

NHD-C128128BZ-FSW-GBW

COG (Chip-On-Glass) Liquid Crystal Display Module

NHD- Newhaven Display C128128- 128 x 128 Pixels

BZ- Model

F- Transflective

SW- Side White LED Backlight

G- STN-Gray

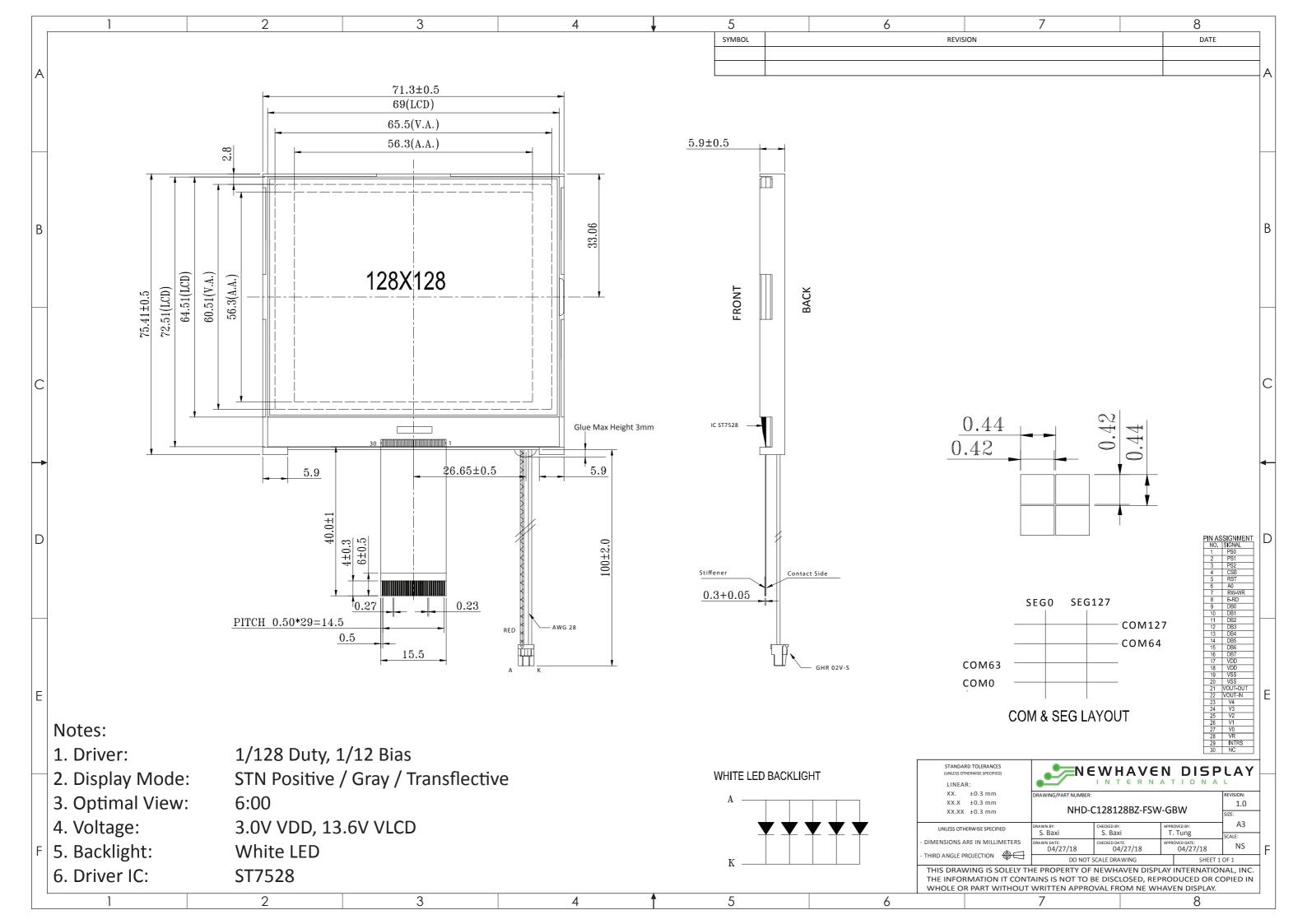
B- 6:00 Optimal View

W- Wide Temp

RoHS Compliant

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

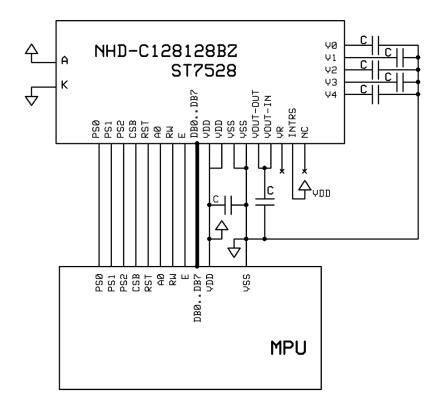

Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	6/17/2007	Initial Release	-
1	9/23/2009	User guide reformat	BE
2	10/14/2009	Updated Electrical Characteristic	MC
3	11/20/2009	Updated backlight supply current	MC
4	3/4/2011	Updated table of commands	AK
5	8/25/16	Mechanical Drawing, Electrical & Optical Char. Updated	SB
6	4/27/18	Mechanical Drawing & Electrical Characteristics Updated	SB

Functions and Features

- 128 x 128 pixels
- Built-in ST7528 controller
- +3.0V power supply
- 1/128 duty cycle; 1/12 bias
- RoHS Compliant



Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	PS0	Input	Parallel/serial data input select input
2	PS1	Input	(see Parallel/Serial Select table)
3	PS2	Input	IIC not available (tie low)
4	CSB	MPU	Active LOW Chip select
5	RST	MPU	Active LOW Reset signal
6	A0	MPU	Register select signal. A0=1: Data, A0=0: Command
7	R/W	MPU	6800 Mode: Read/Write select signal. R/W=1: Read R/W: =0:
	/WR		Write
	-		8080 Mode: Active LOW Write Signal
8	Е	MPU	6800 Mode: Active HIGH Enable Signal
	/RD		8080 Mode: Active LOW Read Signal
9-16	DB0-DB7	MPU	Bi-directional, three-state data bus lines
17,18	V _{DD}	Power Supply	Supply Voltage for logic (3.0V)
19,20	V _{SS}	Power Supply	Ground
21	V _{OUT}	Power Supply	Voltage booster circuit – connect to 1uF cap to Vss or VDD
22	V _{IN}	Power Supply	Tie to Vout
23	V ₄	Power Supply	1.0uF-2.2uF cap to VSS
24	V ₃	Power Supply	1.0uF-2.2uF cap to VSS
25	V ₂	Power Supply	1.0uF-2.2uF cap to VSS
26	V ₁	Power Supply	1.0uF-2.2uF cap to VSS
27	V ₀	Power Supply	1.0uF-2.2uF cap to VSS
28	V _R		No Connect
29	INTRS	Input	Internal resistor select pin: VDD=Enabled
30	NC	-	No Connect

Recommended LCD connector: 0.5mm pitch, 30 pin FFC. Molex p/n: 52892-3095

Backlight connector: GHR-02V-S Mates with: BM02B-GHS-T

Parallel/Serial Select Table

PS2	PS1	PS0	Interface mode	Data/	Data	Read/	Serial
				Command		Write	clock
L	L	Н	Parallel 80	A0	DB0 to DB7	RD/WR	-
L	Н	Н	Parallel 68	A0	DB0 to DB7	E/RW	-
L	L	L	3Line Serial	-	SID (DB7)	Write only	SCLK (DB6)
L	Н	L	4Line Serial	A0	SID (DB7)	Write only	SCLK (DB6)

^{*}Cannot read data from RAM in 4-line, 3-line, or IIC interface.

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-20	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	-	+80	°C
Supply Voltage	V_{DD}	-	2.7	3.0	3.3	V
Supply Current	I _{DD}	$V_{DD} = 3.0V$	0.5	1.0	1.5	mA
Supply for LCD (contrast)	V_{LCD}	$T_{OP} = 25^{\circ}C$	13.3	13.6	13.9	V
"H" Level input	V _{IH}	-	2.2	-	V_{DD}	V
"L" Level input	V _{IL}	-	V_{SS}	-	0.6	V
"H" Level output	Voh	-	2.4	-	V_{DD}	V
"L" Level output	Vol	-	V_{SS}	-	0.4	V
Backlight supply voltage	V_{LED}	-	3.0	3.3	3.5	V
Backlight supply current	I _{LED}	V _{LED} = 3.3V	30	45	60	mA

Optical Characteristics

	lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Outing al	Тор		φΥ+		-	35	•	0
Optimal	Bott	tom	φΥ-	CR ≥ 2	-	60	-	0
Viewing Angles	Left		θХ-	CR ≥ 2	-	60	-	0
Aligies	Righ	nt	θХ+		-	60	-	0
Contrast Rat	Contrast Ratio			-	2	6	-	-
Dosnonso T	ima	Rise	T_R	T - 25°C	-	150	250	ms
Response Tir	ime	Fall	T _F	$T_{OP} = 25^{\circ}C$	-	200	300	ms

Controller Information

Built-in ST7528 controller.

Please download specification at http://www.newhavendisplay.com/app notes/ST7528.pdf

^{*}In 4-line or 3-line interface, DB0-DB5, E, and RW must be tied High or Low

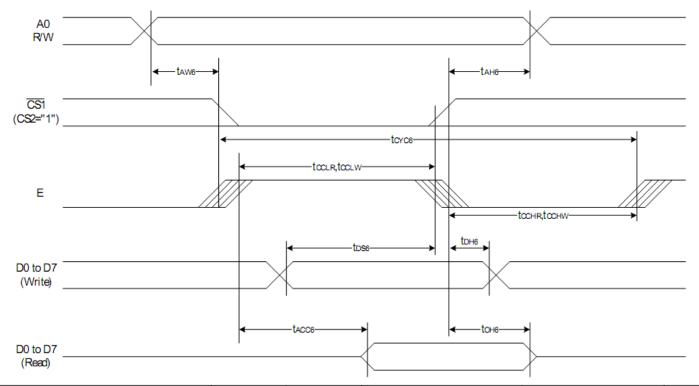

^{*}In IIC or 3-line interface, A0 must be tied High or Low

Table of Commands

Instruction	A0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=0 or 1											
	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set
Mode Set	0	0	FR3	FR2	FR1	FR0	0	BE	x'	EXT	FR(Frame frequency control) BE(Booster efficiency control)
EXT=0											
Read display data	1	1				Read	data				Read data into DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	x'	x'	2-byte instruction to specify the initial display line to realize
	0	0	x'	S6	S5	S4	S3	S2	S1	S0	vertical scrolling
Set initial COM0 register	0	0	0	1	0	0	0	1	x'	x'	2-byte instruction to specify the initial COM0 to realize
Get Illitial COMO register	0	0	x'	C 6	C5	C4	С3	C2	C1	C0	window scrolling
Pat partial display duty ration	0	0	0	1	0	0	1	0	x'	x'	2-byte instruction to set partial
Set partial display duty ration	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display duty ratio
	0	0	0	1	0	0	1	1	x'	x'	2-byte instruction to set N-line
Set N-line inversion	0	0	x'	x'	x'	N4	N3	N2	N1	N0	inversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Instruction	Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	
Ext=0												
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation	
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of internal voltage converter	
Select regulator register	0	0	0	0	1	0	0	R2	R1	R0	Select the internal resistance ratio of the regulator resistor	
Select electronic volumn	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify	
register	0	0	x'	x'	EV5	EV4	EV3	EV2	EV1	EV0	the reference voltage	
Select LCD bias	0	0	0	1	0	1	0	B2	B1	В0	Select LCD bias	
Bias Power Save	0	0	1	1	1	1	0	0	1	1	Bias Power save Save the Bias	
Dias Fower Save	0	0	0	0	0	0	0	0	0	0	current consumption	
SHL select	0	0	1	1	0	0	SHL	x'	x'	x'	COM bi-directional selection SHL=0: normal direction SHL=1: reverse direction	
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-direction selection ADC=0: normal direction ADC=1: reverse direction	
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator	
Set power save mode	0	0	1	0	1	0	1	0	0	Р	P=0: normal mode P=1: sleep mode	
Release power save mode	0	0	1	1	1	0	0	0	0	1	release power save mode	
Reset	0	0	1	1	1	0	0	0	1	0	initial the internal function	
Set data direction &	x'	x'	1	1	1	0	1	0	0	0	2-byte instruction to specify	
display data length(DDL)	x'	x'	D7	D6	D5	D4	D3	D2	D1	D0	the number of data bytes. (SPI mode)	
Select FRC and PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWM0	FRC(1:3FRC, 0:4FRC) PWM1 PWM0 0 0 45PWM 0 1 45 PWM 1 0 60PWM	
NOP	0	0	1	1	1	0	0	0	1	1	No operation	
Test Instruction	0	0	1	1	1	1	x'	x'	x'	x'	Don't use this instruction	

Timing Characteristics

lt	O'amad	Oursels of	O a wallful a w	Rat	Unite	
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		0	_	
Address setup time	A0	tAW6		0	_	1
System cycle time	1	tCYC6		240	_	
Enable L pulse width (WRITE)	WD	tEWLW		80	_	1
Enable H pulse width (WRITE)	WR	tEWHW		80	_]
Enable L pulse width (READ)	DD.	tEWLR		80	_	ns
Enable H pulse width (READ)	RD	tEWHR		140]
WRITE Data setup time		tDS6		40	_	
WRITE Data hold time	D0 to D7	tDH6		10	_]
READ access time	D0 to D7	tACC6	CL = 100 pF	_	70]
READ Output disable time	1	tOH6	CL = 100 pF	5	50]

Example Initialization Program

```
void write_command(unsigned char datum)
                                           /*Instruction register*/
A0=0;
                                           /*Read inactive*/
E=1;
bus=datum;
                                           /*put data on port 1*/
CSB=0;
                                           /*Chip select active*/
                                           /*Write active*/
RW=0;
RW=1;
                                           /*Write inactive; latch in data*/
                                           /*Chip select inactive*/
CSB=1;
void write data(unsigned char datum)
{
A0=1;
                                           /*DDRAM data register*/
E=1;
bus=datum;
CSB=0;
RW=0;
RW=1;
CSB=1;
     void lcd init(void){
   write command(0xA2);
                       //ICON OFF;
   write command(0xAE);
                       //Display OFF
                       //Set Duty ratio
   write command(0x48);
   write command(0x80);
                       //No operation
   write command(0xa0);
                       //Set scan direction
   write command(0xc8);
                       //SHL select
   write command(0x40);
                       //Set START LINE
   write command(0x00);
   write_command(0xab);
                       //OSC on
                       //3x
   write_command(0x64);
   delay(2000);
   write command(0x65);
                       //4x
   delay(2000);
   write_command(0x66);
                       //5x
   delay(2000);
                       //6x
   write_command(0x67);
   delay(2000);
   write command(Ra Rb);
                        //RESISTER SET
   write command(0x81);
                       //Set electronic volume register
   write command(vopcode); //n=0~3f
   write command(0x57);
                       //1/12bias
   write command(0x92);
                       //FRC and pwm
   write command(0x2C);
   delay(20000);//200ms
   write_command(0x2E);
   delay(20000);//200ms
   write command(0x2F);
   delay(20000);//200ms
```

```
write command(0x92);
                        //frc and pwm
write command(0x38);
                        //external mode
write_command(0x75);
    /*** start settings for 16-level grayscale ***/
write command(0x97);
                        //3frc,45pwm
write command(0x80);
write command(0x00);
write_command(0x81);
write_command(0x00);
write_command(0x82);
write command(0x00);
write command(0x83);
write_command(0x00);
write_command(0x84);
write_command(0x06);
write command(0x85);
write command(0x06);
write_command(0x86);
write_command(0x06);
write_command(0x87);
write_command(0x06);
write command(0x88);
write command(0x0b);
write_command(0x89);
write command(0x0b);
write_command(0x8a);
write command(0x0b);
write command(0x8b);
write command(0x0b);
write_command(0x8c);
write_command(0x10);
write command(0x8d);
write command(0x10);
write_command(0x8e);
write_command(0x10);
write_command(0x8f);
write_command(0x10);
write command(0x90);
write command(0x15);
write command(0x91);
write_command(0x15);
write_command(0x92);
write command(0x15);
write command(0x93);
write_command(0x15);
write_command(0x94);
write_command(0x1a);
write command(0x95);
write command(0x1a);
write command(0x96);
write command(0x1a);
write_command(0x97);
write_command(0x1a);
write command(0x98);
```

```
write command(0x1e);
write command(0x99);
write command(0x1e);
write_command(0x9a);
write_command(0x1e);
write_command(0x9b);
write command(0x1e);
write command(0x9c);
write command(0x23);
write_command(0x9d);
write_command(0x23);
write_command(0x9e);
write command(0x23);
write command(0x9f);
write_command(0x23);
write_command(0xa0);
write_command(0x27);
write command(0xa1);
write command(0x27);
write_command(0xa2);
write_command(0x27);
write_command(0xa3);
write_command(0x27);
write command(0xa4);
write_command(0x2b);
write_command(0xa5);
write_command(0x2b);
write_command(0xa6);
write command(0x2b);
write command(0xa7);
write_command(0x2b);
write_command(0xa8);
write_command(0x2f);
write command(0xa9);
write command(0x2f);
write_command(0xaa);
write_command(0x2f);
write_command(0xab);
write_command(0x2f);
write command(0xac);
write command(0x32);
write_command(0xad);
write_command(0x32);
write_command(0xae);
write command(0x32);
write command(0xaf);
write_command(0x32);
write_command(0xb0);
write_command(0x35);
write command(0xb1);
write command(0x35);
write command(0xb2);
write command(0x35);
write_command(0xb3);
write_command(0x35);
```

```
write command(0xb4);
   write_command(0x38);
   write_command(0xb5);
   write_command(0x38);
   write_command(0xb6);
   write_command(0x38);
   write command(0xb7);
   write_command(0x38);
   write_command(0xb8);
   write_command(0x3a);
   write_command(0xb9);
   write_command(0x3a);
   write_command(0xba);
   write_command(0x3a);
   write_command(0xbb);
   write_command(0x3a);
   write_command(0xbc);
   write_command(0x3c);
   write_command(0xbd);
   write_command(0x3c);
   write_command(0xbe);
   write_command(0x3c);
   write_command(0xbf);
   write_command(0x3c);
       //end settings for 16-level grayscale
   write_command(0x38);
   write_command(0x74);
   write_command(0xaf); //Display ON
,
/***********************/
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C , 48hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C, 90% RH, 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	-0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Newhaven Display:

NHD-C128128BZ-FSW-GBW