

NHD-C160100CZ-RN-FBW

COG (Chip-On-Glass) Liquid Crystal Display Module

NHD-	Newhaven Display
C160100-	160 x 100 Pixels
CZ-	Model
R-	Reflective
N-	No Backlight
F-	FSTN (+)
В-	6:00 Optimal View
W-	Wide Temp.
	RoHS Compliant

Newhaven Display International, Inc. 2661 Galvin Ct. Elgin IL, 60124 Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	6/17/2007	Initial Release	-
1	9/11/2009	User guide reformat	BE
2	10/14/2009	Updated Electrical Characteristic	MC
3	12/08/2009	Updated Block Diagram, Pins 4 and 5, and Timing	MC
		Characteristics	
4	9/2/15	Mechanical drawing updated	AK
5	9/18/2015	Mechanical drawing updated	SB

Functions and Features

- 160 x 100 pixels
- Built-in ST7528 controller
- Parallel 8080 interface
- +3.0V power supply
- 1/100 duty cycle; 1/11 bias
- RoHS Compliant

Mechanical Drawing

The drawing contained herein is the exclusive property of Newhaven Display International, Inc. and shall not be copied, reproduced, and/or disclosed in any format without permission.

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	CSB	MPU	Active LOW Chip Select signal
2	RST	MPU	Active LOW Reset signal
3	A0	MPU	Register Select signal. A0=1: Data, A0=0: Command
4	/WR	MPU	Active LOW Write signal
5	/RD	MPU	Active LOW Read signal
6-13	DB0-DB7	MPU	Bi-directional 8-bit data bus.
14	VDD	Power Supply	Supply voltage for LCD and logic (+3.0V)
15	VSS	Power Supply	Ground
16	VOUT	Power Supply	Connect to 1uF cap to VSS or VDD
17	V4	Power Supply	1.0uF-2.2uF cap to VSS
18	V3	Power Supply	1.0uF-2.2uF cap to VSS
19	V2	Power Supply	1.0uF-2.2uF cap to VSS
20	V1	Power Supply	1.0uF-2.2uF cap to VSS

Recommended LCD connector: 0.5mm pitch pins. Molex p/n: 52746-2070

Backlight connector: --- Mates with: ---

Electrical Characteristics

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	-	+70	°C
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	°C
Supply Voltage	VDD		2.8	3.0	3.3	V
Supply Current	IDD	Ta=25°C,	-	1.5	2.5	mA
		VDD=3.0V				
Supply for LCD (contrast)	VDD-V0	Ta=25°C	11.3	11.5	11.7	V
"H" Level input	Vih		0.7*VDD	-	VDD	V
"L" Level input	Vil		VSS	-	0.3*VDD	V
"H" Level output	Voh		0.7*VDD	-	VDD	V
"L" Level output	Vol		VSS	-	0.3*VDD	V

Optical Characteristics

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle – Top			-	35	-	0
Viewing Angle – Bottom		(~)	-	65	-	0
Viewing Angle – Left		CI22	-	40	-	0
Viewing Angle – Right			-	40	-	0
Contrast Ratio	Cr		5	13	-	-
Response Time (rise)	Tr	-	-	25	400	ms
Response Time (fall)	Tf	-	-	47	400	ms

Controller Information

Built-in ST7528 controller.

Please download specification at http://www.newhavendisplay.com/app_notes/ST7528.pdf

Table of Commands

Instruction	A 0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=0 or 1											
	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set
Mode Set	0	0	FR3	FR2	FR1	FR0	0	BE	x'	EXT	FR(Frame frequency control) BE(Booster efficiency control)
EXT=0											
Read display data	1	1				Read	data				Read data into DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y 9	Y8	¥7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	¥3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	x'	X'	2-byte instruction to specify
	0	0	x'	S6	S 5	S4	S 3	S2	S 1	S0	vertical scrolling
Set initial COM0 register	0	0	0	1	0	0	0	1	x'	×'	2-byte instruction to specify
Set Initial COMO register	0	0	x'	C6	C5	C4	C3	C2	C1	C0	window scrolling
	0	0	0	1	0	0	1	0	x'	x'	2-byte instruction to set partial
Set partial display duty ration	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display duty ratio
	0	0	0	1	0	0	1	1	x'	X'	2-byte instruction to set N-line
Set N-line inversion	0	0	x'	x'	X'	N4	N3	N2	N1	N0	inversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Ext=0											
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of internal voltage converter
Select regulator register	0	0	0	0	1	0	0	R2	R1	R0	Select the internal resistance ratio of the regulator resistor
Select electronic volumn	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify
register	0	0	X'	x'	EV5	EV4	EV3	EV2	EV1	EV0	the reference voltage
Select LCD bias	0	0	0	1	0	1	0	B2	B1	В0	Select LCD bias
Set Riss Dower Save Mode	0	0	1	1	1	1	0	0	1	1	Bias Power save
Set bias Fower Save Mode	0	0	0	0	0	0	0	0	0	0	current consumption
Release Bias Power Save	0	0	1	1	1	1	0	0	1	1	Bias Power save release
Mode	0	0	0	0	0	0	0	1	0	0	set the Blas power to normal
SHL select	0	0	1	1	0	0	SHL	x'	x	x'	COM bi-directional selection SHL=0: normal direction SHL=1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-direction selection ADC=0: normal direction ADC=1: reverse direction
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	Р	P=0: normal mode P=1: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	initial the internal function
Set data direction &	x'	x'	1	1	1	0	1	0	0	0	2-byte instruction to specify
display data length(DDL)	x'	x'	D7	D6	D5	D4	D3	D2	D1	D0	(SPI mode)
Select FRC and PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWM0	FRC(1:3FRC, 0:4FRC) PWM1 PWM0 0 0 45PWM 0 1 45 PWM 1 0 60PWM 1 1
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test Instruction	0	0	1	1	1	1	x'	x'	x'	x'	Don't use this instruction

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description		
EXT=1													
Set white mode and 1st frame,	0	0	1	0	0	0	0	0	0	0			
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	Set white mode and 1st frame		
Set white mode and 2 nd frame,	0	0	1	0	0	0	0	0	0	1	Set white mode and 2nd		
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	frame		
Set white mode and 3rd frame,	0	0	1	0	0	0	0	0	1	0	Set white mode and 3rd		
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	frame		
Set white mode and 4 th frame,	0	0	1	0	0	0	0	0	1	1	Set white mode and 4th		
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	frame		
Set gray level 1 mode	0	0			84	4H~87H	H (4 b	ytes)			Set gray level1		
Set gray level 2 mode	0	0			88	3H~8BI	H (4 b	ytes)			Set gray level2		
Set gray level 3 mode	0	0			8	CH~8F	H (4b	ytes)			Set gray level3		
Set gray level 4 mode	0	0			9	0H~93	H (4b	ytes)			Set gray level4		
Set gray level 5 mode	0	0			9	4H~97	H (4b	ytes)			Set gray level5		
Set gray level 6 mode	0	0			98	3H~9BI	H (4 b	ytes)			Set gray level6		
Set gray level 7 mode	0	0			90	CH~9F	H (4 b	ytes)			Set gray level7		
Set gray level 8 mode	0	0			A)H~A3	H (4 b	ytes)			Set gray level8		
Set gray level 9 mode	0	0			A	4H~A7	H (4 b	ytes)			Set gray level9		
Set gray level 10 mode	0	0			A	3H~AB	H (4 b	ytes)			Set gray level10		
Set gray level 11mode	0	0			AC	CH~AF	H (4 b	ytes)			Set gray level11		
Set gray level 12 mode	0	0			B)H~B3	H (4 b	ytes)			Set gray level12		
Set gray level 13 mode	0	0			B4	4H~B7	H (4 b	ytes)			Set gray level13		
Set gray level 14 mode	0	0			B	3H~BB	H (4 b	ytes)			Set gray level14		
Set Dark mode and 1st frame,	0	0	1	0	1	1	1	1	0	0	Set Dark mode and 1st		
set pulse width	0	0	X'	Х'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width		
Set Dark mode and 2nd frame,	0	0	1	0	1	1	1	1	0	1	Set Dark mode and 2nd		
set pulse width	0	0	X'	Х'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width		
Set Dark mode and 3rd frame,	0	0	1	0	1	1	1	1	1	0	Set Dark mode and 3rd		
set pulse width	0	0	X'	х.	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width		
Set Dark mode and 4th frame,	0	0	1	0	1	1	1	1	1	1	Set Dark mode and 4th		
set pulse width	0	0	X'	х.	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width		

Timing Characteristics

(VDD = 3.3V , Ta =25°C)

	Cirral	Combal	Condition	Rat	ing	Unito
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_]
System cycle time		tCYC8		240	_]
Enable L pulse width (WRITE)		tCCLW		80	_]
Enable H pulse width (WRITE)		tCCHW		80	_]
Enable L pulse width (READ)	PD	tCCLR		140	_	ns
Enable H pulse width (READ)		tCCHR		80		
WRITE Data setup time		tDS8		40	_]
WRITE Data hold time		tDH8		10	_	
READ access time		tACC8	CL = 100 pF	_	70]
READ Output disable time		tOH8	CL = 100 pF	5	50	

Example Initialization Program

//		
void write_command(unsigned	d char datum)	
{		/*!
AU=U;		/*Instruction register*/
E=1;		/*Read inactive*/
P1 = datum;		/*put data on port 1*/
CS1=0;		/*Chip select active*/
RW=0;		/*Write active*/
RW=1;		/*Write inactive; latch in data*/
CS1=1;		/*Chip select inactive*/
}		
//		
void write_data(unsigned char	datum)	
1 A0=1;		/*DDRAM data register*/
E=1;		
P1=datum;		
CS1=0:		
RW=0:		
RW=1:		
CS1=1:		
}		
//		
void lcd_init(void){		
write command(0xA2)	//ICON OFF	
write_command(0xAE);		
write_command(0xAE),	//Display OFF	
	//Cat Dutu natia	
write_command(0x48);		
write_command(0x80);	//No operation	
write_command(0xa1);	<pre>//Set scan direction //changed from 0 to 1</pre>	
write_command(0xc8);	//SHL select	
write_command(0x40);	//Set START LINE	
write_command(0x00);		
write_command(0xab);	//OSC on	
write_command(0x64);	//3x	
delay(2000);		
write_command(0x65);	//4x	
uciay(2000),	//Ex	
write_command(0x66);	//5X	
delay(2000);		
write_command(0x67);	//бх	
delay(2000);		
write_command(Ra_Rb);	//RESISTER SET	
write_command(0x81);	//Set electronic volume register	
write_command(vopcode); //n=0~3f	
write_command(0x57);	//1/12bias	
write_command(0x92);	//FRC and pwm	

write command(0x2C); delay(20000);//200ms write command(0x2E); delay(20000);//200ms write_command(0x2F); delay(20000);//200ms //frc and pwm write command(0x92); write command(0x38); //external mode write_command(0x75); //start settings for 16-level grayscale write_command(0x97); //3frc,45pwm write command(0x80); write_command(0x00); write_command(0x81); write_command(0x00); write_command(0x82); write command(0x00); write command(0x83); write_command(0x00); write_command(0x84); write_command(0x06); write command(0x85); write command(0x06); write command(0x86); write command(0x06); write_command(0x87); write_command(0x06); write command(0x88); write command(0x0b); write command(0x89); write_command(0x0b); write_command(0x8a); write command(0x0b); write command(0x8b); write command(0x0b); write_command(0x8c); write_command(0x10); write command(0x8d); write command(0x10); write command(0x8e); write_command(0x10); write_command(0x8f); write_command(0x10); write command(0x90); write command(0x15); write command(0x91); write_command(0x15); write command(0x92); write_command(0x15); write command(0x93); write command(0x15); write command(0x94); write command(0x1a); write_command(0x95); write command(0x1a);

write command(0x96); write command(0x1a); write command(0x97); write_command(0x1a); write_command(0x98); write_command(0x1e); write command(0x99); write command(0x1e); write_command(0x9a); write_command(0x1e); write_command(0x9b); write_command(0x1e); write command(0x9c); write_command(0x23); write_command(0x9d); write_command(0x23); write_command(0x9e); write command(0x23); write command(0x9f); write_command(0x23); write_command(0xa0); write_command(0x27); write command(0xa1); write command(0x27); write command(0xa2); write_command(0x27); write_command(0xa3); write_command(0x27); write command(0xa4); write command(0x2b); write command(0xa5); write_command(0x2b); write_command(0xa6); write command(0x2b); write command(0xa7); write command(0x2b); write_command(0xa8); write_command(0x2f); write command(0xa9); write command(0x2f); write command(0xaa); write_command(0x2f); write_command(0xab); write_command(0x2f); write command(0xac); write command(0x32); write command(0xad); write_command(0x32); write command(0xae); write_command(0x32); write command(0xaf); write command(0x32); write command(0xb0); write_command(0x35); write_command(0xb1); write command(0x35); write command(0xb2); write_command(0x35); write_command(0xb3); write_command(0x35); write_command(0xb4); write_command(0x38); write command(0xb5); write command(0x38); write_command(0xb6); write_command(0x38); write_command(0xb7); write_command(0x38); write command(0xb8); write_command(0x3a); write_command(0xb9); write_command(0x3a); write_command(0xba); write_command(0x3a); write command(0xbb); write_command(0x3a); write_command(0xbc); write_command(0x3c); write command(0xbd); write_command(0x3c); write_command(0xbe); write_command(0x3c); write_command(0xbf); write_command(0x3c); //end settings for 16-level grayscale write_command(0x38); write_command(0x74); write_command(0xaf); //Display ON

//-----

}

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 48hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 48hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 48hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 48hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C , 90% RH , 48hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	-0°C,30min -> 25°C,5min -> 50°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5kΩ, CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at <u>www.newhavendisplay.com/specs/precautions.pdf</u>

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Newhaven Display: NHD-C160100CZ-RN-FBW