NPN General Purpose Transistor

The MMBT2222AM3T5G device is a spin-off of our popular SOT-23 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-723 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

Features

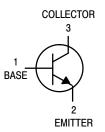
- Reduces Board Space
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector - Emitter Voltage	V _{CEO}	40	Vdc	
Collector - Base Voltage	V _{CBO}	75	Vdc	
Emitter – Base Voltage	V _{EBO}	6.0	Vdc	
Collector Current – Continuous	Ic	600	mAdc	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C Derate above 25°C	P _D	265 2.1	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	470	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	640 5.1	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	195	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

SOT-723 CASE 631AA STYLE 1

AA M Specific Device CodeDate Code

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT2222AM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel
NSVMMBT2222AM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Character	istic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = 10) mAdc, I _B = 0)	V _{(BR)CEO}	40	_	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \mu$	Adc, I _E = 0)	V _{(BR)CBO}	75	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu A$	dc, I _C = 0)	V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(of}	_(f) = 3.0 Vdc)	I _{CEX}	-	10	nAdc
Collector Cutoff Current		I _{CBO}	_ _	0.01 10	μAdc
Emitter Cutoff Current ($V_{EB} = 3.0 \text{ Vdc}$, $I_{C} = 0$)		I _{EBO}	-	100	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} =	3.0 Vdc)	I _{BL}	-	20	nAdc
ON CHARACTERISTICS					
$\begin{array}{l} \text{DC Current Gain} \\ (I_C = 0.1 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ (I_C = 1.0 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ (I_C = 10 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ (I_C = 150 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ (I_C = 150 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ (I_C = 500 \text{ mAdc, V}_{CE} = 10 \text{ Vdc}) \\ (Notice = 10$	te 3)	hFE	35 50 75 35 100 50 40	- - - 300 - -	-
	V _{CE(sat)}	_ _	0.3 1.0	Vdc	
$\begin{aligned} \text{Base-Emitter Saturation Voltage (Note 3)} \\ \text{(I}_{\text{C}} &= 150 \text{ mAdc, I}_{\text{B}} = 15 \text{ mAdc)} \\ \text{(I}_{\text{C}} &= 500 \text{ mAdc, I}_{\text{B}} = 50 \text{ mAdc)} \end{aligned}$	V _{BE(sat)}	0.6 -	1.2 2.0	Vdc	
SMALL-SIGNAL CHARACTERISTICS					
Current – Gain – Bandwidth Product (Note 4) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)		f⊤	300	_	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f =$	C _{obo}	-	8.0	pF	
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	25	pF
Input Impedance $ \begin{aligned} &(I_C=1.0 \text{ mAdc, V}_{CE}=10 \text{ Vdc, f}=1.0 \text{ kHz}) \\ &(I_C=10 \text{ mAdc, V}_{CE}=10 \text{ Vdc, f}=1.0 \text{ kHz}) \end{aligned} $		h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio $ \begin{array}{l} \text{(I}_{\text{C}} = 1.0 \text{ mAdc, V}_{\text{CE}} = 10 \text{ Vdc, f} = 1.0 \text{ kHz)} \\ \text{(I}_{\text{C}} = 10 \text{ mAdc, V}_{\text{CE}} = 10 \text{ Vdc, f} = 1.0 \text{ kHz)} \end{array} $		h _{re}	_ _	8.0 4.0	X 10 ⁻⁴
Small – Signal Current Gain (I_C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) (I_C = 10 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)		h _{fe}	50 75	300 375	-
Output Admittance $ \begin{aligned} &(I_C=1.0 \text{ mAdc, V}_{CE}=10 \text{ Vdc, f}=1.0 \text{ kHz}) \\ &(I_C=10 \text{ mAdc, V}_{CE}=10 \text{ Vdc, f}=1.0 \text{ kHz}) \end{aligned} $		h _{oe}	5.0 25	35 200	μmhos
Collector Base Time Constant (I _E = 20 mAdc, V _{CB} = 20 Vdc, f = 31.8 MHz)		rb, C _c	_	150	ps
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz)		NF	_	4.0	dB
SWITCHING CHARACTERISTICS					
Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = -0.5 \text{ Vdc},$	t _d	-	10	ns
Rise Time	$I_C = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$	t _r	-	25	
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$	t _S	_	225	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$		_	60	113

^{3.} Pulse Test: Pulse Width $\leq 300~\mu s$, Duty Cycle $\leq 2.0\%$. 4. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

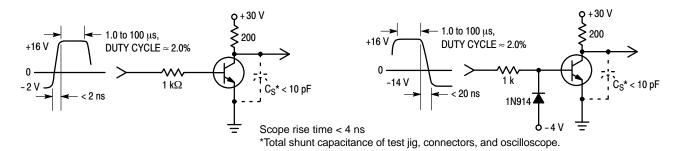


Figure 1. Turn-On Time

Figure 2. Turn-Off Time

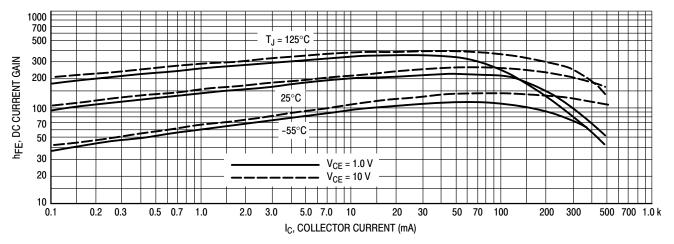


Figure 3. DC Current Gain

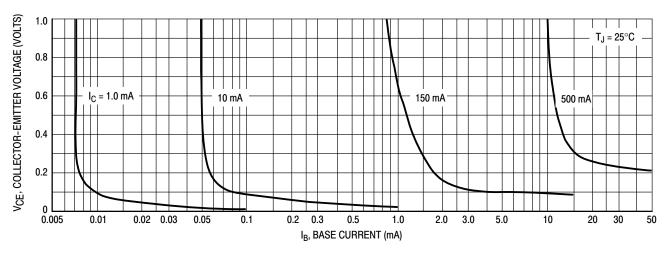


Figure 4. Collector Saturation Region

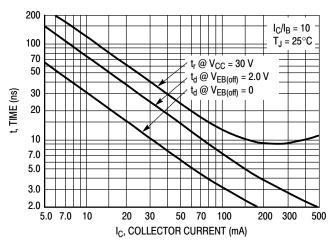


Figure 5. Turn-On Time

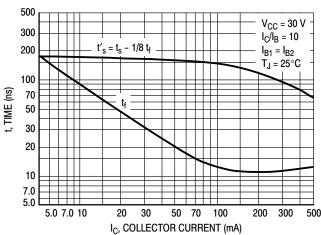


Figure 6. Turn-Off Time

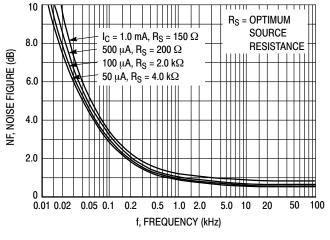


Figure 7. Frequency Effects

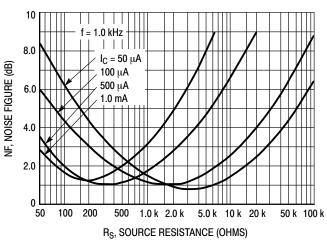


Figure 8. Source Resistance Effects

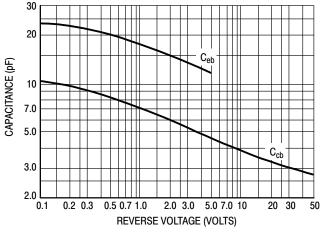


Figure 9. Capacitances

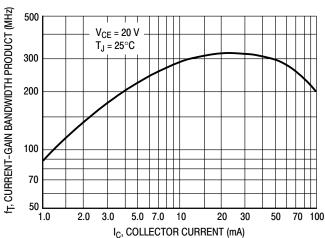
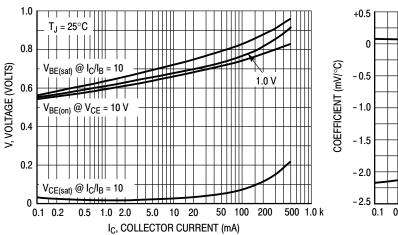
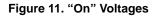
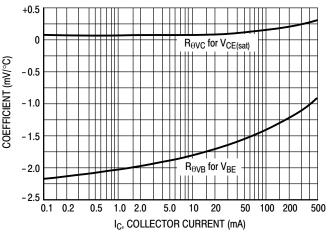





Figure 10. Current-Gain Bandwidth Product

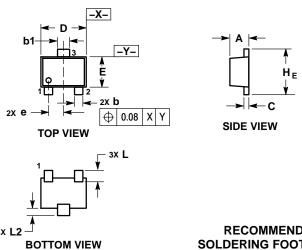
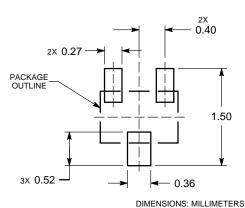


Figure 12. Temperature Coefficients

PACKAGE DIMENSIONS

SOT-723 CASE 631AA ISSUE D

NOTES


- 1. DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS

	MILLIMETERS		
DIM	MIN	NOM	MAX
Α	0.45	0.50	0.55
b	0.15	0.21	0.27
b1	0.25	0.31	0.37
С	0.07	0.12	0.17
D	1.15	1.20	1.25
E	0.75	0.80	0.85
е	0.40 BSC		
ΗE	1.15	1.20	1.25
L	0.29 REF		
L2	0.15	0.20	0.25

STYLE 1:

PIN 1. BASE 2. EMITTER 3. COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

0

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MMBT2222AM3/D

Phone: 81–3–5817–1050

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MMBT2222AM3T5G NSVMMBT2222AM3T5G