3.3 VOLT CMOS SyncFIFO ${ }^{\text {тм }}$
$256 \times 9,512 \times 9$,
1,024 x 9, 2,048 x 9,
4,096 x 9 and 8,192 x 9

IDT72V201, IDT72V211
IDT72V221, IDT72V231
IDT72V241, IDT72V251

LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

FEATURES:

- 256 x 9-bit organization IDT72V201
- 512×9-bit organization IDT72V211
- $1,024 \times 9$-bit organization IDT72V221
- $2,048 \times 9$-bit organization IDT72V231
- $4,096 \times 9$-bit organization IDT72V241
- 8,192 x 9-bit organization IDT72V251
- 10 ns read/write cycle time
- 5 V input tolerant
- Read and Write clocks can be independent
- Dual-Ported zero fall-through time architecture
- Empty and Full Flags signal FIFO status
- Programmable Almost-Empty and Almost-Full flags can be set to any depth
- Programmable Almost-Empty and Almost-Full flags default to Empty+7, and Full-7, respectively
- Output Enable puts output data bus in high-impedance state
- Advanced submicron CMOS technology
- Available in 32-pin plastic leaded chip carrier (PLCC) and 32-pin plastic Thin Quad FlatPack (TQFP)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

DESCRIPTION:

TheIDT72V201/72V211/72V221/72V231/72V241/72V251 SyncFIFOs ${ }^{\text {TM }}$
are very high-speed, low-power First-In, First-Out (FIFO) memories with clocked read and write controls. The architecture, functional operationand pin assignments are identical to those of the IDT72201/72211/72221/72231/ 72241/72251, butoperate at a power supply voltage(Vcc) between3.0V and 3.6V. These devices have a 256, 512, 1,024, 2,048, 4,096 and 8,192 x 9bitmemory array, respectively. These FIFOs are applicable for a wide variety ofdatabufferingneedssuchasgraphics, localareanetworks andinterprocessor communication.

These FIFOs have 9-bit input and output ports. The input port is controlled by a free-running clock (WCLK), and two Write Enable pins ($\overline{\mathrm{WE}} \overline{\mathrm{N}} 1$, WEN2). Data is written into the Synchronous FIFO on every rising clock edge when the Write Enable pins are asserted. The output port is controlled by another clock pin (RCLK) and two Read Enable pins ($\overline{R E N} 1, \overline{R E N} 2$). The Read Clock can be tied to the Write Clock for single clock operation or the two clocks can run asynchronous of one another for dual-clock operation. An Output Enable pin ($\overline{\mathrm{OE}})$ is provided on the read port for three-state control of the output.

The Synchronous FIFOs have two fixed flags, Empty ($\overline{\mathrm{EF}})$ and Full ($\overline{\mathrm{FF}}$). Two programmable flags, Almost-Empty ($\overline{\mathrm{PAE}})$ and Almost-Full (PAF), are provided for improved system control. The programmable flags default to Empty +7 and Full-7 for $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$, respectively. The programmable flag offsetloading is controlled by asimple state machine and is initiated byasserting the Load pin ($\overline{\mathrm{LD}}$).

These FIFOs are fabricated using high-speed submicron CMOS technology.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTIONS

Symbol	Name	1/0	Description
Do-D8	Datalnputs	1	Data inputs for a9-bit bus.
$\overline{\mathrm{R} S}$	Reset	I	When $\overline{\mathrm{KS}}$ is set LOW, internal read and write pointers are set to the firstlocation of the RAM array, $\overline{F F}$ and $\overline{\text { AFF }}$ go HIGH, and $\overline{\text { PAE }}$ and $\overline{\mathrm{EF}}$ go LOW. A Reset is required before an initial Write after power-up.
WCLK	WriteClock	1	Data is written into the FIFO on a LOW-to-HIGH transition of WCLK when the Write Enable(s) are asserted.
$\overline{\text { WEN1 }}$	Write Enable 1	1	If the FIFO is configured to have programmable flags, $\overline{\text { WEN1 }}$ is the only Write Enable pin. When WEN1 is LOW, data is written into the FIFO on every LOW-to-HIGH transition WCLK. If the FIFO is configured to have two write enables, $\overline{\text { WEN1 }}$ mustbe LOW and WEN2 must be HIGH to write data into the FIFO. Data will not be written into the FIFO if the FF is LOW.
WEN2/LD	Write Enable 2/ Load	1	The FIFO is configured at Reset to have either two write enables or programmable flags. If WEN2/LD is HIGH at Reset, this pin operates as a second write enable. IfWEN2/LD is LOW at Reset, this pin operates as a control to load and read the programmable flag offsets. If the FIFO is configured to have two write enables, $\overline{\text { WEN1 }}$ must be LOW and WEN2 mustbe HIGH to write data into the FIFO. Data will not be written into the FIFO if the $\overline{F F}$ is LOW. If the FIFO is configured to have programmable flags, WEN2/LD is held LOW to write or read the programmable flag offsets.
Q0-Q8	DataOutputs	0	Data outputs for a 9-bit bus.
RCLK	Read Clock	1	Data is read from the FIFO on a LOW-to-HIGH transition of RCLK when $\overline{\text { REN1 }}$ and $\overline{\text { EEN2 }}$ are asserted.
$\overline{\text { REN1 }}$	Read Enable 1	1	When $\overline{\text { EEN1 }}$ and $\overline{\text { REN2 }}$ are LOW, data is read from the FIFO on every LOW-to-HIGH transition of RCLK. Data will not be read from the FIFO if the $\overline{\mathrm{F}}$ is LOW.
$\overline{\text { REN2 }}$	Read Enable 2	I	When $\overline{\text { REN } 11 ~ a n d ~} \overline{\text { REN2 }}$ are LOW, data is read from the FIFO on every LOW-to-HIGH transition of RCLK. Data will not be read from the FIFO if the EF is LOW.
$\overline{\mathrm{O}} \mathrm{E}$	OutputEnable	I	When $\overline{\text { EE }}$ is LOW, the data output bus is active. If $\overline{\mathrm{EE}}$ is HIGH , the output data bus will be in a high-impedance state.
$\overline{\text { EF }}$	Empty Flag	0	When EF is LOW, the FIFO is empty and further data reads from the output are inhibited. When EF is HIGH, the FIFO is not empty. EF is synchronized to RCLK.
$\overline{\text { PA }} \overline{\mathrm{E}}$	Programmable Almost-Empty Flag	0	When $\overline{\text { PAE }}$ is LOW, the FIFO is almost-empty based on the offset programmed into the FIFO. The default offset at reset is Empty+7. PAE is synchronized to RCLK.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	0	When PAF is LOW, the FIFO is almost-full based on the offset programmed into the FIFO. The default offset at resetis Full-7. $\overline{\text { PAF }}$ is synchronized to WCLK.
$\overline{\text { FF }}$	Full Flag	0	When $\overline{F F}$ is $L O W$, the FIFO is full and further data writes into the input are inhibited. When $\overline{F F}$ is HIGH, the FIFO is notfull. \bar{F} is synchronized to WCLK.
Vcc	Power		One 3.3 V volt power supply pin.
GND	Ground		One 0 volt ground pin.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Rating	Com'l \& Ind'I	Unit
VTERM $^{(2)}$	TerminalVoltagewith Respectto GND	-0.5 to +5	V
Tstg	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
Iout	DC Output Current	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VCC terminal only.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage Commercial/Industrial	3.0	3.3	3.6	V
GND	Supply Voltage	0	0	0	V
VIH	InputHighVoltage Commercial/Industrial	2.0	-	5.5	V
VIL	InputLowVoltage Commercia/Industrial	-0.5	-	0.8	V
TA_{A}	Operating Temperature Commercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA_{A}	Operating Temperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

		IDT72V201 IDT72V211 IDT72V221 IDT72V231 IDT72V241 IDT72V251 Commercial and Industrial ${ }^{(1)}$ tcLK $=10,15,20 \mathrm{~ns}$			
Symbol	Parameter	Min.	Typ.	Max.	Unit
ILI ${ }^{(2)}$	InputLeakage Current(Any Input)	-1	-	1	$\mu \mathrm{A}$
ILO ${ }^{(3)}$	OutputLeakage Current	-10	-	10	$\mu \mathrm{A}$
Vor	Output Logic "1" Voltage, IOH = -2mA	2.4	-	-	V
Vol	Output Logic "0" Voltage, IoL $=8 \mathrm{~mA}$	-	-	0.4	V
IcC1 ${ }^{(4,5,6)}$	Active Power Supply Current	-	-	20	mA
Icc2 ${ }^{(4,7)}$	Standby Current	-	-	5	mA

NOTES:

1. Industrial temperature range product for the 15 ns speed grade is available as a standard device. All other speed grades are available by special order.
2. Measurements with $0.4 \leq \mathrm{VIN} \leq$ VCC.
3. $\overline{\mathrm{OE}} \geq \mathrm{V} \mathrm{IH}, 0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
4. Tested with outputs disabled (lout $=0$).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
6. Typical $\operatorname{ICC1}=0.17+0.48 * f s+0.02^{*} C L^{*} f s$ (in mA) with $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, fs $=\mathrm{WCLK}$ frequency $=$ RCLK frequency (in MHz, using TTL levels), data switching at fs/2, $\mathrm{Cl}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{GND}+0.2 \mathrm{~V}$, except RCLK and WCLK, which toggle at 20 MHz .

CAPACITANCE $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Conditions	Max.	Unit
$\mathrm{ClN}^{(2)}$	InputCapacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	10	pF
Cout $^{(1,2)}$	OutputCapacitance	Vout $^{(2)} 0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected $\left(\overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}\right)$.
2. Characterized values, not currently tested.

ACELECTRICALCHARACTERISTICS ${ }^{(1)}$

(Commercial: $\mathrm{VCC}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial		Com'l \& Ind' ${ }^{(2)}$		Commercial		
		IDT72V201L10 IDT72V211L10 IDT72V221L10 IDT72V231L10 IDT72V241L10 IDT72V251L10		IDT72V201L15 IDT72V211L15 IDT72V221L15 IDT72V231L15 IDT72V241L15 IDT72V251L15		IDT72V201L20 IDT72V211L20 IDT72V221L20 IDT72V231L20 IDT72V241L20 IDT72V251L20		
		Min.	Max.	Min.	Max.	Min.	Max.	Unit
fs	Clock Cycle Frequency	-	100	-	66.7	-	50	MHz
tA	DataAccess Time	2	6.5	2	10	2	12	ns
tcLk	Clock Cycle Time	10	-	15	-	20	-	ns
tcLkh	Clock High Time	4.5	-	6	-	8	-	ns
tcıkı	Clock Low Time	4.5	-	6	-	8	-	ns
tbs	DataSetup Time	3	-	4	-	5	-	ns
tDH	Data Hold Time	0.5	-	1	-	1	-	ns
tens	Enable Setup Time	3	-	4	-	5	-	ns
tenh	Enable Hold Time	0.5	-	1	-	1	-	ns
tRS	ResetPulse Width ${ }^{(1)}$	10	-	15	-	20	-	ns
tRSS	ResetSetup Time	8	-	10	-	12	-	ns
trsR	Reset Recovery Time	8	-	10	-	12	-	ns
tesF	Resetto Flag and Output Time	-	10	-	15	-	20	ns
tolz	OutputEnable to Outputin Low-Z ${ }^{(3)}$	0	-	0	-	0	-	ns
toe	OutputEnable to OutputValid	3	-	3	8	3	10	ns
tohz	OutputEnable to Outputin High-Z ${ }^{(3)}$	3	-	3	8	3	10	ns
twFF	Write Clock to Full Flag	-	6.5	-	10	-	12	ns
tref	Read Clock to Empty Flag	-	6.5	-	10	-	12	ns
taf	Write Clock to Almost-Full Flag	-	6.5	-	10	-	12	ns
taE	Read Clock to Almost-Empty Flag	-	6.5	-	10	-	12	ns
tskew1	Skew time between Read Clock \& Write Clock for Empty Flag \&Full Flag	5	-	6	-	8	-	ns
tskew2	Skew time between Read Clock \& Write Clock for Almost-Empty Flag \& Almost-Full Flag	14	-	18	-	20	-	ns

NOTES:

1. Pulse widths less than minimum values are not allowed.
2. Industrial temperature range is available by special order for speed grades faster than 15 ns .
3. Values guaranteed by design, not currently tested.

AC TEST CONDITIONS

In Pulse Levels	GND to 3.0V
InputRise/Fall Times	3 ns
InputTiming ReferenceLevels	1.5 V
OutputReferenceLevels	1.5 V
OutputLoad	See Figure 1

Figure 1. Output Load
*Includes jig and scope capacitances.

SIGNAL DESCRIPTIONS

INPUTS:

DATA IN (D0 - D8)

Datainputs for 9-bitwide data.

CONTROLS:

RESET (RS)

Resetisaccomplished wheneverthe Reset $(\overline{\mathrm{RS}})$ inputistakentoaLOW state. During reset, both internal read and write pointers are set to the first location. A reset is required after power-up before a write operation can take place. The Full Flag ($\overline{\mathrm{FF}}$) and Programmable Almost-Full Flag ($\overline{\text { PAF }}$) will be resetto HIGH aftertrsf. The Empty Flag (EF) and Programmable Almost-Empty Flag (PAE) will be reset to LOW after tRSF. During reset, the output register is initialized to all zeros and the offset registers are initialized to their default values.

WRITE CLOCK (WCLK)

A write cycle is initiated on the LOW-to-HIGH transition of the Write Clock (WCLK). Datasetup and holdtimes mustbe metinrespecttothe LOW-to-HIGH transition of the Write Clock (WCLK). The Full Flag (FF) and Programmable Almost-Full Flag (PAF) are synchronized with respect to the LOW-to-HIGH transition of the Write Clock (WCLK).

The Write and Read clocks can be asynchronous or coincident.

WRITE ENABLE 1 ($\overline{\mathrm{WEN}} \mathbf{1}$)

Ifthe FIFO is configured for programmable flags, Write Enable 1 ($\overline{\text { WEN1 }})$ is the only enable control pin. Inthis configuration, when Write Enable 1 (VEN1) is low, data can be loaded into the input register and RAM array on the LOW-to-HIGHtransition of every WriteClock(WCLK). Dataisstoredinthe RAM array sequentially and independently of any on-going read operation.

Inthis configuration, whenWrite Enable 1($\overline{\mathrm{WEN1}})$ is HIGH, the inputregister holds the previous dataand nonew datais allowedto be loaded intothe register.

Ifthe FIFO is configured to have two write enables, which allows for depth expansion, there are two enable control pins. See Write Enable 2 paragraph belowfor operation in this configuration.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW, inhibiting further write operations. Uponthe completion of avalid read cycle, the Full Flag $(\overline{\mathrm{FF}})$ will go HIGH after twFF, allowing avalid write to begin. Write Enable 1 (WEN1) is ignored when the FIFO is full.

READ CLOCK (RCLK)

Data canbe read onthe outputs on the LOW-to-HIGHtransition of the Read Clock (RCLK). The Empty Flag ($\overline{\mathrm{FF}}$) and Programmable Almost-Empty Flag (PAE) are synchronized withrespectotheLOW-to-HIGHtransition ofthe Read Clock (RCLK).

The Write and Read clocks can be asynchronous or coincident.

READ ENABLES ($\overline{\operatorname{REN} 1}, \overline{\operatorname{REN} 2})$

When both Read Enables ($\overline{\operatorname{REN} 1}, \overline{\mathrm{REN} 2})$ are LOW, data is read from the RAM array to the output register on the LOW-to-HIGH transition of the Read Clock (RCLK).

Wheneither Read Enable ($\overline{\operatorname{REN} 1}, \overline{\mathrm{REN}})$ is HIGH,the outputregister holds the previous data and no new data is allowed to be loaded into the register.

When all the data has been readfrom the FIFO, the Empty Flag (EF) will go LOW, inhibiting further read operations. Once avalid write operation has been accomplished, the Empty Flag (EF) will go HIGH after tref and avalid read can begin. The Read Enables ($\overline{\operatorname{REN} 1}, \mathrm{REN} 2)$ are ignored whenthe FIFO is empty.

OUTPUTENABLE ($\overline{(\mathrm{EE}})$

When Output Enable ($\overline{(\bar{E})}$) is enabled (LOW), the parallel output buffers receive data from the output register. When Output Enable ($\overline{\mathrm{OE}})$ is disabled (HIGH), the Q output data bus is in a high-impedance state.

WRITE ENABLE 2/LOAD (WEN2/LD)

This is a dual-purpose pin. The FIFO is configured at Reset to have programmable flagsortohavetwo writeenables, whichallowsdepthexpansion. If Write Enable 2/Load (WEN2/LD) is set high at Reset ($\overline{R S}=$ LOW), this pin operates as a second Write Enable pin.

If the FIFO is configured to have two write enables, when Write Enable (WEN1) is LOW and Write Enable 2/Load (WEN2/LD) is HIGH, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every Write Clock (WCLK). Datais stored inthe RAM array sequentially and independently of any on-going read operation.

In this configuration, when Write Enable ($\overline{\mathrm{WEN1}}$) is HIGH and/or Write Enable 2/Load (WEN2/LD) is LOW, the input register holds the previous data and no new data is allowed to be loaded into the register.

To preventdataoverflow, the Full Flag ($\overline{\text { FFF }}$) will go LOW, inhibiting further write operations. Upon the completion of avalid read cycle, the Full Flag ($\overline{\mathrm{FF}}$) will go HIGH after twFF, allowing avalid write to begin. Write Enable 1 (WEN1) and Write Enable 2/Load (WEN2/LD) are ignored when the FIFO is full.

The FIFO is configured to have programmable flags whenthe Write Enable 2/Load(WEN2/LD) issetLOWatReset($\overline{\mathrm{RS}}=\mathrm{LOW}$). The IDT72V201/72V211/ $72 \mathrm{~V} 221 / 72 \mathrm{~V} 231 / 72 \mathrm{~V} 241 / 72 \mathrm{~V} 251$ devices contain four 8 -bit offset registers which can be loaded with data on the inputs, or read on the outputs. See Figure 3 for details of the size of the registers and the default values.

If the FIFO is configured to have programmableflagswhen the Write Enable 1($\overline{\text { WEN1 }})$ and Write Enable 2/Load (WEN2/LD) are setlow, data on the inputs Diswrittenintothe Empty (LeastSignificant Bit) Offsetregister onthefirstLOW-to-HIGHtransition ofthe WriteClock(WCLK). Dataiswrittenintothe Empty (Most SignificantBit) Offsetregister onthe second LOW-to-HIGHtransition ofthe Write Clock (WCLK), into the Full (Least Significant Bit) Offset register on the third transition, and into the Full (Most Significant Bit) Offsetregister on the fourth transition. Thefith transition ofthe WriteClock(WCLK) againwritestothe Empty (LeastSignificantBit) Offsetregister.

However, writing all offsetregisters does nothave to occurat one time. One or two offsetregisters can be written and then by bringing the Write Enable 2/ Load (WEN2/LD) pin HIGH, the FIFO is returned to normal read/write operation. WhentheWrite Enable 2/Load(WEN2/LD) pinissetLOW, and Write Enable $1(\overline{\mathrm{WEN1}})$ is LOW, the next offset register in sequence is written.

The contents of the offsetregisters canberead on the output lines when the Write Enable 2/Load (WEN2/LD) pinis setlow and both Read Enables (REN1, $\overline{\text { REN2 }}$) are setLOW. Data can be read on the LOW-to-HIGH transition of the Read Clock (RCLK).

A read and write should not be performed simultaneously to the offset registers.

$\overline{\mathrm{LD}}$	$\overline{\text { WEN1 }}$	WCLK	Selection
0	0	$\boxed{\sim}$	Empty Offset (LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB)
0	1	\square	
1	0	No Operation	
1	1		
Write Into FIFO			
No Operation			

NOTES:

1. For the purposes of this table, WEN2 $=\mathrm{V}$ IH.
2. The same selection sequence applies to reading from the registers. $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ are enabled and read is performed on the LOW-to-HIGH transition of RCLK.

Figure 2. Write Offset Register

x		
X \times x \times -	$X \times X \times \chi^{\text {mam }}$	N
X	$x-$ mamumb	χ -
		$\triangle X X X X$
	orrasa asomat	ormasa, inesome
X-	Ememem	E.
$X X X X \mid$	XXXY	XXX
X-	XT	区-
$X X X$	XXY	d

Figure 3. Offset Register Location and Default Values

OUTPUTS:

FULL FLAG ($\overline{\mathrm{FF}})$

The Full Flag $(\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operation, when the device is full. If no reads are performed after Reset ($\overline{\mathrm{RS}}$), the Full Flag ($\overline{\mathrm{FF}}$) will go LOW after 256 writes for the IDT72V201,512 writes for the IDT72V211, 1,024 writes for the IDT72V221, 2,048 writes for the IDT72V231,4,096 writes for the IDT72V241 and 8,192 writes for the IDT72V251.

The Full Flag $(\overline{\mathrm{FF}})$ is synchronized with respect to the LOW-to-HIGH transition of the Write Clock (WCLK).

EMPTY FLAG (EF)

The Empty Flag $(\overline{\mathrm{EF}})$ will go LOW, inhibiting further read operations, when the read pointer is equal to the write pointer, indicating the device is empty.

The Empty Flag ($\overline{\mathrm{EF}}$) is synchronized with respect to the LOW-to-HIGH transition of the Read Clock (RCLK).

PROGRAMMABLE ALMOST-FULL FLAG ($\overline{\mathrm{PAF}})$

The Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) will go LOW when the FIFO reaches the almost-full condition. If no reads are performed after Reset $(\overline{\mathrm{RS}})$, the Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) will go LOW after ($256-\mathrm{m}$) writes for the IDT72V201, (512-m) writes for the IDT72V211, (1,024-m) writes for the

IDT72V221, (2,048-m) writes for the IDT72V231, (4,096-m) writes for the IDT72V241 and (8,192-m) writes for the IDT72V251. Theoffset " m " is defined inthe Full Offsetregisters.

Ifthere is no full offset specified, the Programmable Almost-Fullflag ($\overline{\mathrm{PAF}})$ will go LOW at Full-7 words.

The Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) is synchronized with respectto the LOW-to-HIGH transition of the Write Clock (WCLK).

PROGRAMMABLE ALMOST-EMPTY FLAG ($\overline{\mathrm{PAE}})$

The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go LOW when the read pointer is " $n+1$ " locations less than the write pointer. The offset " n " is defined in the Empty Offset registers. If no reads are performed after Reset the Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go HIGH after " $\mathrm{n}+1$ " for the IDT72V201/72V211/72V221/72V231/72V241/72V251.

Ifthere is noempty offsetspecified, the Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go LOW at Empty+7 words.

The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ is synchronized with respect to the LOW-to-HIGH transition of the Read Clock (RCLK).

DATA OUTPUTS (Q0-Q8)

Data outputs for a 9-bit wide data.

TABLE 1 - STATUS FLAGS

NUMBER OF WORDS IN FIFO			$\overline{\text { FF }}$	$\overline{\text { PAF }}$	$\overline{\text { PAE }}$	$\overline{\mathrm{E}}$
IDT72V201	IDT72V211	IDT72V221				
0	0	0	H	H	L	L
1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	H	H	L	H
($\mathrm{n}+1) \mathrm{to}(256-(\mathrm{m}+1)$)	($\mathrm{n}+1) \mathrm{to}(512-(\mathrm{m}+1)$)	($\mathrm{n}+1$)to($1,024-(\mathrm{m}+1)$)	H	H	H	H
$(256-m)^{(2)}$ to 255	$(512-m)^{(2)}$ to 511	$(1,024-m)^{(2)}$ to 1,023	H	L	H	H
256	512	1,024	L	L	H	H

NUMBER OF WORDS IN FIFO			$\overline{\text { FF }}$	$\overline{\text { PAF }}$	$\overline{\text { P}} \bar{A} \bar{E}$	$\overline{\mathrm{E}}$
IDT72V231	IDT72V241	IDT72V251				
0	0	0	H	H	L	L
1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	H	H	L	H
($\mathrm{n}+1$) to ($2,048-(\mathrm{m}+1)$)	$(\mathrm{n}+1) \mathrm{to}(4,096-(\mathrm{m}+1)$)	($\mathrm{n}+1$) to (8,192-(m+1))	H	H	H	H
$(2,048-\mathrm{m})^{(2)}$ to 2,047	$(4,096-m)^{(2)}$ to 4,095	$(8,192-m)^{(2)}$ to 8,191	H	L	H	H
2,048	4,096	8,192	L	L	H	H

NOTES:

1. $\mathrm{n}=$ Empty Offset ($\mathrm{n}=7$ default value)
2. $m=$ Full Offset $(m=7$ default value)

NOTES:

1. Holding WEN2/LD HIGH during reset will make the pin act as a second write enable pin. Holding WEN2// $\overline{\mathrm{D}}$ LOW during reset will make the pin act as a load enable for the programmable flag offset registers.
2. After reset, the outputs will be LOW if $\overline{\mathrm{OE}}=0$ and high-impedance if $\overline{\mathrm{OE}}=1$.
3. The clocks (RCLK, WCLK) can be free-running during reset.

Figure 4. Reset Timing

Figure 5. Write Cycle Timing

WEN1

WEN2
NOTE:

1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge for $\overline{\mathrm{EF}}$ to change during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then $\overline{\mathrm{EF}}$ may not change state until the next RCLK edge.

Figure 6. Read Cycle Timing

Figure 7. First Data Word Latency Timing

NOTE:

1. Only one of the two Write Enable inputs, $\overline{\mathrm{WEN}} 1$ or $\overline{\mathrm{WEN} 2}$, needs to go inactive to inhibit writes to the FIFO.

Figure 8. Full Flag Timing

Figure 9. Empty Flag Timing

NOTES:

1. $m=\overline{\mathrm{PAF}}$ offset.
2. $256-\mathrm{m}$ words in FIFO for IDT72V201, 512 - m words for IDT72V211, $1,024-\mathrm{m}$ words for IDT72V221, $2,048-\mathrm{m}$ words for IDT72V231, 4,096-m words for IDT72V241, 8,192 - m words for IDT72V251.
3. tskewz is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{\text { PAF }}$ to change during that clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskewz, then PAF may not change state until the next WCLK rising edge.
4. If a write is performed on this rising edge of the write clock, there will be Full $-(m-1)$ words in the FIFO when PAF goes LOW.

Figure 10. Programmable Full Flag Timing

Figure 11. Programmable Empty Flag Timing

Figure 12. Write Offset Registers Timing

Figure 13. Read Offset Registers Timing

OPERATING CONFIGURATIONS

SINGLE DEVICE CONFIGURATION

A single IDT72V201/72V211/72V221/72V231/72V241/72V251 may be used when the application requirements are for 256/512/1,024/2,048/4,096/ 8,192 words or less. When these FIFOs are in a Single Device Configuration,
the Read Enable 2 ($\overline{\text { REN2 }}$) control input can be grounded (see Figure 14). In this configuration, the Write Enable 2/Load(WEN2/LD) pinis setLOW atReset so that the pin operates as a control to load and read the programmable flag offsets.

Figure 14. Block Diagram of Single $256 \times 9,512 \times 9,1,024 \times 9,2,048 \times 9,4,096 \times 9$ and $8,192 \times 9$ Synchronous FIFO

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting the corresponding input controlssignals ofmultiple devices. Acomposite flag should becreatedforeach of the end-pointstatus flags ($\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$). The partial status flags ($\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$) can be detected from any one device. Figure 15 demonstrates a 18-bit word width by using two IDT72V201/72V211/72V221/72V231/72V241/72V251s. Any word width can be attained by adding additional IDT72V201/72V211/ 72V221/72V231/72V241/72V251s.

When these devices are in a Width Expansion Configuration, the Read Enable 2 ($\overline{\text { REN2 }}$) control input can be grounded (see Figure 15). In this configuration, the Write Enable 2/Load (WEN2/LD) pinis set LOW atResetso thatthe pin operates as a control toload and read the programmableflag offsets.

DEPTH EXPANSION

The IDT72V201/72V211/72V221/72V231/72V241/72V251 can be adapted to applications when the requirements are for greater than 256/512/

1,024/2,048/4,096/8,192 words. The existence oftwo enable pins onthe read and write portallow depth expansion. TheWrite Enable 2/Load pin is used as a second write enable in a depth expansion configuration thus the programmable flags are setto the default values. Depth expansion is possible by using one enable inputfor system control while the otherenable inputis controlled by expansion logic to direct the flow of data. Atypical application would have the expansionlogic alternate data accessfromone devicetothenextinasequential manner. TheseFIFOs operate inthe Depth Expansionconfigurationwhenthe following conditions aremet:

1. The WEN $2 / \overline{\mathrm{LD}}$ pin is held HIGH during Reset so that this pin operates a secondWrite Enable.
2. External logic is used to control the flow of data.

Please see the Application Note" DEPTH EXPANSION OF IDT'S SYNCHRONOUS FIFOs USING THERING COUNTERAPPROACH"for details of this configuration.

Figure 15. Block Diagram of $256 \times 18,512 \times 18,1,024 \times 18,2,048 \times 18,4,096 \times 18$ and 8,192 x 18 Synchronous FIFO Used in a Width Expansion Configuration

ORDERING INFORMATION

NOTES:

1. Industrial temperature range product for the 15 ns is available as a standard device. All other speed grades are available by special order.
2. Green parts available. For specific speeds and packages contact your sales office.

LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN\# SP-17-02

DATASHEET DOCUMENT HISTORY

pg. 3.
pg. 3.
pgs. 1 and 14.
pg. 14.
pgs. 1, 13 and 14.
Product Discontinuation Notice-PDN\# SP-17-02
Last time buy expires June 15, 2018.
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
uww.idt.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

IDT (Integrated Device Technology):
72V211L20J 72V221L20PF8 72V241L20PF8 72V201L20PF8 72V231L20PF8 72V251L20PF8 72V211L20PF8
72V211L10J 72V211L15J 72V221L15PFGI 72V251L15PFGI 72V231L15PFGI 72V251L15JGI8 72V221L10PFG
72V211L10PFG 72V251L10PFG 72V241L10PFG 72V231L10PFG 72V201L20J8 72V241L20J8 72V221L20J8
72V251L20J8 72V211L20J8 72V231L20J8 72V241L20J 72V241L10J 72V241L15J 72V241L15PFI8
72V221L15PFG8 72V221L15PFI8 72V231L15PFI8 72V201L15PFI8 72V251L10JG8 72V221L10PF8
72V201L10PF8 72V241L10PF8 72V231L10PF8 72V251L10PF8 72V211L10PF8 72V211L15PFI8 72V251L15PFI8
72V221L20J 72V221L15PF 72V251L15JI 72V201L15PF 72V241L15PF 72V231L15PF 72V251L15PF
72V211L15PF 72V241L15JI 72V221L15JI 72V211L15JI 72V251L10JG 72V241L10PF 72V231L10PF
72V211L10PF 72V221L10PF 72V201L10PF 72V251L10PF 72V251L15PFG18 72V231L20J 72V221L15J
72V221L10J 72V231L15PFGI8 72V221L15PFGI8 72V221L10J8 72V201L10J8 72V241L10J8 72V251L10J8 72V211L10J8 72V231L10J8 72V211L15J8 72V251L15J8 72V231L15J8 72V241L15J8 72V201L15J8
72V221L15J8 72V231L15J 72V231L10J 72V241L15PF8 72V201L15PF8 72V231L15PF8 72V251L15PF8
72V221L15PF8 72V211L15PF8 72V221L15JI8 72V241L15JI8 72V211L15JI8 72V251L15JI8 72V231L20PF
72V251L20PF 72V211L20PF 72V221L20PF 72V241L20PF 72V201L20PF 72V251L10J 72V251L15J
72V251L15PFI 72V221L15PFI 72V221L15PFG

