Dual Switching Diode

Features

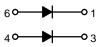
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Continuous Reverse Voltage	V_R	100	V
Recurrent Peak Forward Current	IF	200	mA
Peak Forward Surge Current Pulse Width = 10 μs	I _{FM(surge)}	500	mA

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation (Note 1) T _A = 25°C Derate above 25°C	P _D	357 2.9	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{ heta JA}$	350	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation (Note 1) T _A = 25°C Derate above 25°C	P _D	500 4.0	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	250	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 @ Minimum Pad

ON Semiconductor®

www.onsemi.com

SOT-563 CASE 463A PLASTIC

MARKING DIAGRAM

A6 = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
BAS16DXV6T1G	SOT-563 (Pb-Free)	4000 / Tape & Reel
SBAS16DXV6T1G	SOT-563 (Pb-Free)	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Forward Voltage $ (I_F = 1.0 \text{ mA}) $ $ (I_F = 10 \text{ mA}) $ $ (I_F = 50 \text{ mA}) $ $ (I_F = 150 \text{ mA}) $	V _F	- - - -	715 855 1000 1250	mV
Reverse Current $(V_R = 100 \text{ V})$ $(V_R = 75 \text{ V}, T_J = 150^{\circ}\text{C})$ $(V_R = 25 \text{ V}, T_J = 150^{\circ}\text{C})$	I _R	- - -	1.0 50 30	μΑ
Capacitance $(V_R = 0, f = 1.0 \text{ MHz})$	C _D	-	2.0	pF
Reverse Recovery Time (I _F = I _R = 10 mA, R _L = 50 Ω) (Figure 1)	t _{rr}	-	6.0	ns
Stored Charge (I _F = 10 mA to V_R = 6.0 V, R_L = 500 Ω) (Figure 2)	QS	_	45	PC
Forward Recovery Voltage ($I_F = 10 \text{ mA}, t_r = 20 \text{ ns}$) (Figure 3)	V _{FR}	_	1.75	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

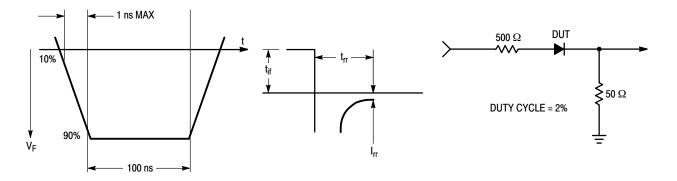


Figure 1. Reverse Recovery Time Equivalent Test Circuit

Figure 2. Stored Charge Equivalent Test Circuit

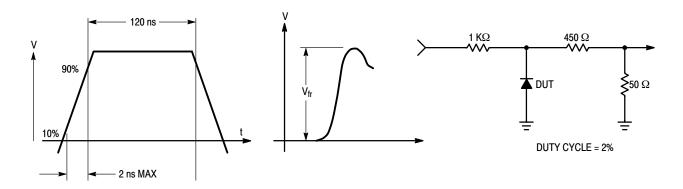
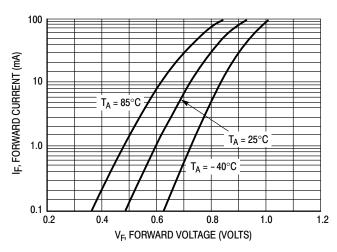



Figure 3. Forward Recovery Voltage Equivalent Test Circuit

TYPICAL CHARACTERISTICS

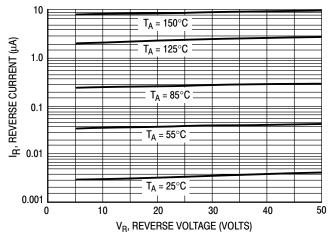


Figure 4. Forward Voltage

Figure 5. Leakage Current

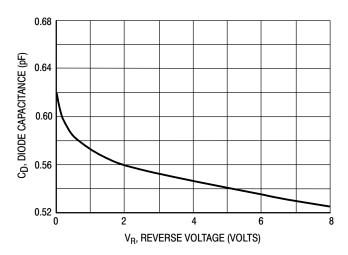


Figure 6. Capacitance

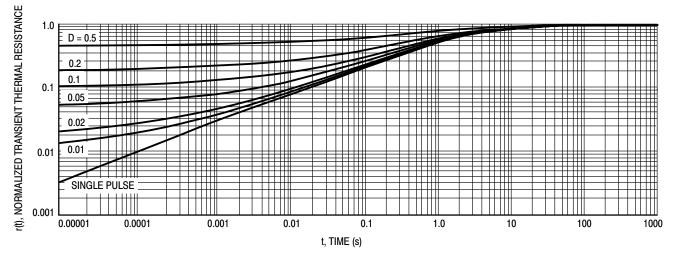
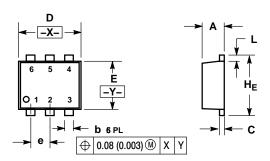



Figure 7. Normalized Thermal Response

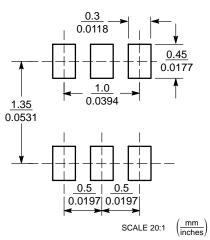
PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A ISSUE F

NOTES

- OTEC.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: MILLIMETERS
- CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MIL	MILLIMETERS			INCHES		
DII	/I MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.021	0.023	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.12	0.18	0.003	0.005	0.007	
D	1.50	1.60	1.70	0.059	0.062	0.066	
E	1.10	1.20	1.30	0.043	0.047	0.051	
е		0.5 BSC			0.02 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012	
He	1.50	1.60	1.70	0.059	0.062	0.066	

STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2

5. N/C 6. ANODE 1

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

BAS16DXV6T1G SBAS16DXV6T1G