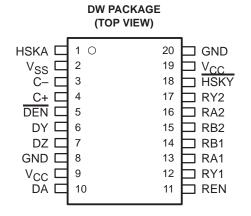
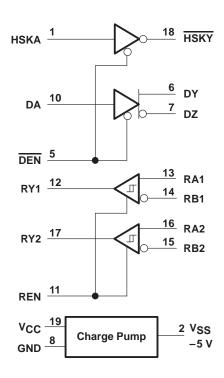
- Single-Chip Interface Solution for AppleTalk™ and LocalTalk™
- Designed to Operate Up To 1 Mbps In AppleTalk and LocalTalk
- Switched-Capacitor Voltage Converter Allows for Single 5-V Operation
- 4-kV ESD Protection on Bus Terminals
- Combines Multiple Components into a Single Chip Solution
- LinBiCMOS™ Process Technology

description


The SN75LBC775 is a low-power LinBiCMOS™ device that incorporates the drivers and receivers for an AppleTalk or a LocalTalk interface and a switched-capacitor voltage converter for a single 5-V supply operation. LocalTalk uses a hybrid of RS-422 with the transceiver connected to the network through a small isolation transformer. The AppleTalk mode provides point-to-point communications and uses the same differential driver and receiver as LocalTalk with the addition of a hybrid RS-423, single-ended handshake driver (HSK) and receiver. In the AppleTalk mode, the port connects directly to the receiver with no isolation transformer.

While the device power is turned off ($V_{CC} = 0$) or disabled in the LocalTalk mode, the outputs are in a <u>high</u>-impedance state. When the driver enable (\overline{DEN}) terminal is high, both the differential and serial driver outputs are in a high-impedance state.


The receiver output can be disabled and becomes a high impedance when the REN terminal is low.

A switched-capacitor voltage converter generates the negative voltage required from a single 5-V supply using two 22- μ F capacitors. One capacitor is between the C+ and C- terminals and the second is between VSS and ground.

The SN75LBC775 is characterized for operating over the temperature range of 0°C to 70°C.

functional diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LocalTalk and AppleTalk are trademarks of Apple Computer, Inc. LinBiCMOS is a trademark of Texas Instruments Incorporated.

DRIVER FUNCTION TABLE

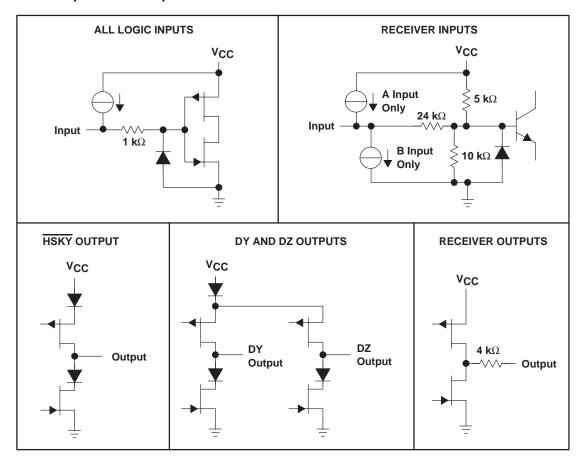
INF	PUT	ENABLE		OUTP	JT						
DA	HSKA	DEN	Α	В	HSKY						
Н	Х	L	Н	L	Х						
L	Х	L	L	Н	Х						
X	Н	L	Х	Χ	L						
X	L	L	Х	Χ	Н						
OPEN	OPEN	L	Н	L	L						
X	X	Н	z	Z	Z						
Χ	Х	OPEN	Z	Z	z						

RECEIVER FUNCTION TABLE

	IN	PUT	ENABLE	OUTPUT		
	RA RB		REN	RY		
Γ	H L		Н	Н		
ı	L	Н	Н	L		
ı	OPI	EN	Н	Н		
	SHORT [†]		Н	?		
L	Х	(L	Z		

$$t-0.2 \text{ V} < \text{V}_{1D} < 0.2 \text{ V}$$

H = high level,


L = low level,

X = irrelevant,

? = indeterminate,

Z = high impedance (off)

schematics of inputs and outputs

SN75LBC775 SINGLE-CHIP APPLETALK™ AND LOCALTALK™ TRANSCEIVER

SLLS216A - MAY 1995 - REVISED JANUARY 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, V _{CC} (see Note 1)
Supply voltage range, V _{SS}
Receiver input voltage range, V _I (RA)
Receiver differential input voltage range, V _{ID} –12 V to 12 V
Receiver output voltage range, V _O (RY)
Driver output voltage range, VO (Power Off) (DY, DZ, HSKY)15 V to 15 V
(Power On) (DY, DZ, HSKY) –11 V to 11 V
Driver input voltage range, V _I (DA, HSKA, DEN, REN)
Electrostatic discharge (see Note 2) Class 3, A: Bus terminals
All other terminals
Continuous total power dissipation
Operating free-air temperature range, T _A

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. This maximum rating is tested according to MIL-STD-883C, Method 3015.7.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING
DW	1125 mW	9.0 mW/°C	585 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH	DA, HSKA, DEN, REN	2			V
Low-level input voltage, V _{IL}	DA, HSKA, DEN, REN			0.8	V
Receiver input common-mode voltage ran	-7		7	V	
Differential input voltage, V _{ID} ‡		-12		12	V
Voltage-converter filter capacitance		22			μF
Voltage-converter filter-capacitor equivalent	e-converter filter capacitance e-converter filter-capacitor equivalent series resistance (ESR)			2	Ω
Operating free-air temperature, TA		0		70	°C

[‡] The algebraic convention, in which the less-positive (more negative) limit is designated minimum, is used in this data sheet.

NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted.

DRIVER

electrical characteristics over recommend operating characteristics (unless otherwise noted)

	PARAMETE	R	TEST CO	NDITIONS	MIN	TYP [†]	MAX	UNIT
Vон	High-level output voltage	Single ended	$R_1 = 3 k\Omega$	See Figure 1	3.7			V
VOL	Low-level output voltage	Sirigle erided	K_ = 3 Ks2,	See Figure 1			-3.7	V
V _{OD}	Magnitude of differential out	See Figure 2		4.0	5.6		V	
Δ V _{OD}	Change in differential voltage	See Figure 2			10	250	mV	
Voc	Common-mode output volta	See Figure 3		-1		3	V	
ΔVOC(SS)	Change in steady-state com	mon-mode output voltage	See Figure 3				±200	mV
loz	High-impedance output curr	ent	$V_{CC} = 0, -10 \text{ V}$	′ ≤ V _O ≤ 10 V			±100	μΑ
los	Short-circuit output current		$-5 \text{ V} \leq \text{V}_{\text{O}} \leq 5 \text{ V}$	V			450	mA
Icc	Supply current		DEN at 0 V, No load	REN at 5 V,		5	10	mA
lН	High-level input current		V _I = 5 V				200	μΑ
1	All terminals except REN		1/: 0			-100	-200	μΑ
¹IL	low-level input current	REN	V _I = 0			-300	-455	μΑ

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommend operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Propagation delay time, high- to low-level	Single ended			155	300	ns
tPHL	Propagation delay time, high- to low-level	Differential	1 1		115	180	ns
	Propagation delay time law to high layel	Single ended			140	300	ns
tPLH	Propagation delay time, low- to high-level	Differential			115	180	ns
tpZL	Propagation delay time, high-impedance to lov			100	250	ns	
^t PZH	Propagation delay time, high-impedance to high	See Figures 1 and 2		100	250	ns	
tPLZ	Propagation delay time, low-level to high-impe			100	250	ns	
tPHZ	Propagation delay time, high-level to high-imp	edance output	See Figures 1 and 2		100	250	ns
	Rise time	Single ended			135	300	ns
t _r	Rise time	Differential	1 1		90	180	ns
4.	Fall time	Single ended]		145	300	ns
tf	Fall time	Differential]		95	180	ns
t	Pulso skow Itania tana I	Single ended] i		15	50	ns
^t sk(p)	Pulse skew, tpLH-tpHL	Differential	1		2	22	ns

[‡] The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet.

RECEIVER

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{IT+}	Positive-going differential input voltage threshold				200	mV
V _{IT} _	Negative-going differential input voltage threshold [‡]]	-200			mV
V _{hys}	Input voltage hysteresis (VIT+ - VIT-)	$I_{OH} = 2 \text{ mA},$ $I_{OL} = -2 \text{mA},$ See Figure 4		30		mV
Vон	High-level output voltage	Coo rigulo 4	2	4.5		V
VOL	Low-level output voltage				0.8	V
las	Object admits a standard assessed t	V _O = 0	8	50	85	mA
los	Short-circuit output current‡	VO = VCC	-85	-50	-8	mA
rį	Input resistance	$V_{CC} = 0 \text{ or } 5.25 \text{ V}, -12 \text{ V} \le V_{I} \le 12 \text{ V}$	6			kΩ

switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CON	MIN	TYP†	MAX	UNIT	
tPHL	Propagation delay time, high- to low-level output				25	60	ns
tPLH	Propagation delay time, low- to high-level output		0.45.5		22	60	ns
t _r	Rise time	$R_L = 2 k\Omega$, See Figure 4	$C_L = 15 pF$,		8	25	ns
t _f	Fall time]	I		7	25	ns
tSK(P)	Pulse skew, tpLH - tpHL				3	20	ns
t _{PZL}	Receiver output enable time to low-level output				50		ns
tPZH	Receiver output enable time to high-level output	C 90 pF	See Figure 5		50		ns
t _{PLZ}	Receiver output disable time to low-level output	C _L = 80 pF, See Fig	See Figure 5		50		ns
tPHZ	Receiver output disable time to high-level output		ľ		50		ns

 $[\]overline{\dagger}$ All typical values are at V_{CC} = 5 V and T_A = 25°C.

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. ‡ The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet.

PARAMETER MEASUREMENT INFORMATION

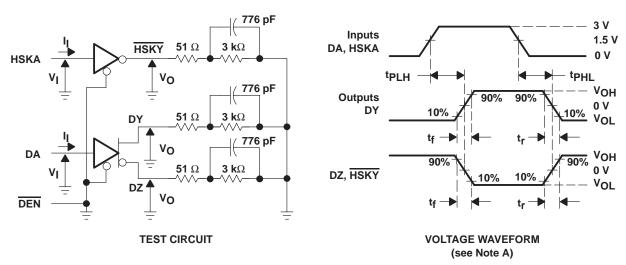
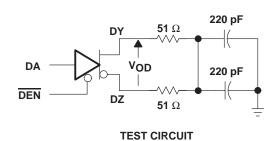
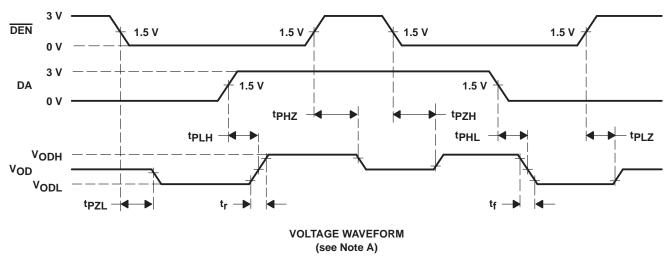




Figure 1. Driver Propagation and Transition Times for AppleTalk

NOTE A: The input waveform t_f , $t_f < = 10$ ns

Figure 2. Driver Propagation and Transition Times for LocalTalk

PARAMETER MEASUREMENT INFORMATION

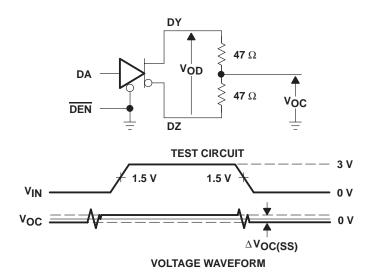
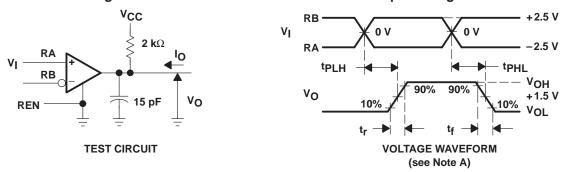



Figure 3. Differential Driver Common Mode Output Voltage Tests

NOTE A: The input waveform t_f , $t_f < = 10$ ns

Figure 4. Receiver Propagation and Transition Times

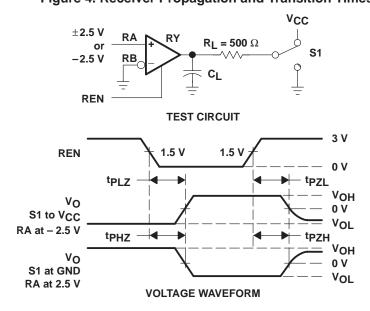


Figure 5. Receiver Enable and Disable Test Circuit and Waveform

TYPICAL CHARACTERISTICS

MAXIMUM DRIVER DATA RATE vs

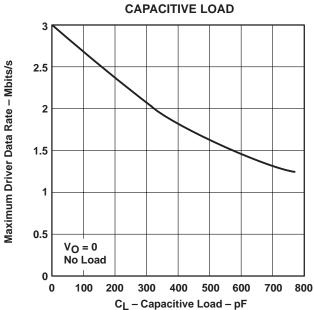
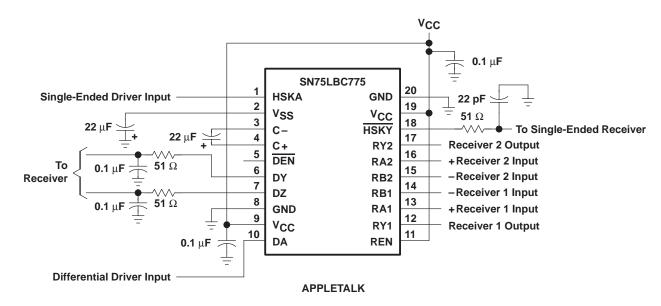
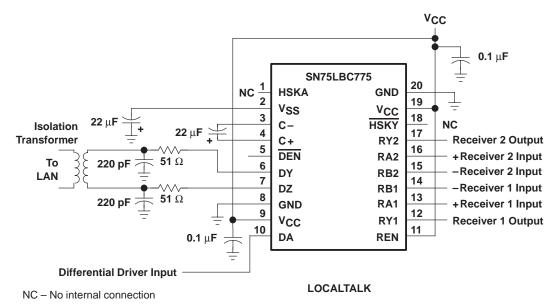
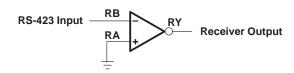
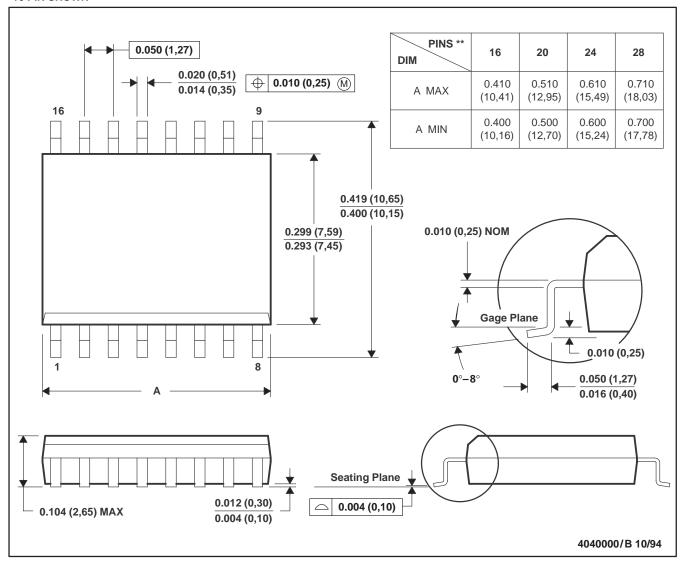




Figure 6

APPLICATION INFORMATION




Figure 7. Receiving RS-423 Signals With a Differential Receiver

MECHANICAL INFORMATION

DW (R-PDSO-G**)

16 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: B. All linear dimensions are in inches (millimeters).

C. This drawing is subject to change without notice.

D. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

E. Falls within JEDEC MS-013

.com 2-Oct-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN75LBC775DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75LBC775DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75LBC775DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75LBC775DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

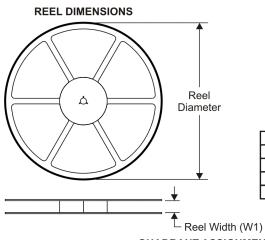
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

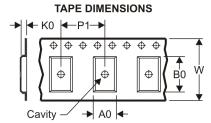
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

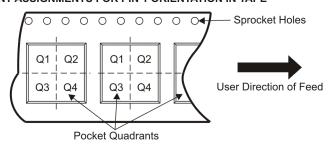
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

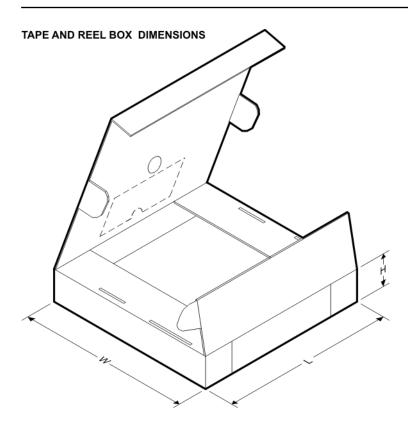

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75LBC775DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.1	2.65	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75LBC775DWR	SOIC	DW	20	2000	346.0	346.0	41.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications				
Audio	www.ti.com/audio			
Automotive	www.ti.com/automotive			
Broadband	www.ti.com/broadband			
Digital Control	www.ti.com/digitalcontrol			
Medical	www.ti.com/medical			
Military	www.ti.com/military			
Optical Networking	www.ti.com/opticalnetwork			
Security	www.ti.com/security			
Telephony	www.ti.com/telephony			
Video & Imaging	www.ti.com/video			
Wireless	www.ti.com/wireless			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated