Linear Low Noise SiGe:C Bipolar RF Transistor

- For medium power amplifiers and driver stages
- Based on Infineon' s reliable high volume Silicon Germanium technology
- High OIP3 and $P_{-1 d B}$
- Ideal for low phase noise oscilators

- Maxim. available Gain $G_{m a}=21.5 \mathrm{~dB}$ at 1.8 GHz

Minimun noise figure $N F_{\text {min }}=0.8 \mathrm{~dB}$ at 1.8 GHz

- Pb-free (RoHS compliant) and halogen-free thin small flat package with visible leads
- Qualification report according to AEC-Q101 available

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFP650F	R5s	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	TSFP-4

Maximum Ratings at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$		V
$T_{\text {A }}=25^{\circ} \mathrm{C}$		4	
$T_{\text {A }}=-55^{\circ} \mathrm{C}$		3.7	
Collector-emitter voltage	$V_{\text {CES }}$	13	
Collector-base voltage	$V_{\text {CBO }}$	13	
Emitter-base voltage	$V_{\text {EBO }}$	1.2	
Collector current	$I_{\text {c }}$	150	mA
Base current	I_{B}	10	
Total power dissipation ${ }^{1)}$ $T_{\mathrm{S}} \leq 85^{\circ} \mathrm{C}$	$P_{\text {tot }}$	500	mW
Junction temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {Sta }}$	-55 ... 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{2}$)	$R_{\text {thJs }}$	130	$\mathrm{~K} / \mathrm{W}$

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(\mathrm{BR}) \mathrm{CEO}}$ | 4 | 4.5 | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=3 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 100 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=13 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 10 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 110 | 180 | 270 | - |
| DC current gain | | | | | |
| $I_{\mathrm{C}}=80 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}$, pulse measured | | | | | |

[^0]BFP650F

Electrical Characteristics at $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Transition frequency $I_{\mathrm{C}}=80 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, f=1 \mathrm{GHz}$	$f_{\text {T }}$	-	42	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=3 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{c b}$	-	0.26	-	pF
Collector emitter capacitance $V_{\mathrm{CE}}=3 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ base grounded	$C_{\text {ce }}$	-	0.45	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0$ collector grounded	$C_{\text {eb }}$	-	1.3	-	
Minimum noise figure $\begin{aligned} & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\text {Sopt }} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, f=6 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \end{aligned}$	$N F_{\text {min }}$	-	$\begin{aligned} & 0.8 \\ & 1.9 \end{aligned}$		dB
Power gain, maximum available1) $\begin{aligned} & I_{\mathrm{C}}=80 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{Sopt},} \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{Lopt}} \\ & f=1.8 \mathrm{GHz} \\ & f=6 \mathrm{GHz} \end{aligned}$	$G_{m a}$	-	$\begin{gathered} 21.5 \\ 11 \end{gathered}$		
Transducer gain $\begin{aligned} & I_{\mathrm{C}}=80 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \\ & f=6 \mathrm{GHz} \end{aligned}$	$\left\|S_{21 \mathrm{e}}\right\|^{2}$	15	$\begin{gathered} 17.5 \\ 7.5 \end{gathered}$		dB
Third order intercept point at output2) $\begin{aligned} & V_{\mathrm{CE}}=3 \mathrm{~V}, I_{\mathrm{C}}=80 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	IP3	-	31	-	dBm
1 dB compression point at output $\begin{aligned} & I_{\mathrm{C}}=80 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	17.5	-	

${ }^{1} G_{m a}=\left|S_{21 \mathrm{e}} / S_{12 e}\right|\left(\mathrm{k}-\left(\mathrm{k}^{2}-1\right)^{1 / 2}\right)$
${ }^{2}$ IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Transition frequency $f_{\mathrm{T}}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=$ parameter in $\mathrm{V}, f=1 \mathrm{GHz}$

Collector-base capacitance $C_{c b}=f\left(V_{C B}\right)$ $f=1 \mathrm{MHz}$

Power gain $G_{\text {ma }}, G_{\mathrm{ms}}=f(f)$
$V_{C E}=3 \mathrm{~V}, I_{\mathrm{C}}=80 \mathrm{~mA}$

Power gain $G_{m a}, G_{m s}=f\left(I_{C}\right)$
$V_{C E}=3 \mathrm{~V}$
$f=$ parameter in GHz

Power gain $G_{\mathrm{ma}}, G_{\mathrm{ms}}=f\left(V_{\mathrm{CE}}\right)$
$I_{C}=80 \mathrm{~mA}$
$f=$ parameter in GHz

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Infineon:

[^0]: ${ }^{1} T_{\mathrm{S}}$ is measured on the emitter lead at the soldering point to the pcb
 ${ }^{2}$ For the definition of $R_{\text {thJs }}$ please refer to Application Note AN077 (Thermal Resistance Calculation)

