

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

SEMICONDUCTOR®

FDY3000NZ

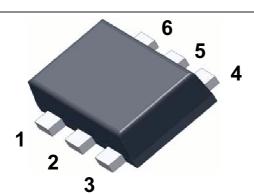
Dual N-Channel 2.5V Specified PowerTrench[®] MOSFET

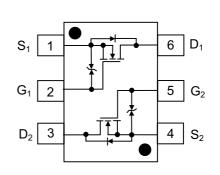
General Description

This Dual N-Channel MOSFET has been designed using Fairchild Semiconductor's advanced Power Trench process to optimize the $R_{\text{DS(ON)}} \textcircled{O} V_{\text{GS}}$ = 2.5v.

Applications

Li-Ion Battery Pack

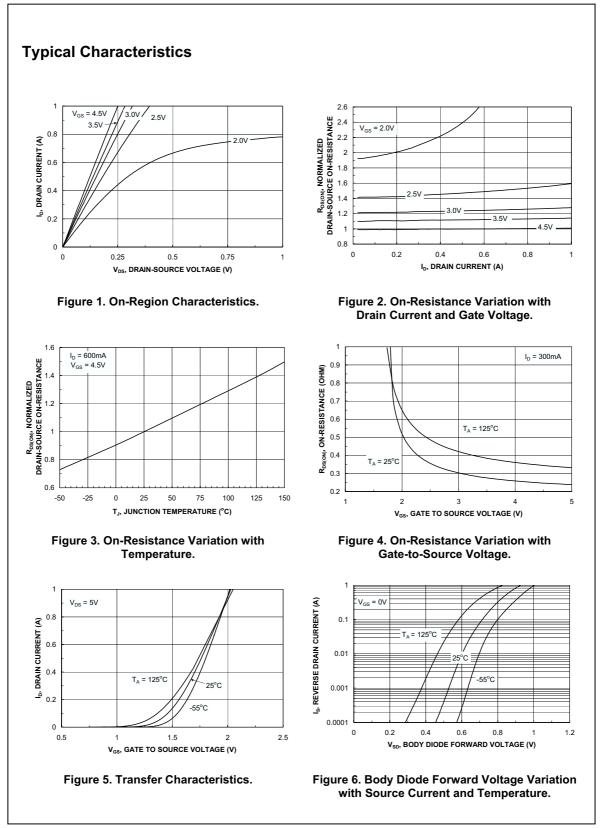



Features

+ 600 mA, 20 V $R_{DS(ON)}$ = 700 m Ω @ V_{GS} = 4.5 V $R_{DS(ON)}$ = 850 m Ω @ V_{GS} = 2.5 V

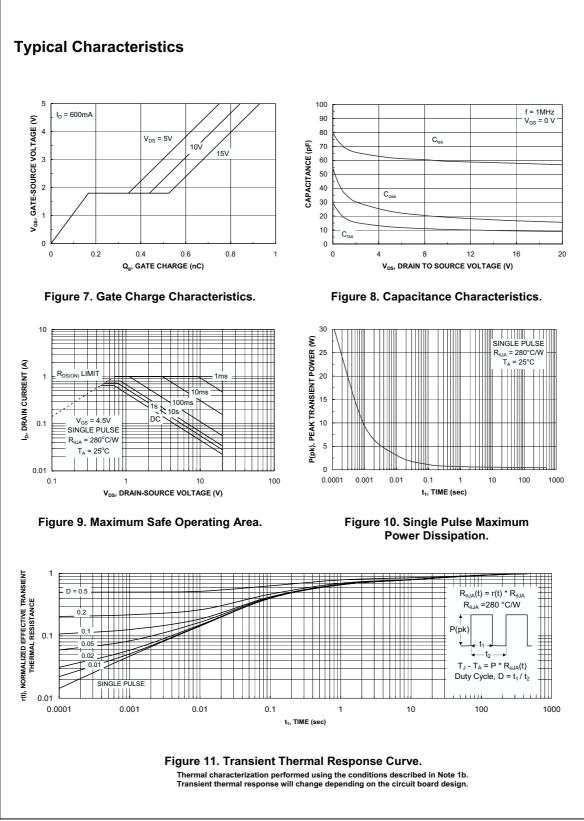
January 2007

- ESD protection diode (note 3)
- RoHS Compliant



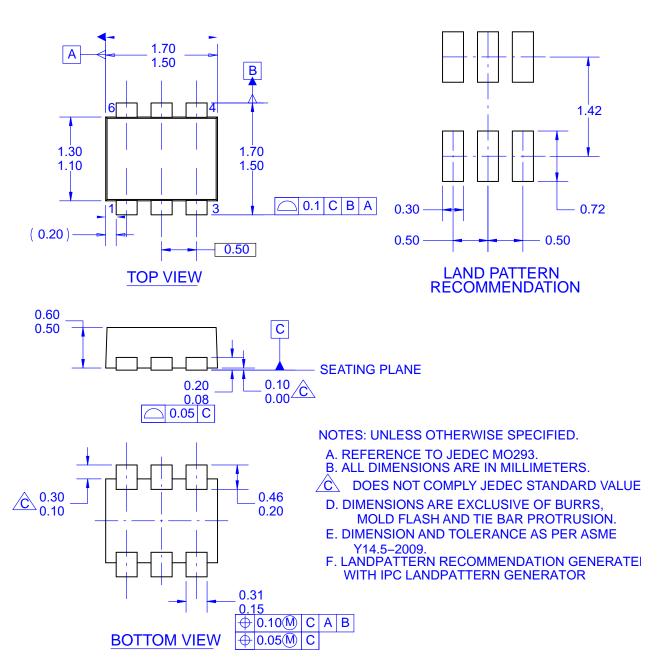
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units		
V _{DSS}	Drain-Source Voltage		20	V		
V _{GSS}	Gate-Source Voltage		± 12	V		
D	Drain Current – Continuous	(Note 1a)	600	mA		
	– Pulsed		1000			
P _D	Power Dissipation (Steady State)	(Note 1a)	625	mW		
		(Note 1b)	(Note 1b) 446			
T _J , T _{STG}	Operating and Storage Junction Te Range	emperature	–55 to +150	°C		
Therma	al Characteristics			l		
	Al Characteristics	mbient (Note 1a)	200	°C/W		
Therma _{R_{өJA} R_{өJA}}	1	. ,	200 280	°C/W		
R _{θJA} R _{θJA}	Thermal Resistance, Junction-to-A	mbient (Note 1b)		°C/W		
R _{өја} R _{өја} Packag	Thermal Resistance, Junction-to-A Thermal Resistance, Junction-to-A	mbient (Note 1b)		C/W		


eakdown ge Temperature <u>e Drain Current</u> age, Jote 2) /oltage /oltage efficient rce	$I_{D} = 250 \ \mu A$ $V_{DS} = 16 \ V.$ $V_{GS} = \pm 12$ $V_{GS} = \pm 4.5$ $V_{DS} = V_{GS},$	I _D = 250 μA , Referenced to 25°C V _{GS} = 0 V V, V _{DS} = 0 V V, V _{DS} = 0 V I _D = 250 μA , Referenced to 25°C	20	Typ 14 1.0	1 ± 10 ± 1	V mV/°C μΑ μΑ μΑ
ge Temperature le Drain Current age, lote 2) /oltage /oltage efficient	$I_{D} = 250 \ \mu A$ $V_{DS} = 16 \ V,$ $V_{GS} = \pm 12$ $V_{GS} = \pm 4.5$ $V_{DS} = V_{GS},$ $I_{D} = 250 \ \mu A$, Referenced to 25°C $V_{GS} = 0 V$ V, $V_{DS} = 0 V$ V, $V_{DS} = 0 V$ I _D = 250 μA		1.0	± 10 ± 1	mV/°C μΑ μΑ
ge Temperature le Drain Current age, lote 2) /oltage /oltage efficient	$I_{D} = 250 \ \mu A$ $V_{DS} = 16 \ V,$ $V_{GS} = \pm 12$ $V_{GS} = \pm 4.5$ $V_{DS} = V_{GS},$ $I_{D} = 250 \ \mu A$, Referenced to 25°C $V_{GS} = 0 V$ V, $V_{DS} = 0 V$ V, $V_{DS} = 0 V$ I _D = 250 μA		1.0	± 10 ± 1	mV/°C μΑ μΑ
le Drain Current age, lote 2) /oltage /oltage efficient	$\begin{array}{c} V_{DS} = 16 \ V_{OS} \\ V_{GS} = \pm 12 \\ V_{GS} = \pm 4.5 \\ \end{array}$ $\begin{array}{c} V_{DS} = V_{GS}, \\ I_{D} = 250 \ \mu A \end{array}$	$V_{GS} = 0 V$ V, $V_{DS} = 0 V$ V, $V_{DS} = 0 V$ $I_{D} = 250 \ \mu A$	0.6	1.0	± 10 ± 1	μΑ μΑ
age, lote 2) /oltage /oltage efficient	$\frac{V_{GS} = \pm 12}{V_{GS} = \pm 4.5}$ $\frac{V_{DS} = V_{GS},}{I_D = 250 \ \mu A}$	V, V _{DS} = 0 V V, V _{DS} = 0 V I _D = 250 μA	0.6		± 10 ± 1	μA
lote 2) /oltage /oltage efficient	$V_{GS} = \pm 4.5$ $V_{DS} = V_{GS},$ $I_D = 250 \ \mu A$	V, V _{DS} = 0 V I _D = 250 μA	0.6		±1	•
/oltage /oltage efficient	V _{DS} = V _{GS} , I _D = 250 μA	I _D = 250 μA	0.6			μA
/oltage /oltage efficient	I _D = 250 μA	$I_D = 250 \ \mu A$, Referenced to 25°C	0.6		1.3	
/oltage efficient	I _D = 250 μA	$I_D = 250 \ \mu A$, Referenced to 25°C	0.6		1.3	
efficient		, Referenced to 25°C				V
rce	$V_{aa} = AEV$			- 3		mV/°C
	00 .		0.25	0.70	Ω	
On–Resistance		, I _D = 500 mA , I _D = 150 mA		0.37	0.85	
		$I_{\rm D} = 130 \text{ mA}$ $I_{\rm D} = 600 \text{mA}, T_{\rm J} = 125^{\circ}\text{C}$		0.35	1.00	
nductance				1.8		S
cs						
	V _{DS} = 10 V	V _{GS} = 0 V.		60		pF
ice	f = 1.0 MHz	f = 1.0 MHz		20		pF
Capacitance				10		pF
			1			
	V _{DD} = 10 V	$V_{DD} = 10 V$. $I_D = 1 A$.		6	12	ns
me	V _{GS} = 4.5 V	, $R_{GEN} = 6 \Omega$		8	16	ns
ime				8	16	ns
1e				2.4	4.8	ns
le	V _{DS} = 10 V	I _D = 600 mA,		0.8	1.1	nC
	[−] V _{GS} = 4.5 V	$V_{DS} = 10 V$, $I_D = 600 \text{ mA}$, $V_{GS} = 4.5 \text{ V}$		0.16		
arge	1 '			0.10	۱ I	nC
arge ge				0.10		nC nC
ge						
ge	s and Max	imum Ratings I _S = 150 mA (Note 2)			1.2	
^{ge} naracteristic	s and Max	imum Ratings I _s = 150 mA (Note 2)		0.26	1.2	nC
	nductance cs e nce r Capacitance tiCs (Note 2) Time me Time ne ge	VDS = 10 V, e VDS = 10 V, nce f = 1.0 MHz r Capacitance r rics (Note 2) Time VDD rime VGS = 4.5 V rime VDS = 10 V, re VDS = 10 V,	e $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz r Capacitance rics (Note 2) Time V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega Time te te<	e $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ nce f = 1.0 MHz r Capacitance	CS $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ 60 nce f = 1.0 MHz 20 r Capacitance 10 citCS (Note 2) 10 rime $V_{DD} = 10 \text{ V}, I_D = 1 \text{ A},$ 6 me $V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$ 8 ine 2.4 2.4 ge $V_{DS} = 10 \text{ V}, I_D = 600 \text{ mA},$ 0.8	CS VDS = 10 V, VGS = 0 V, f = 1.0 MHz 60 r Capacitance f = 1.0 MHz 20 rics (Note 2) 10 10 Time VDD = 10 V, ID = 1 A, VGS = 6 Ω 8 16 Time VDS = 4.5 V, RGEN = 6 Ω 8 16 Time VDS = 10 V, ID = 600 mA, 0.8 1.1

FDY3000NZ Rev B

FDY3000NZ Dual N-Channel 2.5V Specified PowerTrench[®] MOSFET


FDY3000NZ Rev B

FDY3000NZ Dual N-Channel 2.5V Specified PowerTrench[®] MOSFET

FDY3000NZ Rev B

SOT-563 CASE 419BH ISSUE O

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC