

General Description

The MAX3872 is a compact, multirate clock and data recovery with limiting amplifier for OC-3, OC-12, OC-24, OC-48, OC-48 with FEC SONET/SDH and Gigabit Ethernet (1.25Gbps/2.5Gbps) applications. Without using an external reference clock, the fully integrated phaselocked loop (PLL) recovers a synchronous clock signal from the serial NRZ data input. The input data is then retimed by the recovered clock, providing a clean data output. An additional serial input (SLBI±) is available for system loopback diagnostic testing. Alternatively, this input can be connected to a reference clock to maintain a valid clock output in the absence of data transitions. The device also includes a loss-of-lock (LOL) output.

The MAX3872 contains a vertical threshold control to compensate for optical noise due to EDFAs in DWDM transmission systems. The recovered data and clock outputs are CML with on-chip 50Ω back termination on each line. Its jitter performance exceeds all SONET/SDH specifications.

The MAX3872 operates from a single +3.3V supply and typically consumes 580mW. It is available in a 5mm x 5mm 32-pin thin QFN with exposed-pad package and operates over a -40°C to +85°C temperature range.

Applications

SONET/SDH Receivers and Regenerators

Add/Drop Multiplexers

Digital Cross-Connects

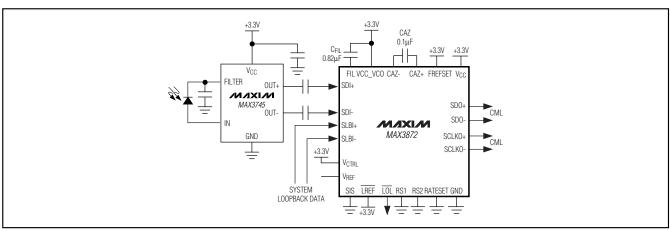
SONET/SDH Test Equipment

DWDM Transmission Systems

Access Networks

Pin Configuration appears at end of data sheet.

Features


- Multirate Data Input: 2.667Gbps (FEC), 2.488Gbps, 1.244Gbps, 622.08Mbps, 155.52Mbps, 1.25Gbps/2.5Gbps (Ethernet)
- **♦** Reference Clock Not Required for Data Acquisition
- **♦ Exceeds ANSI, ITU, and Belicore SONET/SDH Jitter Specifications**
- **♦ 2.7mUIRMS Jitter Generation**
- ♦ 10mV_{P-P} Input Sensitivity Without Threshold Adjust
- ♦ 0.65Ulp-p High-Frequency Jitter Tolerance
- ♦ ±170mV Input Threshold Adjust Range
- ♦ Clock Holdover Capability Using Frequency-Selectable Reference Clock
- Serial Loopback Input Available for System **Diagnostic Testing**
- ♦ Loss-of-Lock (LOL) Indicator

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX3872EGJ	-40°C to +85°C	32 QFN-EP*	G3255-1
MAX3872ETJ+	-40°C to +85°C	32 TQFN-EP*	T3255-3

^{*}EP = Exposed pad.

Typical Application Circuit

Maxim Integrated Products 1

⁺Denotes lead-free package.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC} 0.5V to +5.0V
Input Voltage Levels (SDI+, SDI-, SLBI+, SLBI-)(V _{CC} - 1.0V) to (V _{CC} + 0.5V)
Input Current Levels
(SDI+, SDI-, SLBI+, SLBI-)±20mA
CML Output Current
(SDO+, SDO-, SCLKO+, SCLKO-)±22mA
Voltage at LOL, LREF, SIS, FIL,
RATESET, FREFSET, RS1, RS2,
V _{CTRL} , V _{REF} , CAZ+, CAZ0.5V to (V _{CC} + 0.5V)

Continuous Power Dissipation (T _A = +85°C)	
32-Pin QFN (derate 21.3mW/°C above +85°C	C)1384mW
Operating Junction Temperature Range	-55°C to +150°C
Storage Temperature Range	-55°C to +150°C
Processing Temperature (die)	+400°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}. \text{ Typical values at } V_{CC} = +3.3 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Icc	(Note 2)		175	215	mA
INPUT SPECIFICATIONS (SDI±,	SLBI±)					
Single-Ended Input Voltage Range	VIS	Figure 1	V _C C - 0.8		V _C C + 0.4	V
Input Common-Mode Voltage		Figure 1	V _C C - 0.4		Vcc	V
Input Termination to V _{CC}	RIN		42.5	50	57.5	Ω
THRESHOLD-SETTING SPECIFIC	CATIONS (SE	Ol±)				
Differential Input Voltage Range (SDI±)		Threshold adjust enabled	50		600	mV _{P-P}
Threshold Adjustment Range	V _{TH}	Figure 2	-170		+170	mV
Threshold Control Voltage	VCTRL	Figure 2 (Note 3)	0.3		2.1	V
Threshold Control Linearity				±5		%
Threshold Setting Accuracy		Figure 2	-18		+18	mV
Threshold Setting Stability		15mV ≤ IV _{TH} I ≤ 80mV	-6		+6	mV
The shold Setting Stability		80mV < IV _{TH} I ≤ 170mV	-12		+12	IIIV
Maximum Input Current	ICTRL		-10		+10	μΑ
Reference Voltage Output	V _{REF}		2.14	2.2	2.24	V
CML OUTPUT SPECIFICATIONS	(SDO±, SCL	KO±)				
CML Differential Output Swing		(Note 4)	600	800	1000	mV _{P-P}
CML Differential Output Impedance	R _O		85	100	115	Ω
CML Output Common-Mode Voltage		(Note 4)		V _C C - 0.2		V

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}. \text{ Typical values at } V_{CC} = +3.3 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	PARAMETER SYMBOL CONDITIONS				MAX	UNITS			
LVTTL INPUT/OUTPUT SPECIFICATIONS (LOL, LREF, RATESET, RS1, RS2, FREFSET)									
LVTTL Input High Voltage	VIH		2.0			V			
LVTTL Input Low Voltage	VIL				0.8	V			
LVTTL Input Current			-10		+10	μΑ			
LVTTL Output High Voltage	VoH	$I_{OH} = +20\mu A$	2.4			V			
LVTTL Output Low Voltage	VoL	I _{OL} = -1mA			0.4	V			

Note 1: At -40°C, DC characteristics are guaranteed by design and characterization.

Note 2: CML outputs open.

Note 3: Voltage applied to VCTRL pin is from +0.3V to +2.1V when input threshold is adjusted from +170mV to -170mV.

Note 4: $R_L = 50\Omega$ to V_{CC} .

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}. \text{ Typical values are at } V_{CC} = +3.3 \text{V} \text{ and } T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serial Input Data Rate				Table 2		
Differential Input Voltage (SDI±)	V _{ID}	Threshold adjust disabled, Figure 1 (Note 6)	10		1600	mV _{P-P}
Differential Input Voltage (SLBI±)		BER ≤ 10 ⁻¹⁰	50		800	mV _{P-P}
		OC-3		80	130	
Jitter Transfer Bandwidth	J_{BW}	OC-12		370	500	kHz
		OC-48		1500	2000	
Jitter Peaking	JP	f ≤ J _{BW}			0.1	dB
		f = 100kHz	3.1	8.0		
Sinusoidal Jitter Tolerance OC-48		f = 1MHz	0.62	0.93		UI _{P-P}
00-40		f = 10MHz	0.44	0.65		
		f = 25kHz	2.9	8.3		
Sinusoidal Jitter Tolerance OC-12		f = 250kHz	0. 59	1.03		UI _{P-P}
00-12		f = 2.5MHz	0.42	0.63]
		f = 6.5kHz	2.9	7.8		
Sinusoidal Jitter Tolerance OC-3		f = 65kHz	0.59	1.05		UI _{P-P}
00-3		f = 650kHz	0.42	0.64		
Sinusoidal Jitter Tolerance with		f = 100kHz		7.1		
Threshold Adjust Enabled		f = 1MHz		0.82		Ulp-p
OC-48 (Note 7)		f = 10MHz		0.54]
Jitter Generation	JGEN	(Note 8)		2.7	4.0	mUI _{RMS}
Differential Input Return Loss	-20log	100kHz to 2.5GHz		16		alD.
(SDI±, SLBI±)	S ₁₁	2.5GHz to 4.0GHz		15		dB

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}. \text{ Typical values are at } V_{CC} = +3.3 \text{V} \text{ and } T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CML OUTPUT SPECIFICATIONS	(SDO±, SCL	KO±)				-
Output Edge Speed	t _r , t _f	20% to 80%			110	ps
CML Output Differential Swing		$R_C = 100\Omega$ differential	600	800	1000	mV _{P-P}
Clock-to-Q Delay	t _{CLK-Q}	(Note 9)	-50		+50	ps
PLL ACQUISITION/LOCK SPECI	FICATIONS					
Tolerated Consecutive Identical Digits		BER ≤ 10 ⁻¹⁰		2000		bits
Acquisition Time		Figure 4 (Note 10)		5.5		ms
LOL Assert Time		Figure 4	2.3		100.0	μs
Low-Frequency Cutoff for DC-Offset Cancellation		CAZ = 0.1µF		4		kHz
CLOCK HOLDOVER SPECIFICA	TIONS		<u>.</u>			
Reference Clock Frequency				Table 3		
Maximum VCO Frequency Drift		(Note 11)		•	400	ppm

- **Note 5:** AC characteristics are guaranteed by design and characterization.
- Note 6: Jitter tolerance is guaranteed (BER ≤ 10⁻¹⁰) within this input voltage range. Input threshold adjust is disabled with VCTRL connected to V_{CC}.
- Note 7: Measured at OC-48 data rate using a 100mV_{P-P} differential swing with a 20mVDC offset and an edge speed of 145ps (4th-order Bessel filter with f_{3dB} = 1.8GHz).
- Note 8: Measured with 10mV_{P-P} differential input, 2²³ 1 PRBS pattern at OC-48 with bandwidth from 12kHz to 20MHz.
- Note 9: Relative to the falling edge of the SCLKO+ (Figure 3).
- Note 10: Measured using a 0.82µF loop-filter capacitor initialized to +3.6V.
- Note 11: Measured at OC-48 data rate under LOL condition with the CDR clock output set by the external reference clock.

Timing Diagrams

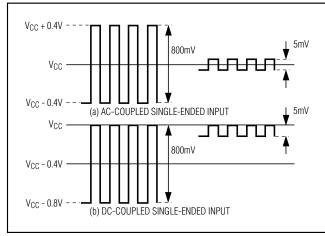


Figure 1. Definition of Input Voltage Swing

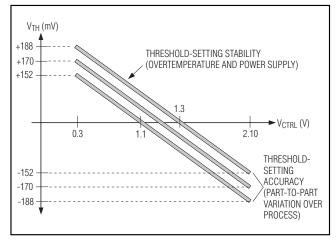


Figure 2. Relationship Between Control Voltage and Threshold Voltage

4 ______*NIXIN*

Timing Diagrams (continued)

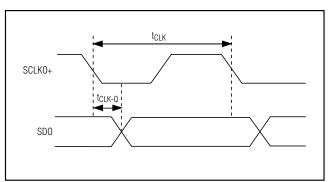


Figure 3. Definition of Clock-to-Q Delay

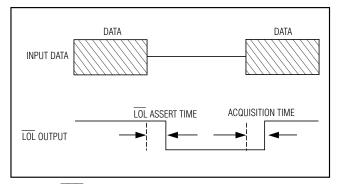
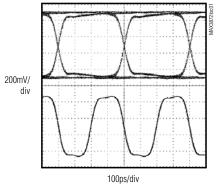
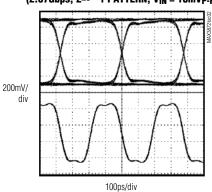
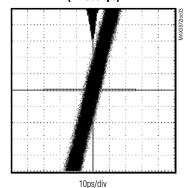



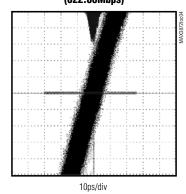
Figure 4. LOL Assert Time and PLL Acquisition Time Measurement


Typical Operating Characteristics

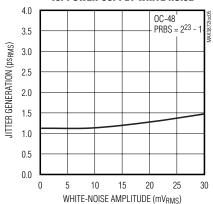
($V_{CC} = +3.3V$, $T_A = +25$ °C, unless otherwise noted.)


$\begin{array}{c} \text{RECOVERED CLOCK AND DATA} \\ \text{(2.488Gbps, 223 - 1 PATTERN, V$_{IN}$ = 10mV$_{P-P}$)} \end{array}$

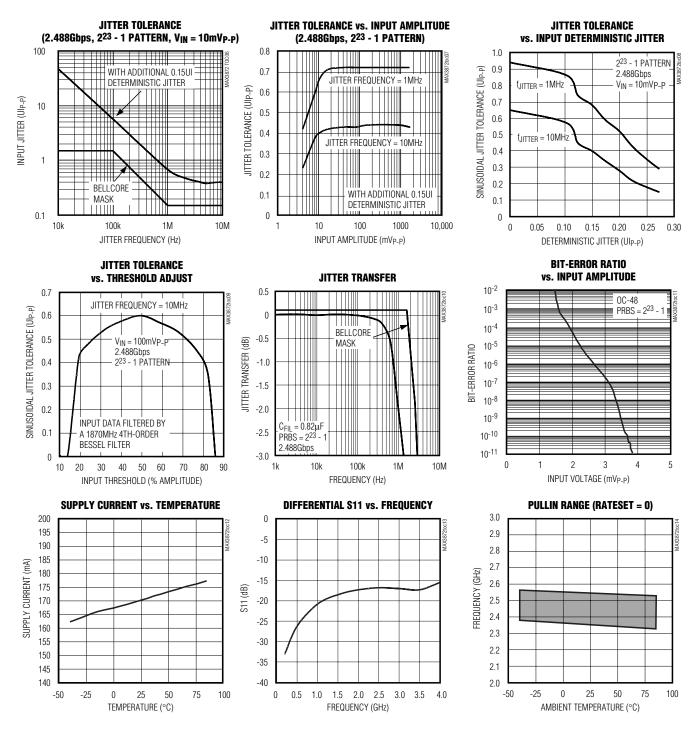
RECOVERED CLOCK AND DATA (2.67Gbps, 2²³ - 1 Pattern, V_{IN} = 10mV_{P-P})



RECOVERED CLOCK JITTER (2.488Gbps)


TOTAL WIDEBAND RMS JITTER = 1.60ps PEAK-TO-PEAK JITTER = 12.20ps

RECOVERED CLOCK JITTER (622.08Mbps)


TOTAL WIDEBAND RMS JITTER = 2.17ps PEAK-TO-PEAK JITTER = 15.80ps

JITTER GENERATION vs. POWER-SUPPLY WHITE NOISE

_Typical Operating Characteristics (continued)

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

	1	
PIN	NAME	FUNCTION
1, 4, 27	Vcc	+3.3V Supply Voltage
2	SDI+	Positive Serial Data Input, CML
3	SDI-	Negative Serial Data Input, CML
5	SLBI+	Positive System Loopback Input or Reference Clock Input, CML
6	SLBI-	Negative System Loopback Input or Reference Clock Input, CML
7	SIS	Signal Selection Input, LVTTL. Set low for normal operation, set high for system loopback.
8	LREF	Lock to Reference Clock Input, LVTTL. Set high for PLL lock to serial data, set low for PLL lock to reference clock.
9	LOL	Loss-of-Lock Output, LVTTL. Active low.
10, 11, 16, 25, 32	GND	Supply Ground
12	FIL	PLL Loop Filter Capacitor Input. Connect a 0.82µF capacitor between FIL and VCC_VCO.
13, 18	VCC_VCO	+3.3V Supply Voltage for the VCO
14	RS1	Multirate Select Input 1, LVTTL (Table 2)
15	RS2	Multirate Select Input 2, LVTTL (Table 2)
17	RATESET	VCO Frequency Select Input, LVTTL (Table 2)
19	SCLKO-	Negative Serial Clock Output, CML
20	SCLKO+	Positive Serial Clock Output, CML
21, 24	VCC_OUT	+3.3V Supply Voltage for the CML Outputs
22	SDO-	Negative Serial Data Output, CML
23	SDO+	Positive Serial Data Output, CML
26	FREFSET	Reference Clock Frequency Select Input, LVTTL (Tables 2 and 3)
28	CAZ+	Positive Capacitor Input for DC-Offset Cancellation Loop. Connect a 0.1µF capacitor between CAZ+ and CAZ
29	CAZ-	Negative Capacitor Input for DC-Offset Cancellation Loop. Connect a 0.1µF capacitor between CAZ+ and CAZ
30	V _{REF}	+2.2V Bandgap Reference Voltage Output. Optionally used for threshold adjustment.
31	VCTRL	Analog Control Input for Threshold Adjustment. Connect to V _{CC} to disable threshold adjust.
EP	Exposed Pad	Ground. The exposed pad must be soldered to the circuit board ground for proper thermal and electrical performance.

Detailed Description

The MAX3872 consists of a fully integrated phase-locked loop (PLL), limiting amplifier with threshold adjust, DC-offset cancellation loop, data retiming block, and CML output buffers (Figure 5). The PLL consists of a phase/frequency detector, a loop filter, and a voltage-controlled oscillator (VCO) with programmable dividers.

This device is designed to deliver the best combination of jitter performance and power dissipation by using a fully differential signal architecture and low-noise design techniques.

SDI Input Amplifier

The SDI inputs of the MAX3872 accept serial NRZ data with a differential input amplitude from 10mV_{P-P} up to1600mV_{P-P}. The input sensitivity is 10mV_{P-P}, at which the jitter tolerance is met for a BER of 10⁻¹⁰ with threshold adjust disabled. The input sensitivity can be as low as 4mV_{P-P} and still maintain a BER of 10⁻¹⁰. The MAX3872 inputs are designed to directly interface with a transimpedance amplifier such as the MAX3745.

For applications in which vertical threshold adjustment is needed, the MAX3872 can be connected to the output of an AGC amplifier such as the MAX3861. When using the threshold adjust, the input voltage range is 50mV_{P-P} to 600mV_{P-P}. See the *Design Procedure* section for decision threshold adjust.

SLBI Input Amplifier

The SLBI input amplifier accepts either NRZ loopback data or a reference clock signal. This amplifier can accept a differential input amplitude from 50mV_{P-P} to 800mV_{P-P}.

Phase Detector

The phase detector incorporated in the MAX3872 produces a voltage proportional to the phase difference between the incoming data and the internal clock. Because of its feedback nature, the PLL drives the error voltage to zero, aligning the recovered clock to the center of the incoming data eye for retiming.

Frequency Detector

The digital frequency detector (FD) acquires frequency lock without the use of an external reference clock. The frequency difference between the received data and the VCO clock is derived by sampling the in-phase and quadrature VCO outputs on both edges of the data input signal. Depending on the polarity of the frequency difference, the FD drives the VCO until the frequency difference is reduced to zero. Once frequency acquisition is complete, the FD returns to a neutral state. False locking is completely eliminated by this digital frequency detector.

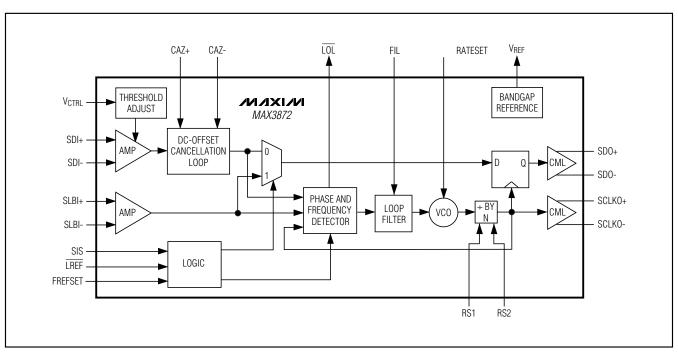


Figure 5. Functional Diagram

Loop Filter

The phase detector and frequency detector outputs are summed into the loop filter. An external capacitor (CFIL) connected from FIL to VCC_VCO is required to set the PLL damping ratio. Note that the PLL jitter bandwidth does not change as the external capacitor changes, but the jitter peaking, acquisition time, and loop stability are affected. See the *Design Procedure* section for quidelines on selecting this capacitor.

VCOs with Programmable Dividers

The loop filter output controls the two on-chip VCOs. The VCOs provide low phase noise and are trimmed to the frequency of 2.488GHz and 2.667GHz. The RATE-SET pin is used to select the appropriate VCO. The VCO output is connected to programmable dividers controlled by inputs RS1 and RS2. See Tables 2 and 3 for the proper settings.

LOL Monitor

The LOL output indicates a PLL lock failure, either because of excessive jitter present at the data input or because of loss of input data. The LOL output is asserted low when the PLL loses lock.

DC-Offset Cancellation Loop

A DC-offset cancellation loop is implemented to remove the DC offset of the limiting amplifier. To minimize the low-frequency pattern-dependent jitter associated with this DC-cancellation loop, the low-frequency cutoff is 10kHz (typ) with CAZ = $0.1\mu F$, connected from CAZ+ to CAZ-. The DC-offset cancellation loop operates only when threshold adjust is disabled.

_Design Procedure

Decision Threshold Adjust

In applications in which the noise density is not balanced between logical zeros and ones (i.e., optical amplification using EDFA amplifiers), lower bit-error ratios (BERs) can be achieved by adjusting the input threshold. Varying the voltage at VCTRL from +0.3V to +2.1V achieves a vertical decision threshold adjustment of +170mV to -170mV, respectively (Figure 2). Use the provided bandgap reference voltage output (VREF) with a voltage-divider circuit or the output of a DAC to set the voltage at VCTRL. VREF can be used to generate the voltage for VCTRL (Figure 10). If threshold adjust is not required, disable it by connecting VCTRL directly to VCC and leave VREF floating.

Modes of Operation

The MAX3872 has three operational modes controlled by the LREF and SIS inputs. The three operational modes are normal, system loopback, and clock holdover. Normal operation mode requires a serial data stream at the SDI± input, system loopback mode requires a serial data stream at the SLBI± input, and clock holdover mode requires a reference clock signal at the SLBI± inputs. See Table 1 for the required LREF and SIS settings. Once an operational mode is chosen, the remaining logic inputs (RATESET, RS1, RS2, and FREFSET) program the input data rate or reference clock frequency.

Normal and System Loopback Settings

Three pins (RS1, RS2, and RATESET) are available for setting the SDI± and SLBI± input to receive the appropriate data rate. The FREFSET pin can be set to a zero or 1 while in normal or system loopback mode (Table 2).

Clock Frequencies in Holdover Mode

Set the incoming reference clock frequency and outgoing serial clock frequency by setting RS1, RS2, RATESET, and FREFSET appropriately (Table 3).

Table 1. Operational Modes

MODE	LREF	SIS
Normal	1	0
System loopback	1	1
Clock holdover	0	1 or 0

Table 2. Data Rate Settings

INPUT DATA RATE (bps)	RS1	RS2	RATESET	FREFSET
2.667G	0	0	1	1 or 0
2.488G/2.5G	0	0	0	1 or 0
1.25G/1.244G	1	1	0	1 or 0
666.51M	0	1	1	1 or 0
622.08M	0	1	0	1 or 0
166.63M	1	0	1	1 or 0
155.52M	1	0	0	1 or 0

Table 3. Holdover Frequency Settings

REFERENCE CLOCK FREQUENCY (MHz)	SCLKO FREQUENCY	RS1	RS2	RATESET	FREFSET
666.51	2.667GHz	0	0	1	0
666.51	666.51MHz	0	1	1	0
666.51	166.63MHz	1	0	1	0
622.08/625	1.244/1.25GHz	1	1	0	0
622.08/625	2.488GHz/2.5GHz	0	0	0	0
622.08	622.08MHz	0	1	0	0
622.08	155.52MHz	1	0	0	0
166.63	2.67GHz	0	0	1	1
166.63	666.51MHz	0	1	1	1
166.63	166.63MHz	1	0	1	1
155.52/156.25	1.244/1.25GHz	1	1	0	1
155.52/156.25	2.488GHz/2.5GHz	0	0	0	1
155.52	622.08MHz	0	1	0	1
155.52	155.52MHz	1	0	0	1

Setting the Loop Filter

The MAX3872 is designed for regenerator and receiver applications. Its fully integrated PLL is a classic 2nd-order feedback system, with a jitter transfer bandwidth (JBW) below 2.0MHz. The external capacitor (CFIL) connected from FIL to VCC_VCO sets the PLL loop damping. Note that the PLL jitter transfer bandwidth does not change as CFIL changes, but the jitter peaking, acquisition time, and loop stability are affected. Figures 6 and 7 show the open-loop and closed-loop transfer functions.

The PLL zero frequency, f_Z , is a function of external capacitor C_{FlL} , and can be approximated according to:

$$f_Z = \frac{1}{2\pi (650\Omega)C_{FIL}}$$

For an overdamped system (f_Z / J_{BW} < 0.25), the jitter peaking (J_P) of a 2nd-order system can be approximated by:

$$J_{P} = 20 \log \left(1 + \frac{f_{Z}}{J_{BW}} \right)$$

where J_{BW} is the jitter transfer bandwidth for a given data rate.

The recommended value of $C_{FIL} = 0.82 \mu F$ is to guarantee a maximum jitter peaking of less than 0.1dB for all data rates. Decreasing C_{FIL} from the recommended value decreases acquisition time, with the tradeoff of increased peaking. For data rates greater than OC-3, C_{FIL} can be less than 0.82 μF and still meet the jitter-peaking specification.

Excessive reduction of CFIL might cause PLL instability. CFIL must be a low-TC, high-quality capacitor of type X7R or better.

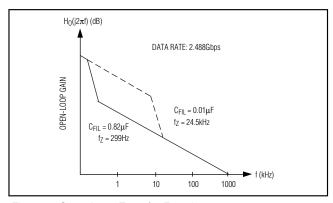


Figure 6. Open-Loop Transfer Function

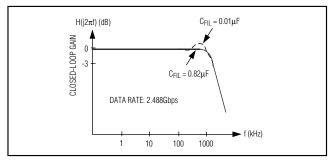


Figure 7. Closed-Loop Transfer Function

10 ______ /N/XI/M

Input Terminations

The SDI \pm and SLBI \pm inputs of the MAX3872 are current-mode logic (CML) compatible. The inputs all provide internal 50Ω termination to reduce the required number of external components. AC-coupling is recommended. See Figure 8 for the input structure. For additional information on logic interfacing, refer to Maxim Application Note HFAN 1.0: Introduction to LVDS. PECL. and CML.

Output Terminations

The MAX3872 uses CML for its high-speed digital outputs (SDO± and SCLKO±). The configuration of the output circuit includes internal 50Ω back terminations to VCC. See Figure 9 for the output structure. CML outputs can be terminated by 50Ω to VCC, or by 100Ω differential impedance. For additional information on logic interfacing, refer to Maxim Application Note HFAN 1.0: Introduction to LVDS, PECL, and CML.

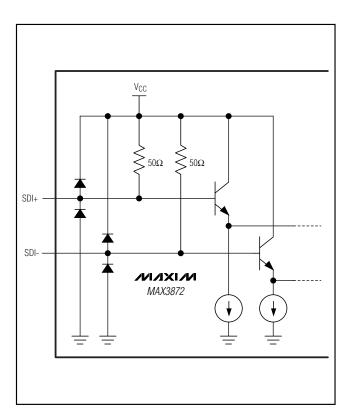


Figure 8. CML Input Model

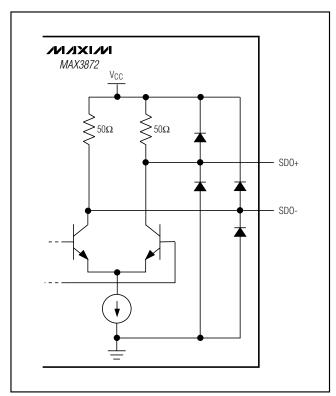


Figure 9. CML Output Model

_Applications Information

Clock Holdover Capability

Clock holdover is required in some applications in which a valid clock must be provided to the upstream device in the absence of data transitions. To provide this function, an external reference clock signal must be applied to the SLBI± inputs and the proper control signals set (see the *Modes of Operation* section). To enter holdover mode automatically when there are no transitions applied to the SDI± inputs, LOL or the system LOS can be directly connected to LREF.

System Loopback

The MAX3872 is designed to allow system loopback testing. When the device is set for system loopback mode, the serial output data of a transmitter may be directly connected to the SLBI inputs to run system diagnostics. See Table 1 for selecting system loopback operation mode. While in system loopback mode, LREF should not be connected to LOL.

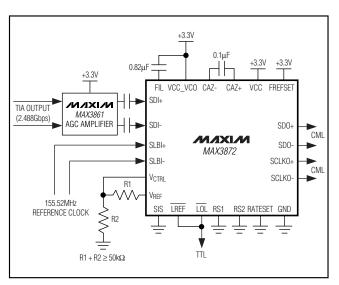
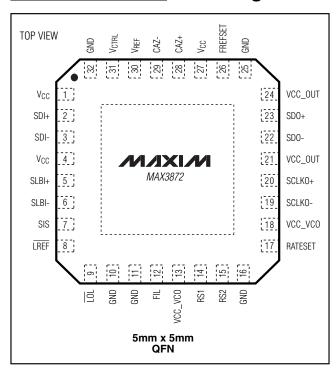


Figure 10. Interfacing with the MAX3861 AGC Using Threshold Adjust

Consecutive Identical Digits (CIDs)

The MAX3872 has a low phase and frequency drift in the absence of data transitions. As a result, long runs of consecutive zeros and ones can be tolerated while maintaining a BER better than 10⁻¹⁰. The CID tolerance is tested using a 2¹³ - 1 PRBS with long runs of ones and zeros inserted in the pattern. A CID tolerance of 2000 bits is typical.

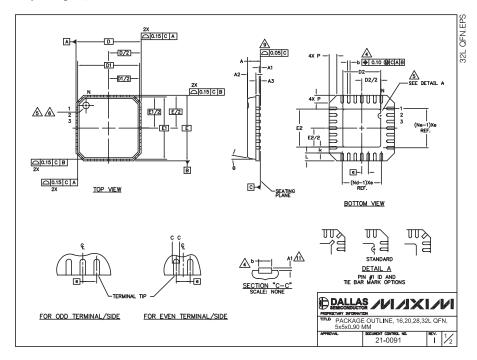

Exposed Pad (EP) Package

The EP 32-pin QFN incorporates features that provide a very-low thermal-resistance path for heat removal from the IC. The pad is electrical ground on the MAX3872 and should be soldered to the circuit board for proper thermal and electrical performance.

Layout Considerations

For best performance, use good high-frequency layout techniques. Filter voltage supplies, keep ground connections short, and use multiple vias where possible. Use controlled-impedance transmission lines to interface with the MAX3872 high-speed inputs and outputs. Power-supply decoupling should be placed as close to VCC as possible. To reduce feedthrough, isolate the input signals from the output signals. If a bare die is used, mount the back of die to ground (GND) potential.

Pin Configuration


Chip Information

TRANSISTOR COUNT: 5142 PROCESS: SiGe BiPOLAR

SUBSTRATE: SOI

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

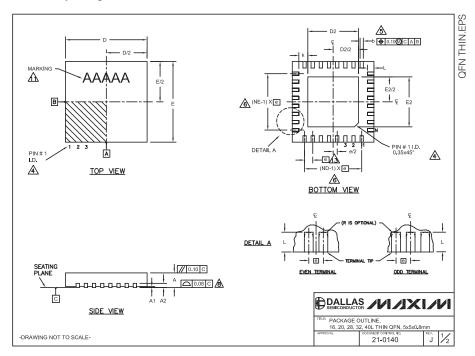
					COMM	ON DIME	NSIONS					
PKG		16L 5x5			20L 5x5			28L 5x5	i	32L 5x5		
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX
Α	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00
A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.0
A2	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00
A3		0.20 REF	-		0.20 REF	-		0.20 REF			0.20 REF	
ь	0.28	0.33	0.40	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.3
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10
D1		4.75 BS	C	4.75 BSC		4.75 BSC		4.75 BSC				
E	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10
E1		4.75 BS	С	4.75 BSC		4.75 BSC		4.75 BSC				
е		0.80 BS	С		0.65 BSC	;	0.50 BSC		0.50 BSC			
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
٦	0.35	0.55	0.75	0.35	0.55	0.75	0.35	0.55	0.75	0.30	0.40	0.5
N		16			20		28		32			
ND	4				5		7		8			
NE		4			5			7			8	
Р	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60
Θ	0.		12*	0.		12°	0.		12°	0.		12

SED	PAD	VAF	RIATI	ZUNS	
	DS			E2	
MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
2.95	3.10	3.25	2.95	3.10	3.25
2.55	2.70	2.85	2.55	2.70	2.85
2.95	3.10	3.25	2.95	3.10	3.25
2.55	2.70	2.85	2.55	2.70	2.85
2.95	3.10	3.25	2.95	3.10	3.25
2.95	3.10	3.25	2.95	3.10	3.25
	MIN. 2.95 2.55 2.95 2.95 2.55	D2 MIN. NOM. 2.95 3.10 2.55 2.70 2.95 3.10 2.55 2.70 2.95 3.10	D2 MIN. MAX.	D2 MIN. NDM. MAX. MIN. 2.95 3.10 3.25 2.95 2.55 2.70 2.85 2.95 2.95 3.10 3.25 2.95 2.55 2.70 2.85 2.55 2.95 3.10 3.25 2.95	D2 E E

- NOTES:
 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM)
 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994.
- N IS THE NUMBER OF TERMINALS. IN X-DIRECTION & No IS THE NUMBER OF TERMINALS IN Y-DIRECTION.

 MIST THE NUMBER OF TERMINALS IN X-DIRECTION & No IS THE NUMBER OF TERMINALS IN Y-DIRECTION.

 DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.
- ALTHE PIN \$1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/LASER MARKED.


 DETAILS OF PIN \$1 IDENTIFIER IS OPTIONAL, BUT MUST BE LOCATED WITHIN ZONE INDICATED.
- EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
- ALL DIMENSIONS ARE IN MILLIMETERS. PACKAGE WARPAGE MAX 0.05mm.
- APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING.
- MEETS JEDEC MOZZO; EXCEPT DIMENSION "b".

 APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.
- 12. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES).

DALLAS / VI / X I / VI									
TITLE	PACKAG 5x5x0.90	E OUTL I NE, 16,20,28,3 MM	2L QF	N,					
APPROV	AL.	21-0091	REV.	2/2					

Package Information (continued)

((The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages

			C	OMMC	ON DI	MENS	IONS										EX	POSE	D PAC	VARL	ATION	IS		
PKG.	16	6L 5x	5	20	DL 5x	5x5 28L 5x5			Т	32L 5x5			40L 5x5			PKG.	T	D2			E2			
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	MOV.	лах. М	N. N	OM. M	AX. I	MIN.	NOM.	MAX.	CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	70 0	.75 0.	.80 0).70	0.75	0.80	T1655-2	3.00	3.10	3.20	3.00	3.10	3.20		
A1	0	0.02	0.05	0	0.02	0.05	0 (0.02	0.05	0	.02 0	.05	0	0.02	0.05	T1655-3	3.00	3.10	3.20	3.00	3.10	3.20		
A2		20 RE			20 RE			0 REF			REF.			20 RE		T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20		
									0.30 0.							T2055-3	3.00	3,10	3,20	3.00	3.10	3,20		
D									5.10 4.							T2055-4	3.00	3,10	3,20	3,00	3,10	3,20		
E									5.10 4.							T2055-5	3.15	_	-	3.15		3,35		
e	-	80 BS		_	65 BS	_		50 BS		_	0 BSC			40 BS	iC.	T2855-3	3.15	3.25		3.15	3.25	3.35		
k L	0.25	0.40		0.25			0.25	0.55	0.3		40 0),25	0.40	0.50	T2855-4	2.60	2.70		2,60	2.70	2.80		
N	0.30	16	0.50	0.45	20	0.65	0.45	28	0.05 0.		32	.50 0	J.30	40	0.50	T2855-5	2.60	2.70		2.60	2.70	2.80		
ND	\vdash	4	\dashv		5	_		7	+		8	+		10	_	T2855-6	3.15	3.25	3,35	3.15	3.25	3.35		
NE		4	\neg		5			7	+		8	\dashv		10	-	T2855-7	2.60	2.70	2,80	2.60	2.70	2.80		
JEDEC	١	NHHE		V	VHHC	;	W	HHD-	1	WH	HD-2	\dashv				T2855-8	3.15	3.25	3,35	3.15	3.25	3.35		
															_	T2855N-1	3.15	3.25		3.15	3.25	3,35		
																T3255-3	3.00	3.10	3,20	3.00	3.10	3.20		
NOTES:																	3.00	3.10		3.00	3.10	3.20 3.20		
NOTES:	ENSIC	NING	& TO	LERAI	NCING	G COM	NFORM	и то /	ASME Y	14.5	M-199	4.				T3255-3 T3255-4 T3255-5	3.00	3.10 3.10	3.20 3.20	3.00 3.00	3.10 3.10	3.20 3.20		
																T3255-3 T3255-4 T3255-5 T3255N-1	3.00 3.00 3.00	3.10 3.10 3.10	3.20 3.20 3.20	3.00 3.00 3.00	3.10 3.10 3.10	3.20 3.20 3.20		
1. DIM	DIME	IOISM	IS AR	EINN	AILLIN	/ETER	RS. AN									T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1	3.00 3.00 3.00 3.40	3.10 3.10 3.10 3.50	3.20 3.20 3.20 3.60	3.00 3.00 3.00 3.40	3.10 3.10 3.10 3.50	3.20 3.20 3.20 3.60		
1. DIM 2. ALL 3. N IS	DIME	NSIOI IATOT	IS AR . NUN	E IN N	AILLIN OF TE	METER ERMIN	RS. AN IALS.	IGLES	ARE IN	I DE	GREE	s.	ION :	SHALL		T3255-3 T3255-4 T3255-5 T3255N-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS	THE TERM	NSION NATOTAL	IS AR . NUN #1 ID	E IN N IBER : ENTIF	OF TE	METER ERMIN	RS. AN IALS. ERMIN	IGLES	ARE IN	I DE	GREE:	S. ENTI			-	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS A THE CON OPT	THE TERM	NSION TOTAL WINAL WITO . L, BU	S AR NUM #1 ID JESD MUS	E IN N IBER : ENTIF 95-1 S IT BE I	MILLIN OF TE FIER A SPP-0 LOCA	METER ERMIN AND T 12. D	RS. AN IALS. ERMIN ETAIL: WITHIN	NAL NI S OF T	JMBER TERMIN ZONE	ING IAL#	GREE: CONV 11 IDEI CATEI	S. ENTI	IER A	ARE		T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS CON OPT IDE	DIME THE TERM FORM JONAL NTIFIE	NSION TOTAL MINAL M TO . L, BUT	S AR NUN #1 ID JESD MUS Y BE	E IN N IBER (ENTIF 95-1 S IT BE (EITHE	OF TE FIER A SPP-0 LOCA FRAN	METER RMIN AND T 12. D TED V MOLD	RS. AN IALS. ERMIN ETAIL: WITHIN OR M	IGLES NAL NI S OF T N THE ARKEI	ARE IN JMBER FERMIN ZONE D FEAT	ING IAL # INDIO URE	GREE: CONV 11 IDEI CATEI	S. ENTI NTIFI D. TH	IER A	RE RMIN	AL #1	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS A THE COP OPT IDEI	DIME THE TERM NFORM TONAL NTIFIE	NSION TOTAL WINAL WITO . L, BUT ER MA	IS AR . NUM #1 ID IESD MUS Y BE .PPLIE	E IN N IBER I ENTIF 95-1 S IT BE I EITHE	OF TE FIER A SPP-0 LOCA FRAM META	METER ERMIN AND T 12. D TED V MOLD	RS. AN IALS. ERMIN ETAIL: WITHIN OR M	IGLES NAL NI S OF T N THE ARKEI	ARE IN JMBER FERMIN ZONE D FEAT	ING IAL # INDIO URE	GREE: CONV 11 IDEI CATEI	S. ENTI NTIFI D. TH	IER A	RE RMIN	AL #1	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS A THE COP OPT IDEI	DIME THE TERM FORM TONAL NTIFIE ENSIG	NSION TOTAL MINAL M TO . L, BU [*] ER MA ON b A AND 0	S AR NUM #1 ID JESD MUS Y BE PPLIE 30 mr	E IN M BER I ENTIF 95-1 S IT BE I EITHE ES TO IN FRO	MILLIN OF TE FIER A SPP-0 LOCA R A N META DM TE	METER ERMIN AND T 12. D TED V MOLD ALLIZI	RS. AN IALS. ERMIN ETAIL: WITHIN OR M. ED TE AL TIP	NAL NI S OF T N THE ARKEI RMIN/	JMBER FERMIN ZONE D FEAT AL AND	ING IAL # INDIO URE IS M	CONV 11 IDEI CATEI	S. ENTI NTIFI D. TH	IER A	ARE RMIN WEEN	AL #1	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS A THE COPT IDE DIM 0.25	DIME THE TERM NFORM NONA NTIFIE ENSIGN OF ME AND N	NSION TOTAL MINAL MITO. L, BUT ER MA DN b A AND 0	NUM #1 ID JESD MUS Y BE PPLIE 30 mi	E IN M IBER I ENTIF 95-1 S IT BE I EITHE ES TO IN FRO	OF TE TER A SPP-0 LOCA R A N META DM TE	METER ERMIN AND T 12. D TED V MOLD ALLIZI RMIN MBER	RS. AN IALS. ERMIN ETAIL: WITHIN OR MA ED TE AL TIP OF TE	IGLES NAL NI S OF T N THE ARKEI RMIN T ERMIN	ARE IN JMBER FERMIN ZONE D FEAT AL AND ALS ON	ING IAL # INDIO URE IS M	CONV 11 IDEI CATEI	S. ENTI NTIFI D. TH	IER A	ARE RMIN WEEN	AL #1	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS A THE CON OPT IDE DIM 0.25	DIME THE TERM NFORM TONAL NTIFIE ENSIGNM AND N POPUL	NSION TOTAL MINAL MITO. L, BUT ER MA ON 6 A AND 0 IE RE ATIO	#1 ID #1 ID JESD MUS Y BE PPLIE 30 mi FER T	E IN M IBER I ENTIF 95-1 S IT BE I EITHE ES TO IN FRO O THE OSSIE	OF TE FIER A SPP-0 LOCA IR A N MET/ OM TE E NUN	METER ERMIN AND T 12. D TED V MOLD ALLIZI ERMIN MBER N A SY	RS. AN IALS. ERMIN ETAIL: WITHIN OR MA ED TE AL TIP OF TE	IGLES NAL NI S OF T N THE ARKEI RMIN P. ERMIN	JMBER FERMIN ZONE D FEAT AL AND ALS OF	ING IAL # INDIC URE IS M	CONV 1 IDEI CATEI IEASU	S. 'ENTINTIFIO. TH	BET E SII	ARE ERMIN WEEN DE RE	AL #1	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS 4. THE COP OPT IDE 6. DIM 0.26 A. ND 7. DEF 6. COP 9. DRA	DIME THE TERM NFORM TONAL NTIFIE ENSIGN MM A AND N POPUL PLANA	NSION TOTAL MINAL MITO. L, BUT ER MA ON 6 A AND 0 IE RE ATION ARITY CON	#1 ID #1 ID JESD MUS Y BE PPLIE 30 mr FER T N IS P APPL	EIN M BER 1 95-1 S T BE 1 EITHE S TO n FRO O THE OSSIE IES TO	OF TE SPP-0 LOCA R A M MET/ DM TE E NUM BLE IN	METER ERMIN AND T 12. D TED V MOLD ALLIZI ERMIN MBER N A SY	RS. AN IALS. ERMIN ETAIL: WITHIN OR M. ED TE AL TIP OF TE 'MMET	IGLES NAL NI S OF T N THE ARKEI RMIN CERMIN TRICA HEAT	JMBER FERMIN ZONE D FEAT AL AND ALS OF L FASH	ING IAL # INDIC URE IS M I EAC IION.	CONV 11 IDEI CATEL IEASU CH D /	S. YENTI NTIFI D. TH JIRED AND YELL	BET E SII	ARE ERMIN WEEN DE RE	AL#1 N SPECTI ERMINA	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60		
1. DIM 2. ALL 3. N IS 4. THE COP OPT IDE 6. DIM 0.26 A. ND 7. DEF 6. COP 9. DRA	DIME THE TERM NFORM NFORM NTIFIE ENSIGN NM A AND N POPUL PLANA STANA STA	NSION TOTAL MINAL MITO. L, BUT ER MA ND 0 NE RE LATION WRITY CON ND T	#1 ID #1 ID JESD MUS Y BE PPLIE 30 mi FER T N IS P APPL FORM	E IN M IBER I P5-1 S IT BE I EITHE S TO IN FRO O THE OSSIE IES TO IS TO	MILLIN OF TE FIER # SPP-0 LOCA IR A N MET	METER ERMIN AND T 12. DI ATED V MOLD ALLIZI RMIN MBER N A SY E EXP	RS. AN IALS. ERMIN ETAIL: WITHIN OR M. ED TE AL TIP OF TE 'MMET OSED 1220, E	IGLES NAL NI S OF T N THE ARKEI RMIN CERMIN TRICA HEAT	JMBER FERMIN ZONE D FEAT AL AND ALS OF L FASH	ING IAL # INDIC URE IS M I EAC IION.	CONV 11 IDEI CATEL IEASU CH D /	S. YENTI NTIFI D. TH JIRED AND YELL	BET E SII	ARE ERMIN WEEN DE RE	AL#1 N SPECTI ERMINA	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60 OMMOI	3.00 3.00 3.40 3.40 DIMEN	3.10 3.10 3.50 3.50 3.50	3.20 3.20 3.20 3.60 3.60 TABLE		
1. DIM 2. ALL 3. N IS 4. THE COP OPT IDE 6. DIM 0.25 6. ND 7. DEF 6. COP 9. DR/ T28	DIME THE THE TONAL NTIFIE ENSIGN AND N POPUL PLANA AWING 55-3 A RPAGE	NSION TOTAL MINAL MITO. L, BUT ER MA ON b A AND 0 IE RE ATION ARITY E CON IND TO	#1 ID #1 ID #1 ID #1 ID F MUS Y BE PPLIE 30 mr FER T N IS P APPL FORM 2855-6	E IN M IBER (95-1 S IT BE I EITHE ES TO IN FRO O THE OSSIE IES TO IS TO IS TO	MILLIN OF TE FIER / SPP-0 LOCA IR A N MET/ DM TE E NUM BLE IN D THE JEDE	METER ERMIN AND T 12. D TED V MOLD ALLIZI ERMIN MBER N A SY E EXP	RS. AN IALS. ERMIN ETAIL: WITHIN OR M. ED TE AL TIP OF TE 'MMET OSED 1220, E	IGLES NAL NI S OF 1 N THE ARKEI RMIN CERMIN TRICA HEAT EXCEF	JMBER FERMIN ZONE D FEAT AL AND ALS ON L FASH SINK S	ING ING INDICATE INDICATE INDICATE IN MINOR INDICATE IN MINOR INDICATE IN INDI	CONV 1 IDEI CATEI IEASU CH D /	S. YENTI NTIFI D. TH JIRED AND YELL	BET E SII	ARE ERMIN WEEN DE RE	AL#1 N SPECTI ERMINA	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60 OMMOI	3.00 3.00 3.40 3.40 DIMEN	3.10 3.10 3.50 3.50 3.50	3.20 3.20 3.20 3.60 3.60 TABLE	ı×.	
1. DIM 2. ALL 3. N IS COP OPT IDE DIM 0.25 A ND 7. DEF COP 9. DR/ T28 WAF	DIME THE THE TONAL NTIFIE ENSIGNM AND N POPUL PLANA WING 55-3 A RPAGE RKING	NSION TOTAL MINAL MITO. L, BUT ER MA ON b A AND 0 IE RE LATION RITY E CON ND TO SION ND SION ND TO SION ND SION ND SION ND SION ND SION SION ND SION ND SION SION SION SION SION SION SION SION	JS AR JESD JESD JESD JESD JESD JESD JESD JESD	E IN M IBER I ENTIF 95-1 S IT BE I EITHE ES TO IN FRO OSSIE IES TO IS TO	MILLIM OF TE FIER A SPP-0 LOCA R A MET M MET M MET M M T M M M M M M M M M	METER ERMIN AND T 12. D TED V MOLD ALLIZI ERMIN MBER N A SY E EXP	RS. AN IALS. ERMIN ETAIL: WITHIN OR MA ED TE AL TIP OF TE 'MMET OSED 1220, E mm. TION	NAL NI S OF T N THE ARKEI RMIN/P. ERMIN TRICA HEAT EXCEF	JMBER FERMIN ZONE D FEAT AL AND ALS ON L FASH SINK S PT EXPO	I DEC ING IAL # INDIG URE IS M I EAG ION.	CONV 1 IDEI CATEI IEASU CH D /	S. YENTI NTIFI D. TH JIRED AND YELL	BET E SII	ARE ERMIN WEEN DE RE	AL#1 N SPECTI ERMINA	T3255-3 T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60 OMMOI	3.00 3.00 3.40 3.40 DIMEN	3.10 3.10 3.10 3.50 3.50 3.50 SIONS	3.20 3.20 3.20 3.60 3.60 TABLE	JX.	

MAX3872

Multirate Clock and Data Recovery with Limiting Amplifier

Revision History

_		
$P \cap V \cap \cdot$	1/02.	Initial data sheet release.
TIEV U.	1/03.	Illiliai uala sileel lelease.

Rev 1; 5/03: Updated Ordering Information table (page 1).

Updated package drawing (page 13).

Rev 2; 1/05: Added lead-free package to Ordering Information table (page 1).

Rev 3; 2/07: Updated Typical Application Circuit figure (page 1).

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

 $\underline{\mathsf{MAX3872ETJ+}} \ \ \underline{\mathsf{MAX3872ETJ+T}} \ \ \underline{\mathsf{MAX3872AETJ+}} \ \ \underline{\mathsf{MAX3872AETJ+}}$