

Is Now Part of

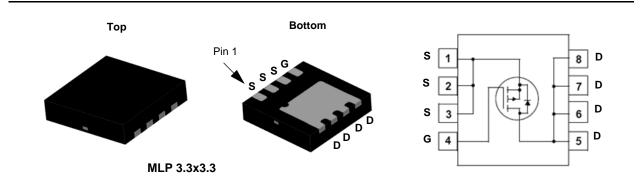
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

- Fast Switching
- Low gate charge (typical 6.2 nC)
- Improved dv / dt capability
- RoHS Compliant


April 2015

General Description

These P-Channel MOSFET enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifier, high efficiency switching DC/DC converters, and DC motor control.

Application

Active Clamp Switch

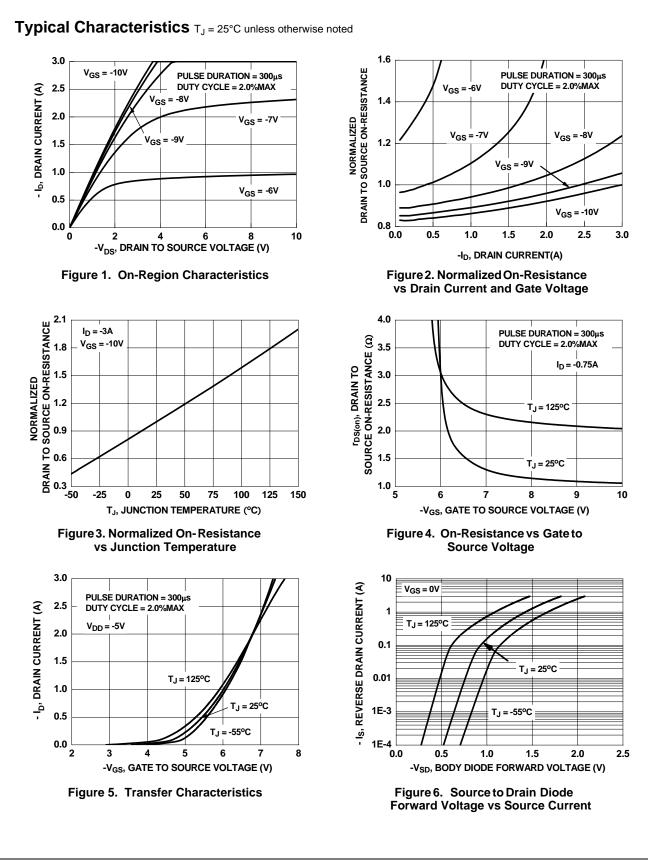
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DS}	Drain to Source Voltage	-150	V
V _{GS}	Gate to Source Voltage	±30	V
Ι _D	Drain Current -Continuous $T_C = 25^{\circ}C$	-3	
	-Continuous $T_C = 100^{\circ}C$	-1.8	А
	-Pulsed	-12	
P _D	Power Dissipation (Steady State) T _C = 25°C	42	W
E _{AS}	Single Pulse Avalanche Energy (Note 5)	3.3	mJ
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C
dv/dt	Peak Diode Recovery dv/dt (Note 2)	-5	V/ns

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	3.0	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	60	C/VV

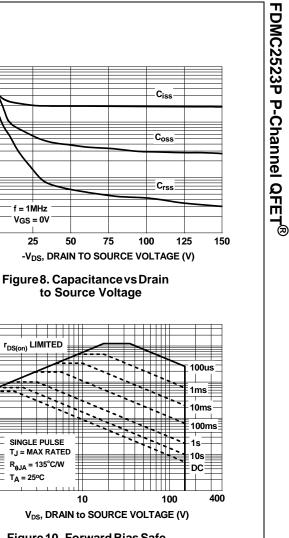
Package Marking and Ordering Information

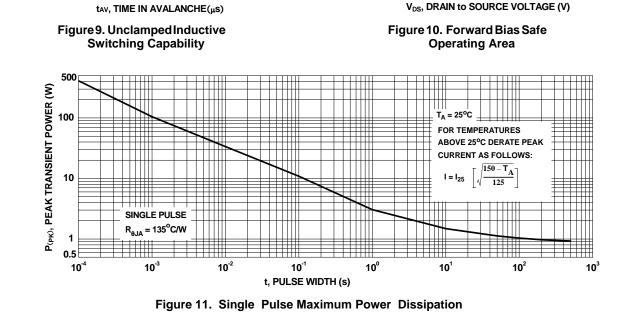

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
2523P	FDMC2523P	MLP 3.3x3.3	13 "	12 mm	3000 units

FDMC2523P P-Channel QFET®

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250μA, V _{GS} = 0V	-150			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature	$I_D = -250 \mu A$, referenced to 25°C		-138		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -150V, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			-1 -10	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-3	-3.8	-5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250\mu$ A, referenced to 25°C		6		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = -10V, I _D = -1.5A		1.1	1.5	Ω
		$V_{GS} = -10V, I_D = -1.5A, T_J = 125^{\circ}C$		2.0	3.6	
9 _{FS}	Forward Transconductance	$V_{DS} = -40V, I_D = -1.5A$ (Note 4)		1.4		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			200	270	pF
C _{oss}	Output Capacitance	$V_{DS} = -25V, V_{GS} = 0V,$		60	80	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		10	15	pF
R _q	Gate Resistance	f = 1MHz	0.1	7.5	15	Ω.
0	g Characteristics					
t _{d(on)}	Turn-On Delay Time			15	27	ns
t _r	Rise Time	$V_{DD} = -75V, I_D = -3A$		11	20	ns
t _{d(off)}	Turn-Off Delay Time	$-V_{GS} = -10V, R_{GEN} = 25\Omega$		19	35	ns
t _f	Fall Time	(Note 3,4)		13	24	ns
Q _g	Total Gate Charge	V _{GS} = -10V		6.2	9	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = -75V		1.4		nC
Q _{gd}	Gate to Drain "Miller" Charge	I _D = -3A (Note 3,4)		3.3		nC
-		(1010 0,7)				
	urce Diode Characteristics				-	1.
l _S		Maximum continuous Drain - Source Diode Forward Current			-3	A
ISM	Maximum Pulse Drain - Source Doide Fo			4.0	-12	A
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = -3.0A$		-1.8	-5	V
t _{rr} Q _{rr}	Reverse Recovery Time Reverse Recovery Charge	I _F = -3.0A, di/dt = 100A/μs (Note 3)		93 0.27		ns μC
lotes: : R _{θJA} is the su	a. 60°C/W when more a 1 in ² pad of 2 oz	board design.	35°C/W wh	ler mounting en mounted d of 2 oz cop	on a	e drain pins

FDMC2523P Rev.1.4


www.fairchildsemi.com



FDMC2523P Rev.1.4

3

www.fairchildsemi.com

1000

100

10

1

40

10

I_b, DRAIN CURRENT (A) 100 110 100 100

1E-3

1

0

f = 1MHz VGS = 0V

25

T_A = 25°C

r_{DS(on)} LIMITED

CAPACITANCE (pF)

Typical Characteristics T_J = 25°C unless otherwise noted

V_{DD} = -50V

4

Figure 7. Gate Charge Characteristics

T_J = 125°C

10⁻¹

Qg, GATE CHARGE(nC)

/_{DD} = -75V

8

10¹ 20

V_{DD} = -100V

6

T_J = 25°C

10⁰

10

8

6

4

2

0

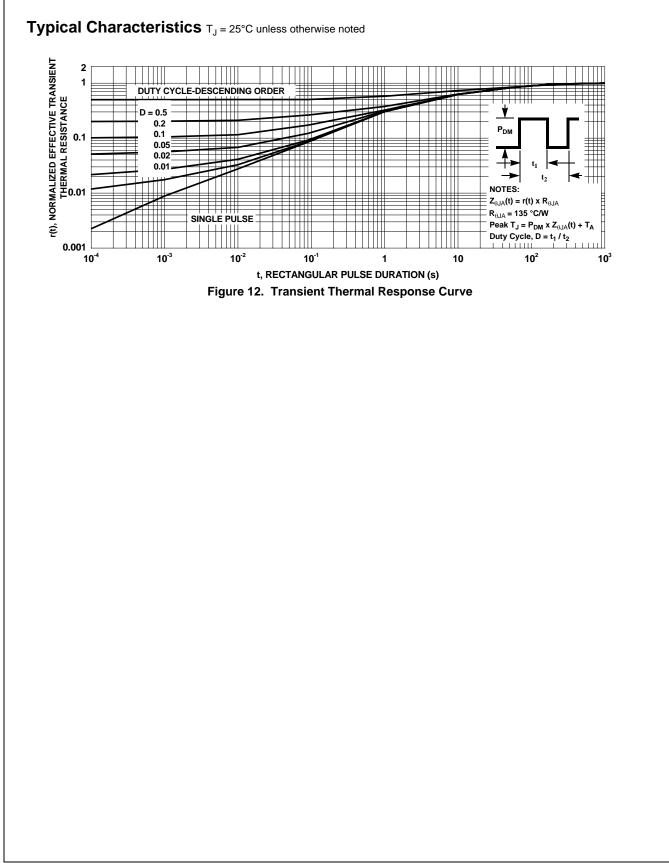
0

2

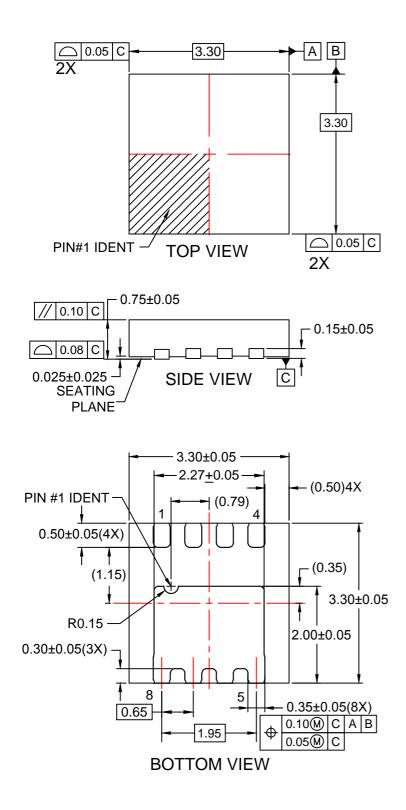
I_D = -3A

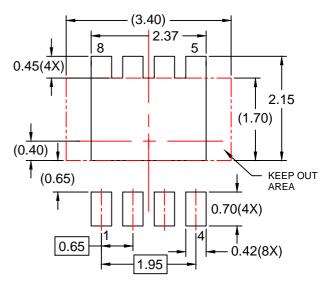
-V_{GS}, GATE TO SOURCE VOLTAGE(V)

I_{AS}, AVALANCHE CURRENT(A)


1

0.5


10⁻²


FDMC2523P Rev.1.4

www.fairchildsemi.com

FDMC2523P P-Channel QFET®

RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MLP08Srev3.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDMC2523P