Fair-Rite Products Corp.

Your Signal Solution®

Multi- Aperture cores (2861000202)

Part Number: 2861000202

67 MULTI- APERTURE CORE

Explanation of Part Numbers: – Digits 1 & 2 = Product Class – Digits 3 & 4 = Material Grade

-Last digit 2 = Burnished

Multi- aperture cores are used in suppression applications and in balun (balance- unbalance) and other broadband transformers. They are also employed in airbag designs to prevent accidental activation.

All multi- aperture cores are supplied burnished.

Our "Multi- Aperture Core Kit" (part number 0199000036) is available for prototype evaluation.

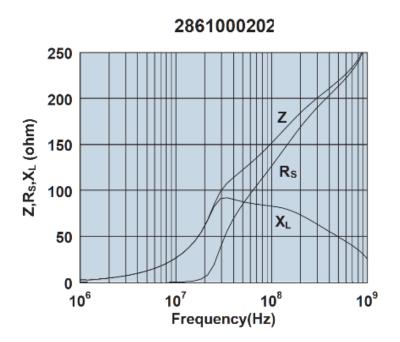
For any multi- aperture requirement not listed here, feel free to contact our customer service group for availability and pricing.

Catalog Drawing 3D Model

Weight: 3.7 (g)

mm	mm tol	nominal inch	inch misc.		
13.3	±0.60	0.525		0	
14.35	±0.50	0.565		TOT	E 77777
7.5	±0.35	0.295			1 0000
5.7	±0.25	0.225			
Н 3.8	±0.25	0.15			B
	13.3 14.35 7.5 5.7	$\begin{array}{rrrr} 13.3 & \pm 0.60 \\ 14.35 & \pm 0.50 \\ 7.5 & \pm 0.35 \\ 5.7 & \pm 0.25 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.3 ±0.60 0.525

Figure 1


Chart Legend + Test frequency

Typical In	mpedance	(Ω)
100 MHz		150
250 MHz	+	190
Electrical	Propertie	s
A _L (nH)	320 Min	

Multi- aperture cores in 73 and 43 materials are controlled for impedance only. The 61 NiZn material is controlled for both impedance and A_L value. The high frequency 67 material is controlled for A_L value. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%.

Multi- aperture cores in 73 and 43 material are measured for impedance on the 4193A Vector Impedance Analyzer. The 61 and 67 multi- aperture cores are tested on the 4291A Impedance Analyzer. All impedance measurements are performed with a single turn to both holes, using the shortest practical wire length.

The 61 and 67 material multi- hole beads are tested for A_L value. The test frequency is 10 kHz at < 10 gauss. The test winding is five turns wound through both holes.

Impedance, reactance, and resistance vs. frequency.

	Fair- Rite Products Corp.	One Commercial Row, Wallkill, New York 12589-0288
888-324-7748	• 845-895-2055 •	Fax: 845-895-2629 • ferrites@fair- rite.com • www.fair- rite.com