColorl
during blink

11 - CursorColor2 during no blink; CursorBlinkColor2
during blink

7-69
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

———.
——ER.
—
—
—
—
———
~——————
CursorXYLoc
31 30 29 28 27 25 24 23 22 21 20 19 18 17 16
RSVD YLOC
15 14 13 12 11 9 8 7 6 5 4 3 2 1 0
CEN RSVD XLOC

Address: 0x8003_0074
Default: 0x0000_0000

Definition: Cursor X and Y Location register

Bit Descriptions:

RSVD:
YLOC:

CEN:

XLOC:

7-70

Reserved - Unknown during read
Y Location - Read/Write

The Y Location value written to this field specifies the
starting vertical Y location of the cursor image. The value
is compared to the vertical line counter and it should be
specified to be between the active start and active stop
vertical line values.

The cursor hardware will clip the cursor at the bottom of
the screen. To prevent cursor distortion, a new Y Location
value will not be used until the next frame.

Cursor Enable - Read/Write

Writing a ‘1’ to this bit enables the hardware to insert the
defined cursor into the image output video stream. The
cursor image fetched from an SDRAM location that is
defined by the CursorAdrStart register is combined with
the output video stream. Writing a ‘0’ to this bit disables
the cursor.

0 - Hardware cursor not enabled
1 - Hardware cursor enabled

When Dual Scan mode is enabled by writing DSCAN = ‘1’
in the PixelMode register, this Cursor Enable bit specifies

that some or all of the cursor is located in the upper half of
the display.

Y Location - Read/Write

DS785UM1

Copyright 2007 Cirrus Logic

I

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

The X Location value written to this field specifies the
starting horizontal X location of the cursor image. The

value is compared to the horizontal pixel counter and it 7
should be specified to be between the active start and

active stop horizontal pixel values.

This X Location value is also used to specify the starting
location for the cursor image in the upper half of the
display when Dual Scan mode is enabled by writing
DSCAN = ‘1" in the PixelMode register.

The cursor hardware will clip the cursor at the right edge of
the screen. To prevent cursor distortion, a new X Location
value will not be used until the next frame.

CursorDScanLHYLoc
31 30 29 28 27 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 9 8 7 6 5 4 3 2 1 0
CLHEN RSVD YLOC

Address: 0x8003_0078
Default: 0x0000_0000

Definition: Cursor Y Location register

Bit Descriptions:
RSVD:

CLHEN:

YLOC:

DS785UM1

Reserved - Unknown during read
Cursor Lower Half Enable - Read/Write

Writing a ‘1’ to this bit specifies that some or all of the
cursor image is located in the lower half of the display.
Writing a ‘0’ to this bit specifies the opposite.

0 - Hardware cursor not located in lower half of display

1 - Hardware cursor located in lower half of display

Y Location - Read/Write

7-71

Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

i

~——————

When Dual Scan mode is enabled by writing DSCAN = ‘1’
in the PixelMode register, the Y Location value written to
7 this field specifies the starting vertical Y location (in the
lower half of the display) of the cursor image. The value is
compared to the vertical line counter and it should be

specified to be between the active start and active stop
vertical line values.

The cursor hardware will clip the cursor at the bottom of
the display. To prevent cursor distortion, a new Y Location
value will not be used until the next frame.

CursorBlinkRateCtrl

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RSVD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD EN RATE

Address: 0x8003_0224

Default: 0x0000_0000

Definition: Blink Rate Control register
Bit Descriptions:

RSVD: Reserved - Unknown during read
EN: Enable - Read/Write

Writing a ‘1’ to this bit enables hardware cursor blinking
and enables the blink rate counter. Writing a ‘0’ to this bit
disables hardware cursor blinking and disables the blink
rate counter:

0 - Hardware cursor blinking not enabled
1 - Hardware cursor blinking enabled

When EN = ‘1’ and the 2-bit cursor pixel fetched from
SDRAM is ‘107, CursorColor2, is used for the ‘on’ part of
the blink toggle and CursorColorl, is used for the ‘off’ part
of the blink toggle.

When EN = ‘1’ and the 2-bit cursor pixel fetched from
SDRAM is ‘11’, CursorBlinkColorl, is used for the ‘on’ part
of the blink toggle and CursorColorl, is used for the ‘off’
part of the blink toggle.

7-72 DS785UM1
Copyright 2007 Cirrus Logic

I

LUT Registers

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

When EN = ‘0’ and the 2-bit cursor pixel fetched from
SDRAM is ‘10, CursorColorl, is used for the non-blinking

cursor image.

When EN = ‘0’ and the 2-bit cursor pixel fetched from
SDRAM is ‘11", CursorColorl, is used for the non-blinking

cursor image.

RATE: Rate - Read/Write

When EN = ‘1", the Rate value written to this field specifies
the number of video frames that will occur before switching

between CursorColorl or CursorColor2, and

CursorBlinkColorl or CursorBlinkColor2, respectively.

An on/off cursor blink cycle is controlled by the equation:

Blink Cycle = 2 x (1/VCLK) x HClkTotal.Total x

VLinesTotal.Total x (255 - RATE)

GryScILUTR,
GrySclLUTG,
GrySclLUTB

28 27 26 25 24 23 22 21 20 19 18 17

16

RSVD FRAME VERT

HORZ

12 11 10 9 8 7 6 5 4 3 2 1

Bit Descriptions:

GryScILUTR - 0x8003_0080 through 0x8003_00FC
GryScILUTG - 0x8003_0280 through 0x8003_02FC
GrySclLUTB - 0x8003_0300 through 0x8003_037C

0x0000_FFFF in offset locations 0x7, 0x15, 0x23, and 0x31
0x0000_0000 in all other locations

Definition: Grayscale Look-Up-Tables

RSVD: Reserved - Unknown during read

FRAME: Frame Counter Selection - Read/Write

Copyright 2007 Cirrus Logic

7-73

Raster Engine With Analog/LCD Integrated Timing and Interface

EP93xx User’s Guide

VERT:

HORZ:

7-74

il

Writing a Frame Counter Selection value to this bit selects
which Frame Counter is used for the current 3-bit pixel
value:

0 - use FRAME_CNT3
1 - use FRAME_CNT4

This bit is only defined for address locations GryScILUTx
Base + 0x000 to GrySclLUTx Base + 0x01C.

Vertical Counter Selection - Read/Write

Writing a Vertical Counter Selection value to this bit
selects which Vertical Counter is used for the current 3-bit
pixel value:

0 - use FRAME_CNT3

1-use FRAME_CNT4

This bit is only defined for address locations GryScILUTx
Base + 0x000 to GrySclLUTx Base + 0x01C.

Horizontal Counter Selection - Read/Write

Writing a Horizontal Counter Selection value to this bit
selects which Horizontal Counter is used for the current 3-
bit pixel value:

0 - use FRAME_CNT3
1-use FRAME_CNT4

This bit is only defined for address locations GryScILUTx
Base + 0x000 to GrySclLUTx Base + 0x01C.

Matrix Position Enable - Read/Write

DS785UM1

Copyright 2007 Cirrus Logic

I

Table 7-17. Grayscale Look-Up-Table (LUT)

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

Writing ‘1’s to these Matrix Position Enable bits enables
the control/dither of the monochrome data outputs
according the to horizontal position, the vertical position,
the frame, and the 3-bit incoming pixel value. Please
reference Table 7-17 below to determine D bit positions in
the matrix.

VENT 91 | 11 |11 [12 |10 |10 |10 | 10 | 01 | 01 | 01| 01 | 00 | 00 | 00 | 00 | ©SEYT
Frame|Vert|Horz| (lIn€s) Address *4
e | S er (;'iigl) 11 /10|01 |00|11|20|01|00|12|20]01|00]|11]|10]|01]00 Frame\F;:l(uele
D18 |D17|D16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000
D18 |D17| D16 D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 00 001
D18 |D17| D16 D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 00 010
D18 |D17|D16 D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 00 011
D18 |D17|D16 D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 00 100
D18 |D17| D16 D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 00 101
D18 |D17|D16 D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 00 110
D18 |D17|D16 1 1 1 1 1 1 1 00 111
X | X | X 0olo|lolo]olo]o 0olo]o 0ol 0] o of |o00
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 01 001
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 01 010
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 01 011
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 01 100
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 01 101
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 01 110
X X X 1 1 1 1 1 1 1 01 111
X | x| x olo|olo|o|lo]o|lo]o|o|]o|o|o]o|o]o]| 10 |o00
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 10 001
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 10 010
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 10 011
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 10 100
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 10 101
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO 10 110
X X X 1 1 1 1 1 1 1 10 111
X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 000
X X X D15|D14|D13|D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2