MOSFET – Single, N-Channel with ESD Protection, Small Signal, SC-75 and SC-89 20 V, 915 mA

Features

- Low R_{DS(on)} Improving System Efficiency
- Low Threshold Voltage, 1.5 V Rated
- ESD Protected Gate
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Pb-Free Packages are Available

Applications

- Load/Power Switches
- Power Supply Converter Circuits
- Battery Management
- Portables like Cell Phones, PDAs, Digital Cameras, Pagers, etc.

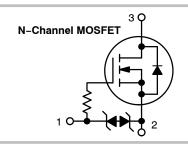
MAXIMUM RATINGS (T_{.J} = 25°C unless otherwise stated)

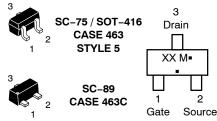
		,			
Parame	Symbol	Value	Units		
Drain-to-Source Voltage	V_{DSS}	20	V		
Gate-to-Source Voltage			V_{GS}	±6.0	V
Continuous Drain	I _D	915	mA		
Current (Note 1) State T _A = 85°C		T _A = 85°C		660	
Power Dissipation (Note 1)	Stea	dy State	P _D	300	mW
Pulsed Drain Current	t _p =	=10 μs	I _{DM}	1.3	Α
Operating Junction and St	T _J , T _{STG}	–55 to 150	°C		
Continuous Source Currer	I _S	280	mA		
Lead Temperature for Solo (1/8" from case for 10 s)	TL	260	°C		

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Units
Junction-to-Ambient - Steady State (Note 1) SC-75 / SOT-416	$R_{\theta JA}$	416	°C/W
SC-89		400	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

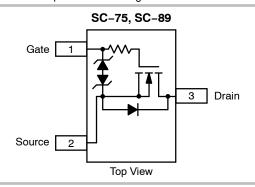

 Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS} R _{DS(on)} TYP		I _D MAX
20 V	0.127 Ω @ 4.5 V	
	0.170 Ω @ 2.5 V	915 mA
	0.242 Ω @ 1.8 V	01011111
	0.500 Ω @ 1.5 V	

MARKING DIAGRAM & PIN ASSIGNMENT


XX = Device Code

M = Date Code*

Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•		•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		20	26		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J			18.4		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, V_{E}$	_{OS} = 16 V			100	nA
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	_S = ±4.5 V			±1.0	μΑ
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μΑ	0.45	0.76	1.1	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.15		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 600 mA			127	230	mΩ
		$V_{GS} = 2.5 \text{ V}, I_D$	= 500 mA		170	275	7
		V _{GS} = 1.8 V, I _D = 350 mA			242	700	
		$V_{GS} = 1.5 \text{ V}, I_D = 40 \text{ mA}$			500	950	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 400 mA			1.4		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 16 V			110		pF
Output Capacitance	C _{OSS}				16		
Reverse Transfer Capacitance	C _{RSS}				12		
Total Gate Charge	$Q_{G(TOT)}$				1.82		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V}, V_{I}$	_{DS} = 10 V,		0.2		
Gate-to-Source Charge	Q_{GS}	$I_D = 0.2$	Ā		0.3		
Gate-to-Drain Charge	Q_{GD}	1			0.42		
SWITCHING CHARACTERISTICS (No	te 3)						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DD} = 10 \text{ V}, \\ I_{D} = 0.2 \text{ A}, R_{G} = 10 \Omega$			3.7		ns
Rise Time	t _r				4.4		
Turn-Off Delay Time	t _{d(OFF)}				25		
Fall Time	t _f				7.6		
DRAIN-SOURCE DIODE CHARACTE	RISTICS		•		-		-
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.67	1.1	V
	I _S = 200 mA		T _J = 125°C		0.54		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: pulse width $\leq 300 \ \mu s$, duty cycle $\leq 2\%$.

^{3.} Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

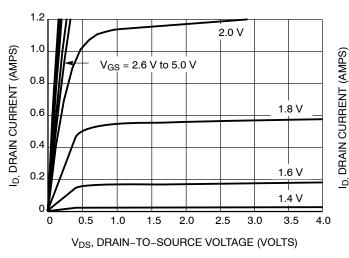
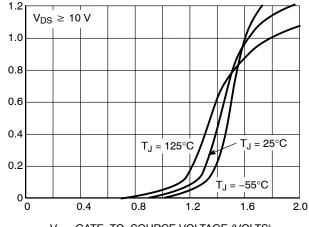



Figure 1. On-Region Characteristics

 V_{GS} , GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 2. Transfer Characteristics

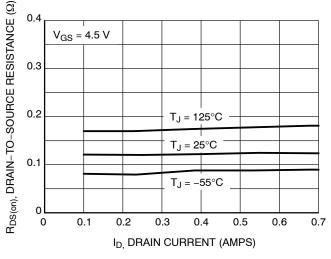


Figure 3. On-Resistance vs. Drain Current and Temperature

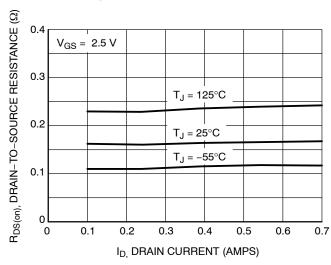


Figure 4. On-Resistance vs. Drain Current and Temperature

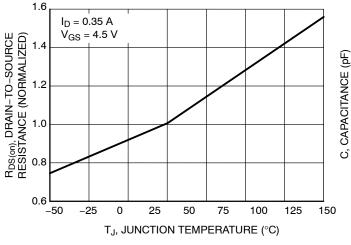


Figure 5. On–Resistance Variation with Temperature

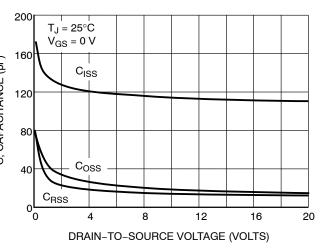


Figure 6. Capacitance Variation

TYPICAL ELECTRICAL CHARACTERISTICS

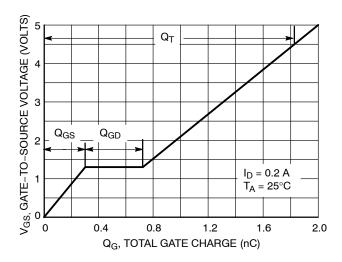


Figure 7. Gate-to-Source Voltage vs. Total Gate Charge

Figure 8. Diode Forward Voltage vs. Current

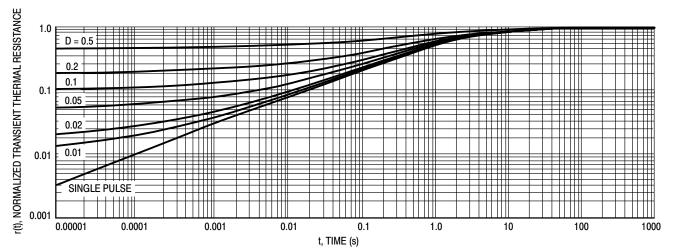
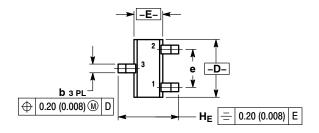
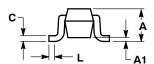


Figure 9. Normalized Thermal Response

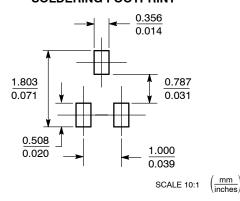

ORDERING INFORMATION


Device	Marking	Package	Shipping [†]
NTA4153NT1	TR	SC-75 / SOT-416	3000 / Tape & Reel
NTA4153NT1G	TR	SC-75 / SOT-416 (Pb-Free)	3000 / Tape & Reel
NTE4153NT1G	TP	SC-89 (Pb-Free)	3000 / Tape & Reel
NVA4153NT1G	VR	SC-75 / SOT-416 (Pb-Free)	3000 / Tape & Reel
NVE4153NT1G	VP	SC-89 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

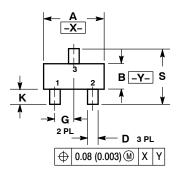
SC-75/SOT-416 **CASE 463** ISSUE F

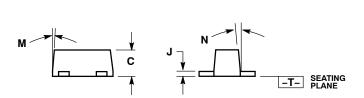


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.80	0.90	0.027	0.031	0.035	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
b	0.15	0.20	0.30	0.006	0.008	0.012	
С	0.10	0.15	0.25	0.004	0.006	0.010	
D	1.55	1.60	1.65	0.059	0.063	0.067	
E	0.70	0.80	0.90	0.027	0.031	0.035	
е	1.00 BSC			(0.04 BSC		
L	0.10	0.15	0.20	0.004	0.006	0.008	
He	1.50	1 60	1 70	0.061	0.063	0.065	

STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

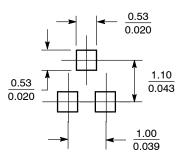

SOLDERING FOOTPRINT*



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SC-89 CASE 463C-03 ISSUE C



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
В	0.75	0.85	0.95	0.030	0.034	0.040	
С	0.60	0.70	0.80	0.024	0.028	0.031	
D	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50 BSC			0.020 BSC			
Н	0.53 REF			0.021 REF			
J	0.10 0.15 0.20		0.004	0.006	0.008		
K	0.30	0.40	0.50	0.012	0.016	0.020	
L	1.10 REF			0.043 REF			
М			10 °			10 °	
N			10 °			10 °	
S	1.50	1.60	1.70	0.059	0.063	0.067	

SOLDERING FOOTPRINT*

SCALE 10:1 $\left(\frac{\text{mm}}{\text{inches}}\right)$

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regard

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NTA4153NT1G NTE4153NT1G NVE4153NT1G NVA4153NT1G NTA4153NT3G