MOS FET Relays

New MOS FET Relay Designed for Switching Minute and Analog Signals, SOP Package.

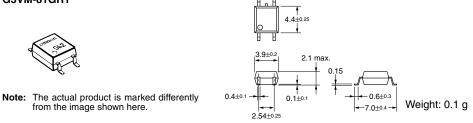
- New model for 80-V loads.
- Low $C \times R$ of 32.5 pF• Ω .
- Dielectric strength of 1,500 Vrms between I/O.
- RoHS compliant

Application Examples

- Broadband systems
- Measurement devices and Data loggers
- Amusement machines

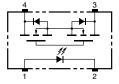
List of Models

0.01Ron	Omron
0.04.2	542
13/3	-3/

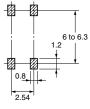

Note: The actual product is marked differently from the image shown here.

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO		80 VAC	G3VM-81GR1	100	
	terminals		G3VM-81GR1(TR)		2,500

Dimensions


Note: All units are in millimeters unless otherwise indicated.

G3VM-81GR1

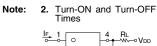

Terminal Arrangement/Internal Connections (Top View)

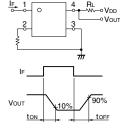
G3VM-81GR1

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-81GR1

OMRON


■ Absolute Maximum Ratings (Ta = 25°C)


Item		Item Symbol Rating		Unit	Measurement Conditions	1
Input	LED forward current	I _F	50	mA		No
	Repetitive peak LED forward current	I _{FP}	1	A		
	LED forward current reduction rate	∆ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V _R	5	V		
	Connection temperature	T _j	125	°C		
Output	Load voltage (AC peak/DC)	V _{OFF}	80	V		
	Continuous load current	I _o	200	mA		
	ON current reduction rate	$\Delta I_0 / °C$	-2.0	mA/°C	$T_a \ge 25^{\circ}C$	1
	Connection temperature	T _j	125	°C		
	ric strength between input and (See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min	
Ambien	t operating temperature	T _a	-20 to +85	°C	With no icing or condensation	1
Storage	e temperature	T _{stg}	-40 to +125	°C	With no icing or condensation	1
Solderin	ng temperature		260	°C	10 s	1

The dielectric strength between the input and output was checked by applying voltage be-tween all pins as a group on the LED side and all pins as a group on the light-receiving side.

Electrical Characteristics (Ta = 25°C)

	Item	Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μA	V _R = 5 V
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}			3	mA	l _o = 200 mA
Output	Maximum resistance with output ON	R _{ON}		5	8	Ω	I _F = 5 mA, I _O = 200 mA
	Current leakage when the relay is open	I _{LEAK}		0.5	1	nA	V_{OFF} = 80 V, T_a = 50°C
	Capacity between terminals	C _{OFF}		6.5	11	pF	V = 0, f = 100 MHz, t < 10 s
Capacit	y between I/O terminals	C _{I-O}		0.7		pF	f = 1 MHz, V _s = 0 V
Insulati	on resistance between I/O terminals	R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{\text{I-O}} = 500 \text{ VDC}, \\ R_{\text{oH}} \leq 60\% \end{array}$
Turn-Ol	Turn-ON time			0.13	0.5	ms	$I_{\rm F} = 5 \text{ mA}, R_{\rm L} = 200 \Omega,$
Turn-Ol	Turn-OFF time			0.17	0.5	ms	$V_{DD} = 10 V$ (See note 2.)

Recommended Operating Conditions

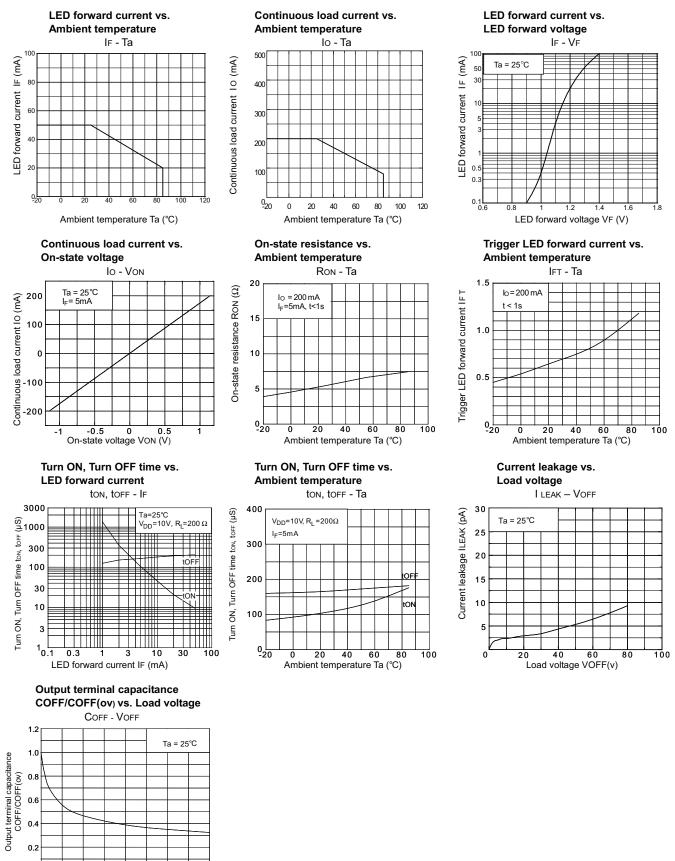
Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			64	V
Operating LED forward current	I _F	5		30	mA
Continuous load current (AC peak/DC)	I _o			200	mA
Operating temperature	T _a	25		60	°C

OMRON

Engineering Data

00^L


10

20

Load voltage VOFF(V)

30

40

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

55 E. Commerce Drive, Suite B Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

847-882-2288

Cat. No. X302-E-1

12/10

Specifications subject to change without notice

Printed in USA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron: G3VM-81GR1 G3VM-81GR1(TR)