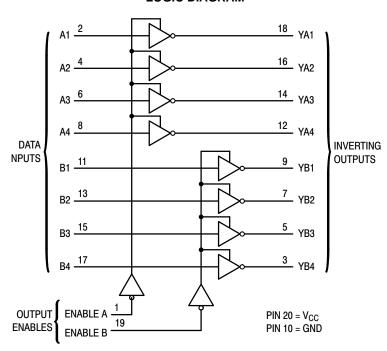
# Octal 3-State Inverting Buffer/Line Driver/Line Receiver

## **High-Performance Silicon-Gate CMOS**

The MC74HC240A is identical in pinout to the LS240. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.


This octal noninverting buffer/line driver/line receiver is designed to be used with 3-state memory address drivers, clock drivers, and other sub-oriented systems. The device has inverting outputs and two active-low output enables.

The HC240A is similar in function to the HC244A.

#### **Features**

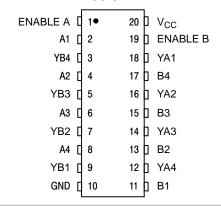
- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 120 FETs or 30 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

#### LOGIC DIAGRAM

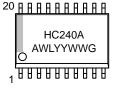


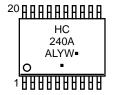


#### ON Semiconductor®


http://onsemi.com







DW SUFFIX CASE 751D TSSOP-20 DT SUFFIX CASE 948E

#### **PIN ASSIGNMENT**



#### MARKING DIAGRAMS





#### SOIC-20

TSSOP-20

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or = Pb-Free Package

(Note: Microdot may be in either location)

#### **FUNCTION TABLE**

| Inpu                  | Outputs |        |
|-----------------------|---------|--------|
| Enable A,<br>Enable B | A, B    | YA, YB |
| L                     | L       | Н      |
| L                     | Н       | L      |
| Н                     | Х       | Z      |

Z = high impedance

#### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

#### **MAXIMUM RATINGS**

| Symbol           | Parameter                                                               | Value                         | Unit |
|------------------|-------------------------------------------------------------------------|-------------------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage (Referenced to GND)                                   | -0.5 to +7.0                  | V    |
| V <sub>in</sub>  | DC Input Voltage (Referenced to GND)                                    | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| V <sub>out</sub> | DC Output Voltage (Referenced to GND)                                   | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| I <sub>in</sub>  | DC Input Current, per Pin                                               | ±20                           | mA   |
| l <sub>out</sub> | DC Output Current, per Pin                                              | ±35                           | mA   |
| I <sub>CC</sub>  | DC Supply Current, V <sub>CC</sub> and GND Pins                         | ±75                           | mA   |
| P <sub>D</sub>   | Power Dissipation in Still Air, SOIC Package† TSSOP Package†            | 500<br>450                    | mW   |
| T <sub>stg</sub> | Storage Temperature                                                     | - 65 to + 150                 | °C   |
| T <sub>L</sub>   | Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package) | 260                           | °C   |

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND  $\leq$  (V<sub>in</sub> or V<sub>out</sub>)  $\leq$  V<sub>CC</sub>.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{CC}$ ). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

#### RECOMMENDED OPERATING CONDITIONS

| Symbol                             | Parameter                                                                                                      | Min | Max                | Unit |
|------------------------------------|----------------------------------------------------------------------------------------------------------------|-----|--------------------|------|
| V <sub>CC</sub>                    | DC Supply Voltage (Referenced to GND)                                                                          | 2.0 | 6.0                | V    |
| V <sub>in</sub> , V <sub>out</sub> | DC Input Voltage, Output Voltage (Referenced to GND)                                                           | 0   | V <sub>CC</sub>    | V    |
| T <sub>A</sub>                     | Operating Temperature, All Package Types                                                                       | -55 | +125               | °C   |
| t <sub>r</sub> , t <sub>f</sub>    | Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$ (Figure 1) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ | 0   | 1000<br>500<br>400 | ns   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

|                 |                                                   |                                                                           |                      | Gu             | aranteed Li | mit     |      |
|-----------------|---------------------------------------------------|---------------------------------------------------------------------------|----------------------|----------------|-------------|---------|------|
| Symbol          | Parameter                                         | Test Conditions                                                           | V <sub>CC</sub><br>V | –55 to<br>25°C | ≤ 85°C      | ≤ 125°C | Unit |
| V <sub>IH</sub> | Minimum High-Level Input Voltage                  | $V_{out} = V_{CC} - 0.1 \text{ V}$                                        | 2.0                  | 1.5            | 1.5         | 1.5     | V    |
|                 |                                                   | $ I_{out}  \le 20 \mu\text{A}$                                            | 3.0                  | 2.1            | 2.1         | 2.1     |      |
|                 |                                                   |                                                                           | 4.5                  | 3.15           | 3.15        | 3.15    |      |
|                 |                                                   |                                                                           | 6.0                  | 4.2            | 4.2         | 4.2     |      |
| $V_{IL}$        | Maximum Low-Level Input Voltage                   | V <sub>out</sub> = 0.1 V                                                  | 2.0                  | 0.5            | 0.5         | 0.5     | V    |
|                 |                                                   | $ I_{out}  \le 20 \mu\text{A}$                                            | 3.0                  | 0.9            | 0.9         | 0.9     |      |
|                 |                                                   |                                                                           | 4.5                  | 1.35           | 1.35        | 1.35    |      |
|                 |                                                   |                                                                           | 6.0                  | 1.8            | 1.8         | 1.8     |      |
| $V_{OH}$        | Minimum High-Level Output                         | $V_{in} = V_{IH}$                                                         | 2.0                  | 1.9            | 1.9         | 1.9     | V    |
|                 | Voltage                                           | $ I_{out}  \le 20 \mu\text{A}$                                            | 4.5                  | 4.4            | 4.4         | 4.4     |      |
|                 |                                                   |                                                                           | 6.0                  | 5.9            | 5.9         | 5.9     |      |
|                 |                                                   | $V_{in} = V_{IH}$ $ I_{out}  \le 2.4 \text{ mA}$                          | 3.0                  | 2.48           | 2.34        | 2.2     |      |
|                 |                                                   | $ I_{out}  \leq 6.0 \text{ mA}$                                           | 4.5                  | 3.98           | 3.84        | 3.7     |      |
|                 |                                                   | $ I_{out}  \le 7.8 \text{ mA}$                                            | 6.0                  | 5.48           | 5.34        | 5.2     |      |
| $V_{OL}$        | Maximum Low–Level Output                          | $V_{in} = V_{IL}$                                                         | 2.0                  | 0.1            | 0.1         | 0.1     | V    |
|                 | Voltage                                           | $ I_{out}  \le 20 \mu\text{A}$                                            | 4.5                  | 0.1            | 0.1         | 0.1     |      |
|                 |                                                   |                                                                           | 6.0                  | 0.1            | 0.1         | 0.1     |      |
|                 |                                                   | $V_{in} = V_{IL}$ $ I_{out}  \le 2.4 \text{ mA}$                          | 3.0                  | 0.26           | 0.33        | 0.4     |      |
|                 |                                                   | $ I_{out}  \leq 6.0 \text{ mA}$                                           | 4.5                  | 0.26           | 0.33        | 0.4     |      |
|                 |                                                   | $ I_{out}  \le 7.8 \text{ mA}$                                            | 6.0                  | 0.26           | 0.33        | 0.4     |      |
| l <sub>in</sub> | Maximum Input Leakage Current                     | $V_{in} = V_{CC}$ or GND                                                  | 6.0                  | ±0.1           | ±1.0        | ±1.0    | μΑ   |
| $I_{OZ}$        | Maximum Three–State Leakage                       | Output in High-Impedance State                                            | 6.0                  | ± 0.5          | ± 5.0       | ± 10    | μΑ   |
|                 | Current                                           | $V_{in} = V_{IL} \text{ or } V_{IH}$<br>$V_{out} = V_{CC} \text{ or GND}$ |                      |                |             |         |      |
| I <sub>CC</sub> | Maximum Quiescent Supply<br>Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$                              | 6.0                  | 4.0            | 40          | 160     | μΑ   |

## AC ELECTRICAL CHARACTERISTICS (C $_L$ = 50 pF, Input $t_{\rm f}$ = $t_{\rm f}$ = 6 ns)

|                                        |                                                                            |                          | Gu                    | aranteed Li           | mit                   |      |
|----------------------------------------|----------------------------------------------------------------------------|--------------------------|-----------------------|-----------------------|-----------------------|------|
| Symbol                                 | Parameter                                                                  | v <sub>cc</sub><br>v     | –55 to<br>25°C        | ≤ 85°C                | ≤ 125°C               | Unit |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation Delay, A to YA or B to YB (Figures 1 and 3)            | 2.0<br>3.0<br>4.5<br>6.0 | 80<br>40<br>16<br>14  | 100<br>50<br>20<br>17 | 120<br>60<br>24<br>20 | ns   |
| t <sub>PLZ</sub> ,<br>t <sub>PHZ</sub> | Maximum Propagation Delay, Output Enable to YA or YB (Figures 2 and 4)     | 2.0<br>3.0<br>4.5<br>6.0 | 110<br>60<br>22<br>19 | 140<br>70<br>28<br>24 | 165<br>80<br>33<br>28 | ns   |
| t <sub>PZL</sub> ,<br>t <sub>PZH</sub> | Maximum Propagation Delay, Output Enable to YA or YB (Figures 2 and 4)     | 2.0<br>3.0<br>4.5<br>6.0 | 110<br>60<br>22<br>19 | 140<br>70<br>28<br>24 | 165<br>80<br>33<br>28 | ns   |
| t <sub>TLH</sub> ,<br>t <sub>THL</sub> | Maximum Output Transition Time, Any Output (Figures 1 and 3)               | 2.0<br>3.0<br>4.5<br>6.0 | 60<br>23<br>12<br>10  | 75<br>27<br>15<br>13  | 90<br>32<br>18<br>15  | ns   |
| C <sub>in</sub>                        | Maximum Input Capacitance                                                  | -                        | 10                    | 10                    | 10                    | pF   |
| C <sub>out</sub>                       | Maximum Three–State Output Capacitance<br>(Output in High–Impedance State) | -                        | 15                    | 15                    | 15                    | pF   |

|          |                                                          | Typical @ 25°C, V <sub>CC</sub> = 5.0 V |    |
|----------|----------------------------------------------------------|-----------------------------------------|----|
| $C_{PD}$ | Power Dissipation Capacitance (Per Transceiver Channel)* | 32                                      | pF |

<sup>\*</sup>Used to determine the no–load dynamic power consumption:  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ .

#### **SWITCHING WAVEFORMS**

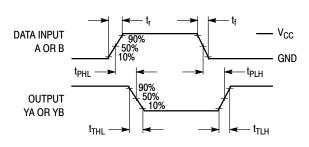



Figure 1.

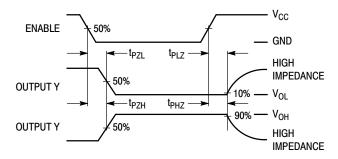
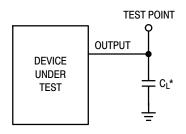
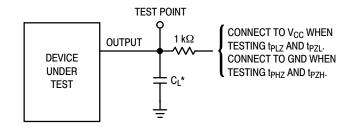





Figure 2.



\*Includes all probe and jig capacitance

Figure 3. Test Circuit



\*Includes all probe and jig capacitance

Figure 4. Test Circuit

#### **PIN DESCRIPTIONS**

#### **INPUTS**

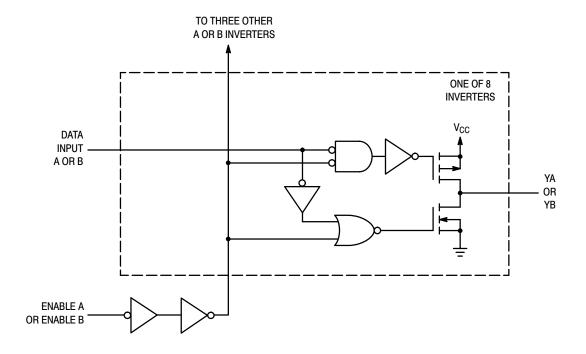
A1, A2, A3, A4, B1, B2, B3, B4 (Pins 2, 4, 6, 8, 11, 13, 15, 17)

Data input pins. Data on these pins appear in inverted form on the corresponding Y outputs, when the outputs are enabled.

#### **CONTROLS**

#### Enable A, Enable B (Pins 1, 19)

Output enables (active-low). When a low level is applied to these pins, the outputs are enabled and the devices


function as inverters. When a high level is applied, the outputs assume the high-impedance state.

#### **OUTPUTS**

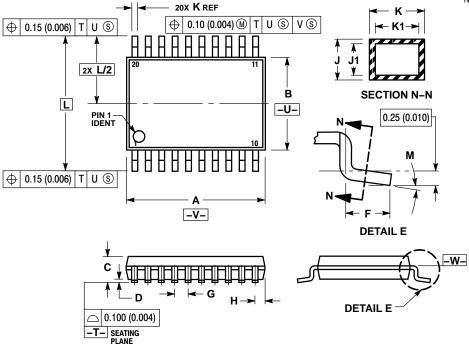
YA1, YA2, YA3, YA4, YB1, YB2, YB3, YB4 (Pins 18, 16, 14, 12, 9, 7, 5, 3)

Device outputs. Depending upon the state of the output-enable pins, these outputs are either inverting outputs or high-impedance outputs.

#### **LOGIC DETAIL**



#### **ORDERING INFORMATION**


| Device            | Package                   | Shipping <sup>†</sup> |
|-------------------|---------------------------|-----------------------|
| MC74HC240ADWG     | SOIC-20 WIDE<br>(Pb-Free) | 38 Units / Rail       |
| NVL74HC240ADWG*   | SOIC-20 WIDE<br>(Pb-Free) | 38 Units / Rail       |
| MC74HC240ADWR2G   | SOIC-20 WIDE<br>(Pb-Free) | 1000 Tape & Reel      |
| NVL74HC240ADWR2G* | SOIC-20 WIDE<br>(Pb-Free) | 1000 Tape & Reel      |
| MC74HC240ADTR2G   | TSSOP-20<br>(Pb-Free)     | 2500 Tape & Reel      |

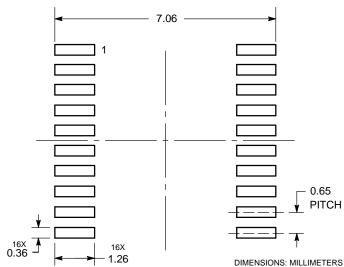
<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>\*</sup>NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

#### PACKAGE DIMENSIONS

#### TSSOP-20 **DT SUFFIX** CASE 948E-02 **ISSUE C**

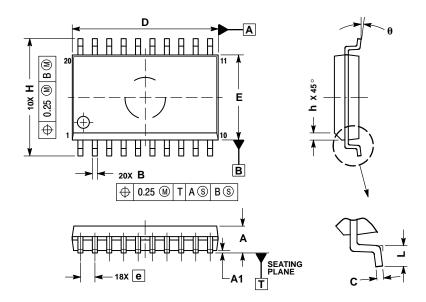



- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION:
  MILLIMETER.
  3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
  4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
  5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

  - CONDITION.
    6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
    7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIMETERS |      | INC       | HES   |  |
|-----|-------------|------|-----------|-------|--|
| DIM | MIN         | MAX  | MIN       | MAX   |  |
| Α   | 6.40        | 6.60 | 0.252     | 0.260 |  |
| В   | 4.30        | 4.50 | 0.169     | 0.177 |  |
| С   |             | 1.20 |           | 0.047 |  |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |  |
| F   | 0.50        | 0.75 | 0.020     | 0.030 |  |
| G   | 0.65        | BSC  | 0.026 BSC |       |  |
| Н   | 0.27        | 0.37 | 0.011     | 0.015 |  |
| J   | 0.09        | 0.20 | 0.004     | 0.008 |  |
| J1  | 0.09        | 0.16 | 0.004     | 0.006 |  |
| K   | 0.19        | 0.30 | 0.007     | 0.012 |  |
| K1  | 0.19        | 0.25 | 0.007     | 0.010 |  |
| L   | 6.40        |      | 0.252     | BSC   |  |
| M   | 0°          | 8°   | 0°        | 8°    |  |


#### **SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### PACKAGE DIMENSIONS

SOIC-20 **DW SUFFIX** CASE 751D-05 ISSUE G



#### NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M. 1994.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIMETERS |       |  |
|-----|-------------|-------|--|
| DIM | MIN         | MAX   |  |
| Α   | 2.35        | 2.65  |  |
| A1  | 0.10        | 0.25  |  |
| В   | 0.35        | 0.49  |  |
| C   | 0.23        | 0.32  |  |
| D   | 12.65       | 12.95 |  |
| Е   | 7.40        | 7.60  |  |
| е   | 1.27        | BSC   |  |
| Н   | 10.05       | 10.55 |  |
| h   | 0.25        | 0.75  |  |
| L   | 0.50        | 0.90  |  |
| θ   | 0 °         | 7 °   |  |

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, a customer application in which the product of the respective products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

**Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

## **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## **ON Semiconductor:**

MC74HC240ADTR2G MC74HC240ADWG MC74HC240ADWR2G