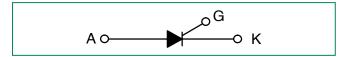

Surface Mount – 100V -600V > MCR70xA Series

MCR70xA Series

Pin Out


Description

PNPN Componants designed for high volume, low cost consumer applications such as temperature, light and speed control; process and remote control; and warning systems where reliability of operation is critical.

Features

- Small Size
- Passivated Die Surface for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Recommend Electrical Replacement for C106
- Surface Mount Package Case 369C
- To Obtain "DPAK" in Straight Lead Version (Shipped in Sleeves): Add '1' Suffix to Component Number, i.e., MCR706A1
- UL Recognized compound meeting flammability rating V-0.
- ESD Ratings: Human Body Model, $3B > 8000 \, V$ Machine Model, $C > 400 \, V$
- Pb-Free Packages are Available

Functional Diagram

Additional Information

Samples

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) MCR70 $(T_C = -40 \text{ to } +110^{\circ}\text{C}, \text{ Sine Wave, } 50 \text{ to } 60 \text{ Hz}, R_{GK} = 1 \text{ k } \Omega)$ MCR70 MCR70	6A V _{BRM}	100 400 600	V
Peak Non-Repetitive Off–State Voltage MCR70 (180° Conduction Angles; $T_c = 85$ °C) MCR70	SA V _{DSM}	150 450 650	V
On–State RMS Current (180° Conduction Angles; $T_c = 90$ °C)	I _{T(RMS)}	4.0	А
Average On-State Current $T_c = -40 \text{ to } +90 to$		2.6 1.6	А
Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, $T_J = 110^{\circ}$ C) (1/2 Cycle, Sine Wave 1.5 ms, $T_J = 110^{\circ}$ C)	I _{TSM}	25 35	А
Circuit Fusing Consideration (t = 8.3 ms)	l²t	2.6	A ² sec
Forward Peak Gate Power (Pulse Width ≤ 1.0 µsec, T _C = 90°C)	I _{GM}	0.5	W
Forward Peak Gate Current (Pulse Width ≤ 1.0 µsec, T _c = 90°C)	P _{GM}	0.2	А
Forward Average Gate Power (t = 8.3 ms, TC = 90°C)	P _{G(AV)}	0.1	W
Operating Junction Temperature Range	T _J	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the Componant. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect Componant reliability.

Thermal Characteristics*

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{euc}	3.0	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{eJA}	80	
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	T _L	260	°C

^{2.} Case 369C when surface mounted on minimum pad sizes recommended.

V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the Componants are exceeded.

Thyristors

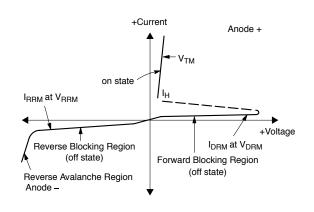
Electrical Characteristics - **OFF** $(T_j = 25^{\circ}\text{C unless otherwise noted})$

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	T _J = 25°C	l _{DRM} ,	-	-	10	
$(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM'} R_{GK} = 1 \text{ k } \Omega)$	$T_J = 110^{\circ}C$	I _{RRM}	-	-	200	μΑ

Electrical Characteristics - ON (T_J = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Forward "On" Voltage (I _{TM} = 8.2 A Peak, Pulse Width = 1 to 2 ms, 2% Duty Cycle)		V _{TM}	-	_	2.2	V
Gate Trigger Current (Continuous dc) (Note 3)	T _J = 25°C	l _{GI}	-	25	75	μΑ
$(V_{AK} = 12 \text{ V}; R_{L} = 24 \Omega)$	T _J = -40°C	-GI	-	-	300	F" .
Gate Trigger Voltage (Continuous dc) (Note 3)	T _J = 25°C	, V _{GT}	-	_	0.8	V
$(V_{AK} = 12 \text{ V}; R_{L} = 24 \Omega)$	T _J = -40°C	GT	_	-	1.0	•
Gate Non-Trigger Voltage (Note 3) $(V_{AK} = 12 \text{ Vdc}; R_{L} = 100 \text{ C})$	Gate Non-Trigger Voltage (Note 3) (V_{AK} = 12 Vdc; R_L = 100 Ω , T_C =110°)			-	-	V
Holding Current $ (V_{AK} = 12 Vdc, R_{GK} = 1 k \Omega) T_{C} = 25^{\circ}C $ $ (Initiating Current = 20 mA) T_{C} = -40^{\circ}C $		I _H	- -	_ _	5.0 10	mA
Peak Reverse Gate Blocking Voltage ($I_{GR} = 10 \mu A$)		V _{RGM}	10	12.5	18	V
Peak Reverse Gate Blocking Current (V _{GR} = 10 V)		I _{RGM}	-	_	1.2	μА
Total Turn-On Time (Source Voltage = 12 V, RS = 6 kQ) (I_{TM} = 8.2 A, I_{GT} = 2 mA, Rated V_{DRM}) (Rise Time = 20 ns, Pulse Width = 10 μ s)		t _{gt}	-	2.0	-	μѕ

Dynamic Characteristics*


Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Off–State Voltage $(V_D = Rated V_{DRM'} R_{GK} = 1 k \Omega$, Exponential Waveform, Gate Open, $T_c = 110^{\circ}\text{C}$)	dv/dt	-	10	_	V/µs
Repetitive Critical Rate of Rise of On–State Current (Cf = 60 Hz, I_{PK} = 30 A, PW = 100 μ s, diG/dt = 1 A/ μ s)	di/dt	-	-	100	A/µs

3. RGK current not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Figure 1. RMS Current Derating

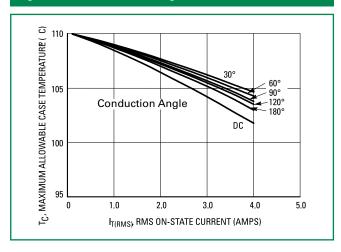


Figure 2. On-State Power Dissipation

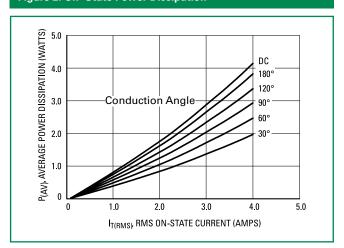


Figure 3. On-State Characteristics

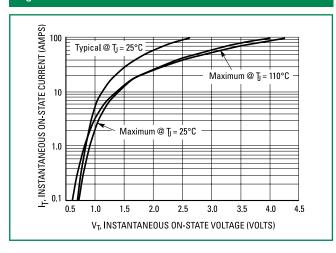


Figure 4. Transient Thermal Response

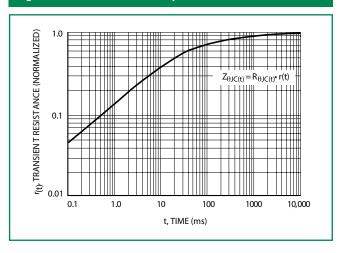


Figure 5. Typical Gate Trigger Current vs Junction Temperature



Figure 6. Typical Gate Trigger Voltage vs Junction Temperature

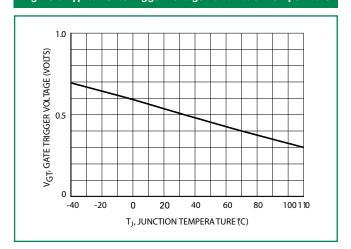


Figure 7. Typical Holding Current vs Junction Temperature

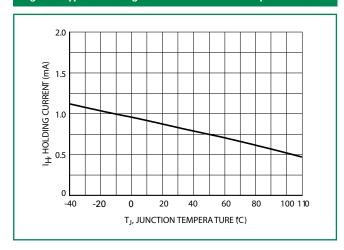
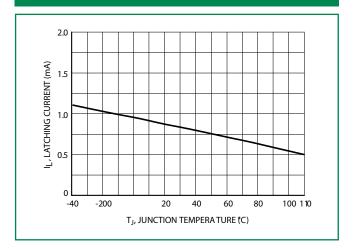
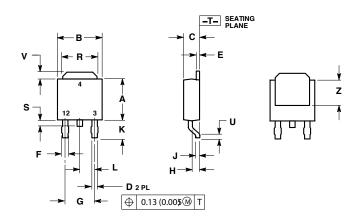
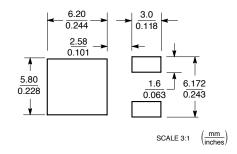




Figure 8. Typical Latching Current vs Junction Temperature

Dimensions


DPAK CASE 369C-01 ISSUE A

C :	Inches		Millim	neters	
Dim	Min	Max	Min	Max	
А	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	REF	2.74 REF		
L2	0.020) BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

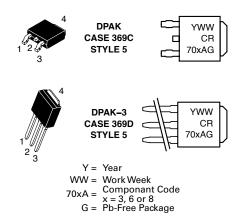
Soldering Footprint

Dimensions

CASE 369D-01 **ISSUE B** s -T-SEATING PLANE D 3 PL

⊕ 0.13 (0.00\$M T

G


DPAK-3

5.	Incl	nes	Millim	neters	
Dim	Min	Max	Min	Max	
А	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090) BSC	2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
V	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,
- 2. CONTROLLING DIMENSION: INCH.

Part Marking System

Ordering Information

Pin Assignment					
1	Gate				
2	Anode				
3	Cathode				
4	Anode				

	-					
Componant	Package		Shipping			
MCR703AT4		369C				
MCR703AT4G		369C (Pb-Free)	2500			
MCR706AT4	DPAK	369C	Tape & Reel			
MCR706AT4G	DPAK	369C (Pb-Free)				
MCR708A		369C				
MCR708AG		369C (Pb-Free)	75			
MCR708A1	DPAK-3	369D	Units/ Rail			
MCR708A1G	DPAN-3	369D (Pb-Free)				
MCR708AT4	- DPAK	369C	2500			
MCR708AT4G	DPAK	369C	Tape & Reel			

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics

(Pb-Free)