General Description

The DS4M125/DS4M133/DS4M200 are margining clock oscillators with LVPECL or LVDS outputs. They are designed to fit in a 5mm x 3.2mm ceramic package with an AT-cut fundamental-mode crystal to form a complete clock oscillator. The circuit can generate the following frequencies and their ±5% frequency deviations: 125MHz, 133.33MHz, and 200MHz. The DS4M125/DS4M133/DS4M200 employ a low-jitter PLL to generate the frequencies. The typical phase jitter is less than 0.9ps RMS from 12kHz to 20MHz.

Frequency margining is a circuit operation to change the output frequency to 5% higher or 5% lower than the nominal frequency. Frequency margining is accomplished through the margining select pin, MS. This three-state input pin accepts a three-level voltage signal to control the output frequency. In a low-level state, the output frequency is set to the nominal frequency. When set to a high-level state, the frequency output is set to the nominal frequency plus 5%. When set to the midlevel state, the frequency output is equal to the nominal frequency minus 5%. If left open, the MS pin is pulled low by an internal $100k\Omega$ (nominal) pulldown resistor.

The DS4M125/DS4M133/DS4M200 are available with either an LVPECL or LVDS output. The output can be disabled by pulling the OE pin low. When disabled, both OUTP and OUTN levels of the LVPECL driver go to the LVPECL bias voltage, while the output of the LVDS driver is a logical one. The OE input is an active-high logic signal and has an internal $100k\Omega$ pullup resistor. When OE is in a logic-high state, the OUTP and OUTN outputs are enabled.

The devices operate from a single 3.3V supply voltage.

Applications

Memory Clocks RAID Systems

_Features

- ◆ Frequency Margining: ±5%
- Nominal Clock Output Frequencies: 125MHz, 133.33MHz, and 200MHz
- ♦ Jitter < 0.9ps RMS from 12kHz to 20MHz
- LVPECL or LVDS Output
- ♦ 3.3V Operating Voltage
- ♦ Operating Temperature Range: -40°C to +85°C
- Supply Current: < 100mA at 3.3V</p>
- Excellent Power-Supply Noise Rejection
- 5mm x 3.2mm Ceramic LCCC Package
- Output Enable/Disable

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS4M125 P+33	-40°C to +85°C	10 LCCC
DS4M125D+33	-40°C to +85°C	10 LCCC
DS4M133P+33	-40°C to +85°C	10 LCCC
DS4M133D+33	-40°C to +85°C	10 LCCC
DS4M200P+33	-40°C to +85°C	10 LCCC
DS4M200D+33	-40°C to +85°C	10 LCCC

+Denotes a lead(Pb)-free package. The lead finish is JESD97 category e4 (Au over Ni) and is compatible with both lead-based and lead-free soldering processes.

Pin Configuration and Selector Guide appear at end of data sheet.

M/IXI/M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage Range (V _{CC})	0.3V to +4.0V
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	330mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+125°C

Storage Temperature Ran	ige55°C to +85°C
Soldering Temperature	
(3 passes max of reflow)	Refer to the

IPC/JEDEC J-STD-020 Specification.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 3.135V to 3.465V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted.) (Notes 1, 2)

PARAME	TER	SYMBOL	CONDITIONS	MIN TYP MAX		UNITS	
Operating Voltage	Range	Vcc	(Note 1)	3.135	3.3	3.465	V
Operating Current		I _{CC_D}	LVDS, output loaded or unloaded		52	75	
		ICC_PU	LVPECL, output unloaded		49	70	mA
		ICC_PI	LVPECL, output loaded		74	100	
Inactive Current		ICC_OEZ	V _{OE} = V _{IL}	52 85		85	mA
OUTPUT FREQUE	NCY SPECIFIC	ATIONS					
	DS4M125		MS = 0, OE = 1		125		
Frequency	DS4M133	fo	MS = 0, OE = 1		133.33		MHz
	DS4M200		MS = 0, OE = 1		200		
Frequency Stability	/	Δ ftotal/fo	Over temperature range, aging, load, supply, and initial tolerance (Note 3)	-50		+50	ppm
Frequency Stability Temperature	over over	$\Delta f_{\text{TEMP}}/f$	$V_{CC} = 3.3 V$	-35		+35	ppm
Initial Tolerance		Δ finitial/fv	$V_{CC} = 3.3V, T_A = +25^{\circ}C$		±20		ppm
Frequency Change	e Due to ΔV_{CC}	$\Delta f_{VCC}/f$	$V_{CC} = 3.3V \pm 5\%$	-3		+3	ppm/V
Frequency Change Variation	e Due to Load	$\Delta f_{LOAD}/f_{O}$	±10% variation in termination resistance		±1		ppm
Aging (15 Years)		Δfaging		-7		+7	ppm
Phase Jitter		Jrms	Integrated phase RMS; 12kHz to 80MHz, $V_{CC} = 3.3V$, $T_A = +25^{\circ}C$		< 0.9		ps
Accumulated Dete Due to Reference S	rministic Jitter Spurs		No margin 155.52MHz output		0.6		ps
Accumulated Deterministic Jitter Due to Power-Supply Noise			10kHz		12.9		
			100kHz (Note 4)	26.3 20.1			ps
			200kHz (Note 4)				
			1MHz (Note 4)		6.4		
Startup Time		tstrt			1.0		ms
Frequency Switch	Time	tswitch			0.5		ms
Input-Voltage High	(OE)	VIH	(Note 5)	0.7 x Vcc		V _{CC}	V

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 3.135V to 3.465V, T_A = -40°C to +85°C, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Input-Voltage Low (OE)	VIL	(Note 5)	0		0.3 x V _{CC}	V
Input-Leakage High (OE)	ILEAKH	OE voltage = VCC	-5		+5	μA
Input-Leakage Low (OE)	ILEAKL	OE voltage = GND	-20		-50	μA
Input-Leakage High (MS)	ILEAKH	MS voltage = VCC	20		50	μA
Input-Leakage Low (MS)	ILEAKL	MS voltage = GND	-5		+5	μA
Input Voltage: High Level (MS)	VIH	(Note 5)	0.75 x V _{CC} + 0.15V		V _{CC}	V
Input Voltage: Mid Level (MS)	Vim	(Note 5)	0.25 x V _{CC} + 0.15V		0.75 x V _{CC} - 0.15V	V
Input Voltage: Low Level (MS)	VIL	(Note 5)	0		0.25 x V _{CC} - 0.15V	V
LVDS					•	
Output High Voltage	Voh	100 Ω differential load (Notes 2, 5)			1.475	V
Output Low Voltage	V _{OL}	100Ω differential load (Notes 2, 5)				V
Differential Output Voltage	V _{OD}	100 Ω differential load	250		425	mV
Change in V _{OD} for Complementary States	$\Delta V_{OD} $	100 Ω differential load			25	mV
Offset Output Voltage	Vos	100 Ω differential load (Note 2)	1.125		1.275	V
Change in V _{OS} for Complementary States	$\Delta V_{OS} $	100 Ω differential load			150	mV
Differential Output Impedance	R _{OLVDS}		80		140	Ω
	LVSSLVDSO	OUTN or OUTP shorted to ground and measure the current in the shorting path			40	
Oulput Current	LLVDSO	OUTN and OUTP shorted together and measure the change in I _{CC}		6.5		
Output Rise Time (Differential)	^t RLVDSO	20% to 80%		175		ps
Output Fall Time (Differential)	t _{FLVDSO}	80% to 20%		175		ps
Duty Cycle	DCYCLE_LVDS		45		55	%
Propagation Delay from OE Going LOW to Logical 1 at OUTP	tPA1	(Figure 2)			200	ns
Propagation Delay from OE Going HIGH to Output Active	tp1A	(Figure 2)			200	ns

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 3.135V to 3.465V, T_A = -40°C to +85°C, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	OL CONDITIONS		ТҮР	MAX	UNITS
LVPECL						
Output High Voltage (Note 2)	Voh	Output connected to 50 Ω at PECL_BIAS at V_CC - 2.0V	V _{CC} - 1.085		V _{CC} - 0.88	V
Output Low Voltage (Note 2)	V _{OL}	Output connected to 50 Ω at PECL_BIAS at V_CC - 2.0V	V _{CC} - 1.825		V _{CC} - 1.62	V
Differential Voltage	VDIFF_PECL	Output connected to 50 Ω at PECL_BIAS at V_CC - 2.0V	0.595	0.710		V
Rise Time	tR-PECL	20% to 80%		200		ps
Fall Time	tF-PECL	80% to 20%		200		ps
Duty Cycle	DCYCLE_PECL		45		55	%
Propagation Delay from OE Going LOW to Output Three-Stated	tpaz	(Figure 3)			200	ns
Propagation Delay from OE Going HIGH to Output Active	tpza	(Figure 3)			200	ns

Note 1: Limits at -40°C are guaranteed by design and are not production tested. Typical values are at +25°C and 3.3V, unless otherwise noted.

Note 2: AC parameters are guaranteed by design and characterization and are not production tested.

Note 3: Frequency stability is calculated as: $\Delta f_{TOTAL} = \Delta f_{INITIAL} + \Delta f_{TEMP} + (\Delta f_{VCC} \times 0.165) + \Delta f_{LOAD} + \Delta f_{AGING}$.

Note 4: Supply induced jitter is measured with a 50mV_{P-P} sine wave forced on V_{CC}. Deterministic jitter is calculated by measuring the power of the resulting tone seen on a spectrum analyzer.

Note 5: Voltage referenced to ground.

SINGLE-SIDEBAND PHASE NOISE AT fo = fNOM

far _	SINGLE-SIDEBAN	D PHASE NOISE AT	f _O = f _{NOM} (dBc/Hz)		
IM =	125MHz	125MHz 133.33MHz			
10Hz	-70	-75	-70		
100Hz	-100	-105	-100		
1kHz	-118	-121	-115		
10kHz	-118	-122	-117		
100kHz	-124	-126	-122		
1MHz	-142	-141	-138		
10MHz	-150	-150	-150		
20MHz	-150	-150	-150		

_Pin Description

PIN	NAME	FUNCTION
1	OE	Active-High Output Enable. Has an internal pullup $100k\Omega$ resistor.
2	MS	Margin Select. Three-level input with a 100k Ω pulldown resistor.
3	GND	Ground
4	OUTP	Positive Output for LVPECL or LVDS
5	OUTN	Negative Output for LVPECL or LVDS
6	VCC	Supply Voltage
7–10	N.C.	No Connection. Must be floated.
	EP	Exposed Paddle. The exposed pad must be used for thermal relief. This pad must be connected to ground.

(V_{CC} = +3.3V, T_A = $+25^{\circ}$ C, unless otherwise noted.)

Typical Operating Characteristics

Figure 1. Functional Diagram

Detailed Description

The DS4M125/DS4M133/DS4M200 consist of an oscillator designed to oscillate with a fundamental-mode crystal and a PLL to synthesize the base frequency with its $\pm 5\%$ deviations. The output interface is either LVPECL or LVDS.

The $\pm 5\%$ frequency deviation is controlled through a three-level margining select (MS) pin. This three-state input pin accepts a three-level voltage signal to control the output frequency. In a low-level state, the output frequency is set to the nominal frequency. When set to a high-level state, the frequency output is set to the

Figure 2. LVDS Output Timing Diagram When OE Is Enabled and Disabled

nominal frequency plus 5%. When set to the mid-level state, the frequency output is equal to the nominal frequency minus 5%. The MS pin has an internal $100k\Omega$ pulldown resistor. When the pin is left floating, the devices output a nominal frequency.

The devices are available with either LVDS or LVPECL output drivers. When the OE signal is low, the LVPECL output driver is turned off and the output voltage goes to the PECL_BIAS level of V_{CC} - 2.0V, while the LVDS outputs are a logical one. The OE pin has an internal 100k Ω pullup resistor. When the pin is left floating, the device output is active.

Figure 3. LVPECL Output Timing Diagram When OE Is Enabled and Disabled

Selector Guide

PART	FREQUENCY (NOM) (MHz)	OUTPUT TYPE	TOP MARK
DS4M125 P+33	125	LVPECL	MEP
DS4M125D+33	125	LVDS	MED
DS4M133 P+33	133.33	LVPECL	MFP
DS4M133D+33	133.33	LVDS	MFD
DS4M200 P+33	200	LVPECL	MJP
DS4M200D+33	200	LVDS	MJD

+Denotes a lead-free package. The lead finish is JESD97 category e4 (Au over Ni) and is compatible with both lead-based and lead-free soldering processes. A + appears anywhere on the top mark.

Pin Configuration

_Chip Information

SUBSTRATE CONNECTED TO GROUND PROCESS: BIPOLAR SiGe

Thermal Information

THETA-JA (°C/W)	
90	

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 LCCC	L1053+H2	<u>21-0389</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

Maxim is a registered trademark of Maxim Integrated Products, Inc.

_ 7

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

DS4M125D+33 DS4M125P+33 DS4M133D+33 DS4M133P+33 DS4M200D+33 DS4M200P+33