

Vishay Beyschlag

Precision Thin Film MELF Resistors

MMU 0102, MMA 0204 and MMB 0207 precision thin film MELF resistors are the perfect choice for most fields of modern professional electronics where reliability and stability is of major concern. The typical applications in the fields of automotive, telecommunication, and medical equipment reflect the outstanding level of proven reliability.

FEATURES

- Approved according to EN 140401-803
- AEC-Q200 qualified
- Advanced metal film technology
- Superior stability: class 0.05
- · Intrinsic sulfur resistance
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

ROHS
COMPLIANT
HALOGEN
FREE
GREEN

(5-2008)

APPLICATIONS

- Automotive
- Telecommunication
- Industrial
- Medical equipment

TECHNICAL SPECIFICATIONS	TECHNICAL SPECIFICATIONS							
DESCRIPTION	MMU 0102	MMA 0204	MMB 0207					
DIN size	0102	0204	0207					
Metric size code	RC2211M	RC3715M	RC6123M					
Resistance range	22 Ω to 332 k Ω	10 Ω to 511 kΩ	15 Ω to 1 M Ω					
Resistance tolerance	± 0.5 %; ± 0.25 %; ± 0.1 % ± 0.25 %; ± 0.1							
Temperature coefficient	± 25 ppm/K; ± 15 ppm/K							
Rated dissipation, $P_{70}^{(1)}$	0.2 W	0.2 W 0.25 W						
Operating voltage, U _{max.} AC _{RMS} /DC	150 V 200 V		350 V					
Permissible film temperature, $g_{\text{F max.}}^{(1)}$		125 °C						
Operating temperature range (1)		-55 °C to 125 °C						
Permissible voltage against ambient (insulation):								
1 min, <i>U</i> _{ins}	200 V	300 V	500 V					
Failure rate: FIT _{observed} ≤ 0.1 x 10 ⁻⁹ /h								

Note

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

⁽¹⁾ Please refer to APPLICATION INFORMATION below

www.vishay.com

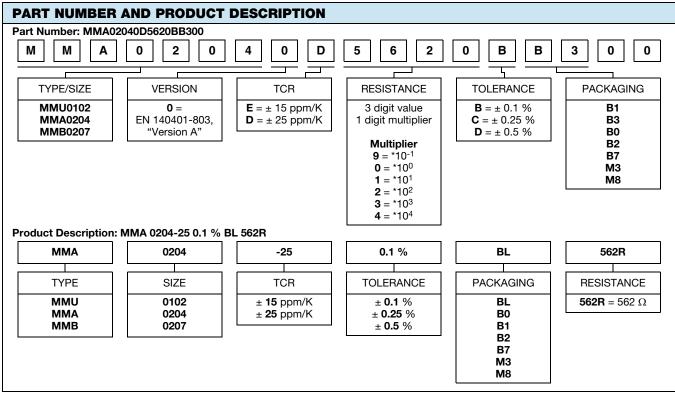
Vishay Beyschlag

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION						
OPERATION MODE		PRECISION	STANDARD			
	MMU 0102	0.06 W	0.2 W			
Rated dissipation, P ₇₀	MMA 0204	0.07 W	0.25 W			
	MMB 0207	0.11 W	0.4 W			
Operating temperature range		-10 °C to 85 °C	-55 °C to 125 °C			
Permissible film temperature, \mathcal{G}_{F} max.		85 °C	125 °C			
	MMU 0102	22 Ω to 332 k Ω	22 Ω to 332 k Ω			
	MMA 0204	10 Ω to 511 k Ω	10 Ω to 511 k Ω			
Max. resistance change at P_{70} for	MMB 0207	15 Ω to 1 M Ω	15 Ω to 1 M Ω			
resistance range, $ \Delta R/R $ after:	1000 h	≤ 0.05 %	≤ 0.1 %			
	8000 h	≤ 0.1 %	≤ 0.2 %			
	225 000 h	≤ 0.3 %	≤ 0.6 %			

Note

• The presented operation modes do not refer to different types of resistors, but actually show examples of different loads, that lead to different film temperatures and different achievable load-life stability (drift) of the resistance value. A suitable low thermal resistance of the circuit board assembly must be safeguarded in order to maintain the film temperature of the resistors within the specified limits. Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for information on the general nature of thermal resistance

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE								
TYPE/SIZE	TCR	TOLERANCE	RESISTANCE	E-SERIES				
	. 05 nnm//	± 0.25 %	47 Ω to 332 kΩ					
	± 25 ppm/K	± 0.1 %	100 Ω to 221 kΩ					
MMU 0102		± 0.5 %	22 Ω to 100 kΩ	E24, E192				
	± 15 ppm/K ⁽¹⁾	± 0.25 %	47 Ω to 100 kΩ					
		± 0.1 %	100 Ω to 100 kΩ					
	. 05 nnm//	± 0.25 %	20 Ω to 511 kΩ					
	± 25 ppm/K	± 0.1 %	20 Ω to 511 kΩ					
MMA 0204		± 0.5 %	10 Ω to 332 kΩ	E24, E192				
	± 15 ppm/K ⁽¹⁾	± 0.25 %	20 Ω to 332 kΩ					
		± 0.1 %	20 Ω to 332 kΩ					
	. 05 nnm//	± 0.25 %	15 Ω to 1 MΩ					
MMB 0207	± 25 ppm/K	± 0.1 %	20 Ω to 1 MΩ	E24, E192				
	± 15 ppm/K	± 0.1 %	20 Ω to 1 MΩ					


Note

⁽¹⁾ Approval to EN 140401-803, "Version A", is not available for TCR \pm 15 ppm/K; \pm 0.5 %

Vishay Beyschlag

www.vishay.com

PACKAGING								
TYPE/SIZE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	PITCH	PACKAGING DIMENSIONS		
	B1	1000				Ø 180 mm/7"		
	B3 = BL	3000	Antistatic blister tape acc. IEC 60286-3, Type 2a	8 mm	4 mm	Ø 160 IIIII/7		
MMU 0102	В0	10 000	120 00200 0, Type 2a			Ø 330 mm/13"		
	M8	8000	Bulk case acc. IEC 60286-6	-	-	-		
	B1	1000		8 mm	4 mm	Ø 180 mm/7"		
	B3 = BL	3000	Antistatic blister tape acc. IEC 60286-3, Type 2a			Ø 160 IIIII/7		
MMA 0204	В0	10 000	120 00200 0, Type 2a			Ø 330 mm/13"		
	М3	3000	Bulk case acc. IEC 60286-6	-	-	-		
	B1	1000				Ø 180 mm/7"		
MMB 0207	B2	2000	Antistatic blister tape acc. IEC 60286-3, Type 2a	12 mm	4 mm	וווווווווווווווווווווווווווווווווווווו		
	B7	7000	120 00200 0, Typo 2a			Ø 330 mm/13"		

Notes

- Products can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION
- Approval to EN 140401-803, "Version A", is not available for \pm 15 ppm/K, \pm 0.5 %

www.vishay.com

Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade ceramic body (Al $_2$ O $_3$) and conditioned to achieve the desired temperature coefficient. Nickel plated steel termination caps are firmly pressed on the metallised rods. A special laser is used to achieve the target value by smoothly cutting a helical groove in the resistive layer without damaging the ceramics. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure matte tin on nickel plating. Five color code rings designate the resistance value and tolerance in accordance with **IEC 60062** (1).

The result of the determined production is verified by an extensive testing procedure performed on 100 % of the individual resistors. This includes full screening for the elimination of products with a potential risk of early life failures according to EN 140401-803, 2.1.2.2. Only accepted products are laid directly into the blister tape in accordance with **IEC 60286-3, Type 2a** ⁽¹⁾ or bulk case in accordance with **IEC 60286-6** ⁽¹⁾.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in **IEC 61760-1** ⁽¹⁾. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long term stability of the whole system.

The resistors are completely lead (Pb)-free, the pure matte tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes. Solderability is specified for 2 years after production or requalification, however, excellent solderability is proven after extended storage in excess of 10 years. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (2)
- The Global Automotive Declarable Substance List (GADSL) (3)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (4) for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

APPROVALS

The resistors are approved within the IECQ-CECC Quality Assessment System for Electronic Components to the detail specification **EN 140401-803** which refers to **EN 60115-1**, **EN 60115-8** and the variety of environmental test procedures of the **IEC 60068** ⁽¹⁾ series.

Conformity is attested by the use of the **CECC** logo () as the mark of conformity on the package label.

Vishay Beyschlag has achieved "Approval of Manufacturer" in accordance with IECQ 03-1. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IECQ 03-3-1 is granted for the Vishay Beyschlag manufacturing process. The resistors are gualified according to AEC-Q200.

RELATED PRODUCTS

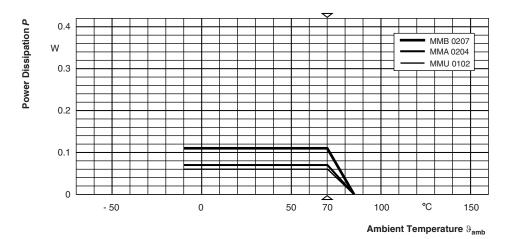
For thin film products with a wider resistance, see the datasheet:

 "Professional MELF Resistors" (www.vishav.com/doc?28713)

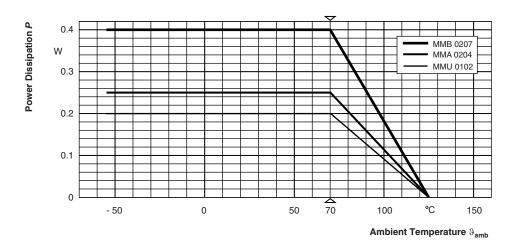
For products with tighter precision specification, see the datasheet

 "Ultra Precision MELF Resistors" (www.vishay.com/doc?28715)

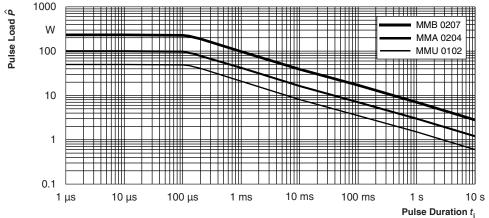
Resistors are available with established reliability in accordance with **EN 140401-803 Version E**. Please refer to datasheet


 "MELF Resistors with Established Reliability" (www.vishay.com/doc?28707)

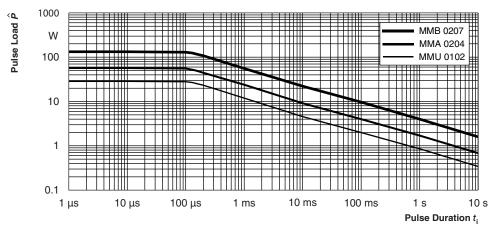
Notes


Revision: 16-Sep-16

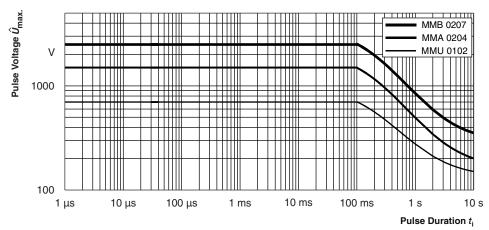
- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents
- (2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474
- (3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org
- (4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table


FUNCTIONAL PERFORMANCE

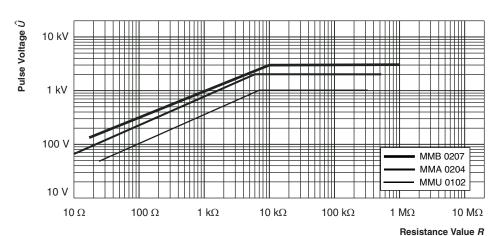
Derating - Precision Operation Mode


Derating - Standard Operation Mode

Maximum pulse load, single pulse; applicable if \vec{P} \rightarrow 0 and n \leq 1000 and $\hat{U} \leq \hat{U}_{\text{max}}$; for permissible resistance change \pm (0.5 % R + 0.01 Ω)


Single Pulse

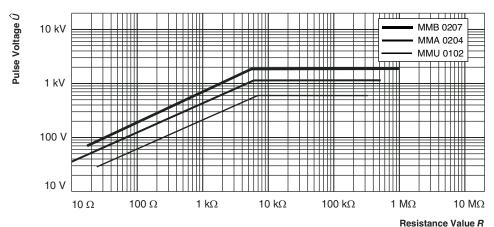
FUNCTIONAL PERFORMANCE


Maximum pulse load, continuous pulse; applicable if $\bar{P} \leq P$ (9_{amb}) and $\hat{U} \leq \hat{U}_{\text{max}}$; for permissible resistance change \pm (0.5 % R + 0.01 Ω)

Continuous Pulse

Maximum pulse voltage, single and continuous pulses; applicable if $\hat{P} \le \hat{P}_{\text{max}}$; for permissible resistance change \pm (0.5 % R + 0.01 Ω)

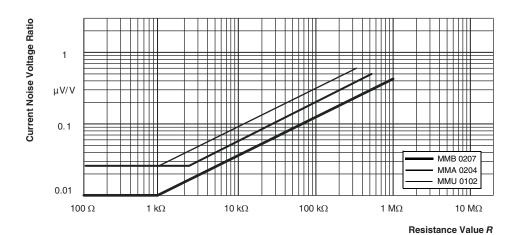
Pulse Voltage


Pulse load rating in accordance with IEC 60115-1, 4.27; 1.2 μ s/50 μ s; 5 pulses at 12 s intervals; for permissible resistance change \pm (0.5 % R + 0.05 Ω)

1.2/50 Pulse

www.vishay.com

Vishay Beyschlag


FUNCTIONAL PERFORMANCE

10 pulses at 1 minute intervals; for permissible resistance change \pm (0.5 % R + 0.05 Ω)

Pulse load rating in accordance with IEC 60115-1, 4.27; 10 μs/700 μs;

10/700 Pulse

In accordance with IEC 60195

Current Noise Voltage Ratio

TESTS AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8 (successor of EN 140400), sectional specification

EN 140401-803, detail specification

IEC 60068-2-xx, test methods

The components are approved under the IECQ-CECC quality assessment system for electronic components.

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-803. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included.

The testing also covers most of the requirements specified by EIA/ECA-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar)

A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified.

TEST	TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	PEF	REQUIREMENTS RMISSIBLE CHANGE	(ΔR)		
			Stability for product types:	STABILITY CLASS 0.05 OR BETTER	STABILITY CLASS 0.1 OR BETTER	STABILITY CLASS 0.25 OR BETTER		
			MMU 0102	100 Ω to 100 k Ω	43 Ω to 147 k Ω	22 Ω to 332 $k\Omega$		
			MMA 0204	100 Ω to 100 k Ω	43 Ω to 221 k Ω	10 Ω to 511 k Ω		
			MMB 0207	100 Ω to 270 k Ω	43 Ω to 510 k Ω	15 Ω to 1 M Ω		
4.5	-	Resistance	-	± 0.5	% R; ± 0.25 % R; ± 0.	1 % R		
4.8	-	Temperature coefficient	At (20/-55/20) °C and (20/125/20) °C	± 25 ppm/K, ± 15 ppm/K				
		Endurance at 70 °C: Precision	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off;					
		operation mode	70 °C; 1000 h	$\pm (0.05 \% R + 5 \text{ m}\Omega)$				
4.25.1			70 °C; 8000 h		\pm (0.1 % R + 5 m Ω)			
4.25.1	-	Endurance at 70 °C:	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off;					
		Standard operation mode	70 °C; 1000 h		$\pm (0.1 \% R + 5 \text{ m}\Omega)$			
		operation mode	70 °C; 8000 h		± (0.2 % R + 5 mΩ)			
4.05.0		Endurance at	85 °C; 1000 h	± (0.02 % R + 5 mΩ)	\pm (0.05 % R + 5 m Ω)	± (0.1 % R + 5 mΩ)		
4.25.3	_	upper category temperature	125 °C; 1000 h	$\pm (0.05 \% R + 5 \text{ m}\Omega)$	± (0.1 % R + 5 mΩ)	± (0.15 % R + 5 mΩ)		
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	$\pm (0.05 \% R + 5 \text{ m}\Omega)$ $\pm (0.1 \% R + 5 \text{ m}\Omega)$		R + 5 mΩ)		
4.37	67 (Cy)	Damp heat, steady state, accelerated	$\begin{array}{c} (85 \pm 2) \ ^{\circ}\text{C}; \\ (85 \pm 5) \ ^{\circ}\text{RH}; \\ U = 0.3 \ ^{\circ} \sqrt{P_{70} \ ^{\circ}\text{R}} \\ \leq 100 \ ^{\circ}\text{V} \ \text{and} \\ U = 0.3 \ ^{\circ}\text{U}_{\text{max}}; \\ \text{(the smaller value is valid)} \\ 1000 \ ^{\circ}\text{h} \end{array}$	± (0.15 % R + 5 mΩ)	\pm (0.25 % R + 5 mΩ)			

www.vishay.com

Vishay Beyschlag

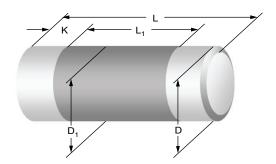
TEST	PROCEDU	JRES AND RE	QUIREMENTS				
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	PEF	REQUIREMENTS RMISSIBLE CHANGE	(ΔR)	
			Stability for product types:	STABILITY CLASS 0.05 OR BETTER	STABILITY CLASS 0.1 OR BETTER	STABILITY CLASS 0.25 OR BETTER	
			MMU 0102	100 Ω to 100 k Ω	43 Ω to 147 kΩ	22 Ω to 332 k Ω	
			MMA 0204	100 Ω to 100 k Ω	43 Ω to 221 k Ω	10 Ω to 511 k Ω	
			MMB 0207	100 Ω to 270 k Ω	43 Ω to 510 k Ω	15 Ω to 1 M Ω	
-	1 (Ab)	Cold	-55 °C; 2 h		\pm (0.02 % R + 5 m Ω)		
		Berilelese	30 min at LCT; 30 min at UCT; LCT = -10 °C; UCT = 85 °C				
4.19	14 (Na)	Rapid change of temperature	1000 cycles	$\pm (0.1 \% R + 5 \text{ m}\Omega)$	\pm (0.1 % R + 5 m Ω)	-	
			LCT = -55 °C; UCT = 125 °C				
			1000 cycles	-	-	± (0.2 % R + 5 mΩ)	
4.10		Short time overload: Precision operation mode	$U = 2.5 \times \sqrt{P_{70} \times R} \text{ or } U = 2 \times U_{\text{max.}};$	± (0.01 % R + 5 mΩ)	± (0.02 % R + 5 mΩ)	± (0.03 % R + 5 mΩ)	
4.13	-	Short time overload: Standard operation mode	whichever is the less severe; 5 s	± (0.05 % R + 5 mΩ)			
4.27	-	Single pulse high voltage overload: Standard operation mode	Severity no. 4: $U = 10 \text{ x } \sqrt{P_{70} \text{ x } R}$ or $U = 2 \times U_{\text{max.}}$; whichever is the less severe; 10 pulses 10 µs/700 µs	± (0.25 % R + 5 mΩ)			
4.39	-	Periodic electric overload: Standard operation mode	$U = \sqrt{15 \times P_{70} \times R} \text{ or } $ $U = 2 \times U_{\text{max.}};$ whichever is the less severe; $0.1 \text{ s on; } 2.5 \text{ s off;}$ 1000 cycles		± (0.5 % R + 5 mΩ)		
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 7.5 h	± (0.01 % R + 5 mΩ)	± (0.02 % R + 5 mΩ)	± (0.03 % R + 5 mΩ)	
4.38	-	Electrostatic discharge (Human Body Model) ⁽²⁾	IEC 61340-3-1 ⁽¹⁾ ; 3 pos. + 3 neg. discharges MMU 0102: 1.5 kV MMA 0204: 2 kV MMB 0207: 4 kV	± (0.5 % <i>R</i> + 50 mΩ)			
			Solder bath method; SnPb40; non-activated flux; (215 ± 3) °C; (3 ± 0.3) s	Good tinning	(≥ 95 % covered); no v	isible damage	
4.17	58 (Td)	Solderability	Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s	Good tinning (≥ 95 % covered); no visible damage			

www.vishay.com

Vishay Beyschlag

TEST	TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (Δ <i>R</i>)				
			Stability for product types:	STABILITY CLASS 0.05 OR BETTER	STABILITY CLASS 0.1 OR BETTER	STABILITY CLASS 0.25 OR BETTER		
			MMU 0102	100 Ω to 100 k Ω	43 Ω to 147 k Ω	22 Ω to 332 k Ω		
			MMA 0204	100 Ω to 100 k Ω	43 Ω to 221 k Ω	10 Ω to 511 kΩ		
			MMB 0207	100 Ω to 270 k Ω	43 Ω to 510 k Ω	15 Ω to 1 M Ω		
		Popietanes to	Solder bath method; (260 ± 5) °C; (10 ± 1) s		± (0.05 % R + 10 mΩ)			
4.18	I.18 58 (Td) Resistance to soldering heat		Reflow method 2 (IR/forced gas convection); (260 ± 5) °C; (10 ± 1) s	$\pm (0.01 \% R + 5 \text{ m}\Omega)$ $\pm (0.025 \% R + 5 \text{ m}\Omega)$				
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol; 50 °C; method 2	No visible damage				
4.30	45 (XA)	Solvent resistance of marking	Isopropyl alcohol; 50 °C; method 1, toothbrush	Marking legible; no visible damage				
4.32	21 (Ue ₃)	Shear (adhesion)	45 N		No visible damage			
4.33	21 (Ue ₁)	Substrate	Depth 2 mm, 3 times	No visible dam	nage, no open circuit i	n bent position		
4.33	21 (UE ₁)	bending	Depui z min, o mnes	$\pm (0.02 \% R + 10 \text{ m}\Omega)^{(3)}$ $\pm (0.05 \% R + 10 \text{ m}\Omega)^{(3)}$		$\pm (0.05 \% R + 10 \text{ m}\Omega)^{(3)}$		
4.7	-	Voltage proof	$U_{\text{RMS}} = U_{\text{ins}}$; 60 s	No	flashover or breakdo	wn		
4.35	-	Flammability	IEC 60695-11-5 ⁽¹⁾ , needle flame test; 10 s	No burning after 30 s				

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

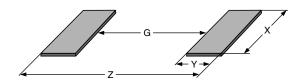

The pulse load stability of professional MELF resistors applies for precision resistors also. However, severe pulse loads are likely to jeopardize precision stability requirements

Special requirements apply to MICRO-MELF, MMU 0102: • R < 100 Ω : ± (0.25 % R + 10 m Ω)

[•] $100 \Omega \le R \le 221 \text{ k}\Omega$: $\pm 0.1 \% R$

^{• 221} k Ω < R: ± 0.25 % R

DIMENSIONS



DIMENSIONS AND MASS								
TYPE/SIZE	L (mm)	D (mm)	L _{1 min.} (mm)	D ₁ (mm)	K (mm)	MASS (mg)		
MMU 0102	2.2 + 0/- 0.1	1.1 + 0/- 0.1	1.2	D + 0/- 0.1	0.4 ± 0.05	8		
MMA 0204	3.6 + 0/- 0.2	1.4 + 0/- 0.1	1.8	D + 0/- 0.15	0.75 ± 0.1	22		
MMB 0207	5.8 + 0/- 0.15	2.2 + 0/- 0.2	3.2	D + 0/- 0.2	1.1 ± 0.1	80		

Note

Color code marking is applied according to IEC 60062 ⁽¹⁾ in five bands (E96 or E192 series). Each color band appears as a single solid line, voids are permissible if at least ²/₃ of the band is visible from each radial angle of view. The last color band for tolerance is approximately 50 % wider than the other bands. An interrupted band between the 4th and 5th full band indicates the temperature coefficient (yellow = TC25, orange = TC15)

PATTERN STYLES FOR MELF RESISTORS

RECOMMENDED SOLDER PAD DIMENSIONS								
		WAVE SO	LDERING			REFLOW S	OLDERING	
TYPE/SIZE	G (mm)	Y (mm)	X (mm)	Z (mm)	G (mm)	Y (mm)	X (mm)	Z (mm)
MMU 0102	0.7	1.2	1.5	3.1	1.1	0.8	1.3	2.7
MMA 0204	1.5	1.5	1.8	4.5	1.7	1.2	1.6	4.1
MMB 0207	2.8	2.1	2.6	7.0	3.2	1.7	2.4	6.6

Notes

- The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x (1), or in publication IPC-7351
- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents

Vishay Beyschlag

HISTORICAL 12NC INFORMATION

- The resistors had a 12-digit numeric code starting with 2312.
- The subsequent 4 digits indicated the resistor type, specification and packaging; see the 12NC table.
- The remaining 4 digits indicated the resistance value:
 - The first 3 digits indicated the resistance value.
 - The last digit indicated the resistance decade in accordance with the 12NC Indicating Resistance Decade table.

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
10 Ω to 99.9 Ω	9
100 Ω to 999 Ω	1
1 k Ω to 9.99 k Ω	2
10 kΩ to 99.9 kΩ	3
100 k Ω to 999 k Ω	4
1 M Ω to 9.99 M Ω	5

Historical 12NC

The 12NC of a MMU 0102 resistor, value 47 k Ω . and TCR 25 with \pm 0.25 % tolerance, supplied in blister tape of 3000 units per reel is: 2312 166 64703.

HISTORICAL 12NC - Resistor type and packaging 2312						
	DESCRIPTION		BLI	STER TAPE ON RI	EL	BULK CASE
TYPE	TCR	TOL.	B1 1000 UNITS	BL 3000 UNITS	B0 10 000 UNITS	M8 8000 UNITS
	. OF nom//	± 0.25 %	171 6	166 6	176 6	061 6
	± 25 ppm/K	± 0.1 %	171 7	166 7	176 7	061 7
MMU 0102		± 0.5 %	172 5	167 5	177 5	062 5
	± 15 ppm/K	± 0.25 %	172 6	167 6	177 6	062 6
		± 0.1 %	172 7	167 7	177 7	062 7
TYPE	TCR	TOL.	B1 1000 UNITS	BL 3000 UNITS	B0 10 000 UNITS	M3 3000 UNITS
	. 05 nnm//	± 0.25 %	141 6	156 6	146 6	041 6
	± 25 ppm/K	± 0.1 %	141 7	156 7	146 7	041 7
MMA 0204		± 0.5 %	142 5	157 5	147 5	042 5
	± 15 ppm/K	± 0.25 %	142 6	157 6	147 6	042 6
		± 0.1 %	142 7	157 7	147 7	042 7
TYPE	TCR	TOL.	B1 1000 UNITS	B2 2000 UNITS	B7 7000 UNITS	
MMB 0207	. 05 nnm/V	± 0.25 %	181 6	196 6	186 6	7
	± 25 ppm/K	± 0.1 %	181 7	196 7	186 7	7
	± 15 ppm/K	± 0.1 %	182 7	197 7	187 7	7

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

MMA02040E2003BB300	0 MMA02040E1000BB30	0 MMA02040E1000B030	0 MMA02040E1001B0300
MMA02040E1002B0300	MMA02040E1003B0300	MMA02040E1100B0300	MMA02040E1100BB300
MMA02040E1101B0300	MMA02040E1101BB300	MMA02040E1102B0300	MMA02040E1102BB300
MMA02040E1103B0300	MMA02040E1103BB300	MMA02040E1200B0300	MMA02040E1200BB300
MMA02040E1201B0300	MMA02040E1201BB300	MMA02040E1202B0300	MMA02040E1202BB300
MMA02040E1203B0300	MMA02040E1203BB300	MMA02040E1300B0300	MMA02040E1300BB300
MMA02040E1301B0300	MMA02040E1301BB300	MMA02040E1302B0300	MMA02040E1302BB300
MMA02040E1303B0300	MMA02040E1303BB300	MMA02040E1500B0300	MMA02040E1500BB300
MMA02040E1501B0300	MMA02040E1501BB300	MMA02040E1502B0300	MMA02040E1502BB300
MMA02040E1503B0300	MMA02040E1503BB300	MMA02040E1600B0300	MMA02040E1600BB300
MMA02040E1601B0300	MMA02040E1601BB300	MMA02040E1602B0300	MMA02040E1602BB300
MMA02040E1603B0300	MMA02040E1603BB300	MMA02040E1800B0300	MMA02040E1800BB300
MMA02040E1801B0300	MMA02040E1801BB300	MMA02040E1802B0300	MMA02040E1802BB300
MMA02040E1803B0300	MMA02040E1803BB300	MMA02040E2000B0300	MMA02040E2000BB300
MMA02040E2001B0300	MMA02040E2001BB300	MMA02040E2002B0300	MMA02040E2003B0300
MMA02040E2200B0300	MMA02040E2200BB300	MMA02040E2201B0300	MMA02040E2202B0300
MMA02040E2202BB300	MMA02040E2203B0300	MMA02040E2400B0300	MMA02040E2400BB300
MMA02040E2401B0300	MMA02040E2401BB300	MMA02040E2402B0300	MMA02040E2402BB300
MMA02040E2700B0300	MMA02040E2700BB300	MMA02040E2701B0300	MMA02040E2701BB300
MMA02040E2702B0300	MMA02040E2702BB300	MMA02040E3000B0300	MMA02040E3000BB300
MMA02040E3001B0300	MMA02040E3001BB300	MMA02040E3002B0300	MMA02040E3300B0300
MMA02040E3300BB300	MMA02040E3301B0300	MMA02040E3301BB300	MMA02040E3302B0300
MMA02040E3600B0300	MMA02040E3600BB300	MMA02040E3601B0300	MMA02040E3601BB300
MMA02040E3602B0300	MMA02040E3602BB300	MMA02040E3900B0300	MMA02040E3900BB300
MMA02040E3901B0300	MMA02040E3901BB300	MMA02040E3902B0300	MMA02040E3902BB300