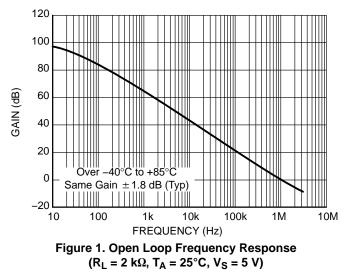
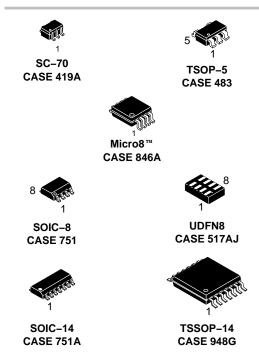
Single, Dual, Quad Low-Voltage, Rail-to-Rail Operational Amplifiers

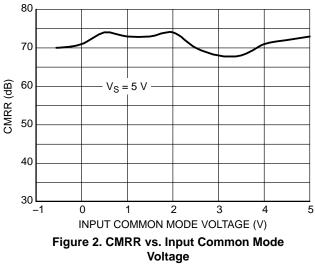

The LMV321, LMV358, and LMV324 are CMOS single, dual, and quad low voltage operational amplifiers with rail-to-rail output swing. These amplifiers are a cost-effective solution for applications where low power consumption and space saving packages are critical. Specification tables are provided for operation from power supply voltages at 2.7 V and 5 V. Rail-to-Rail operation provides improved signal-to-noise preformance. Ultra low quiescent current makes this series of amplifiers ideal for portable, battery operated equipment. The common mode input range includes ground making the device useful for low-side current-shunt measurements. The ultra small packages allow for placement on the PCB in close proximity to the signal source thereby reducing noise pickup.

Features

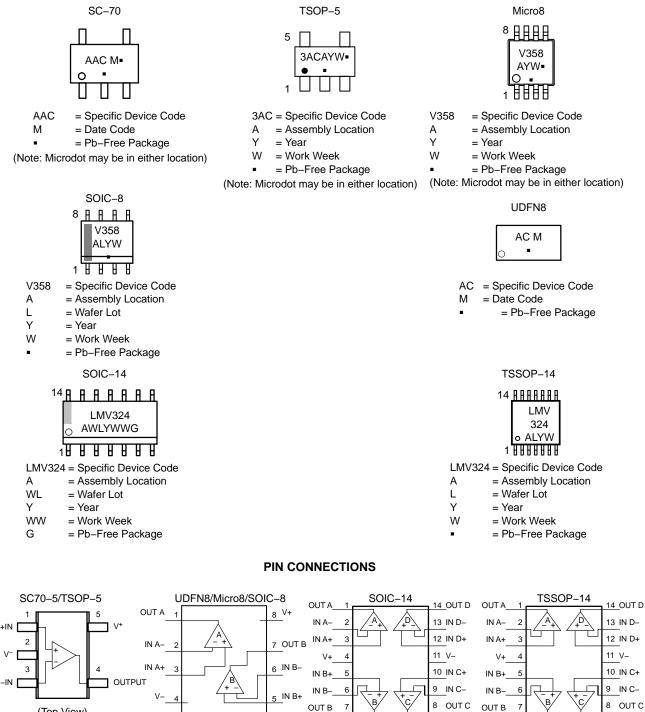
- Operation from 2.7 V to 5.0 V Single–Sided Power Supply
- LMV321 Single Available in Ultra Small 5 Pin SC70 Package
- No Output Crossover Distortion
- Industrial temperature Range: -40°C to +85°C
- Rail-to-Rail Output
- Low Quiescent Current: LMV358 Dual 220 μA, Max per Channel
- No Output Phase-Reversal from Overdriven Input
- These are Pb–Free Devices

Typical Applications


- Notebook Computers and PDA's
- Portable Battery–Operated Instruments
- Active Filters


ON Semiconductor®

www.onsemi.com



ORDERING AND MARKING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

MARKING DIAGRAMS

(Top View)

(Top View)

(Top View)

(Top View)

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
VS	Supply Voltage (Operating Range $V_S = 2.7 V \text{ to } 5.5 V$)	5.5	V
V _{IDR}	Input Differential Voltage	± Supply Voltage	V
V _{ICR}	Input Common Mode Voltage Range	-0.5 to (V+) + 0.5	V
	Maximum Input Current	10	mA
t _{So}	Output Short Circuit (Note 1)	Continuous	
TJ	Maximum Junction Temperature (Operating Range –40°C to 85°C)	150	°C
θ_{JA}	Thermal Resistance:		°C/W
	SC-70	280	
	Micro8	238	
	TSOP-5	333	
	UDFN8 (1.2 mm x 1.8 mm x 0.5 mm)	350	
	SOIC-8	212	
	SOIC-14	156	
	TSSOP-14	190	
T _{stg}	Storage Temperature	-65 to 150	°C
	Mounting Temperature (Infrared or Convection –20 sec)	260	°C
V _{ESD}	ESD Tolerance LMV321 Machine Model Human Body Model LMV358/324 Machine Model Human Body Mode	100 1000 100 2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Continuous short-circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+ or V- will adversely affect reliability.

2.7 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, V⁺ = 2.7 V, $R_L = 1 M\Omega$, $V^- = 0 V$, $V_O = V+/2$)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		1.7	9	mV
Input Offset Voltage Average Drift	ICV _{OS}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		5		μV/°C
Input Bias Current	I _B	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		<1		nA
Input Offset Current	I _{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		<1		nA
Common Mode Rejection Ratio	CMRR	$0 \text{ V} \leq \text{V}_{\text{CM}} \leq 1.7 \text{ V}$	50	63		dB
Power Supply Rejection Ratio	PSRR	$2.7 \text{ V} \le \text{V+} \le 5 \text{ V},$ $\text{V}_{O} = 1 \text{ V}$	50	60		dB
Input Common–Mode Voltage Range	V _{CM}	For CMRR \geq 50 dB	0 to 1.7	-0.2 to 1.9		V
Output Swing	V _{OH}	$R_L = 10 \text{ k}\Omega \text{ to } 1.35 \text{ V}$	V _{CC} – 100	V _{CC} – 10		mV
	V _{OL}	R_L = 10 k Ω to 1.35 V (Note 2)		60	180	mV
Supply Current LMV321 LMV358 (Both Amplifiers) LMV324 (4 Amplifiers)	Icc			80 140 260	185 340 680	μΑ

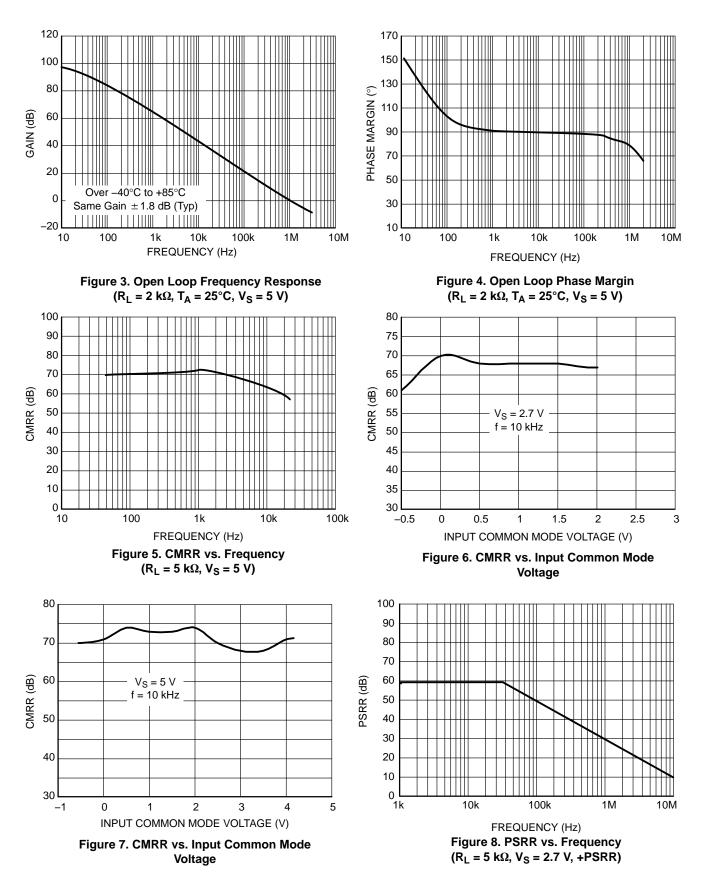
2.7 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, V⁺ = 2.7 V, $\mathsf{R}_\mathsf{L} = 1 \ \mathsf{M}\Omega, \ \mathsf{V}^- = 0 \ \mathsf{V}, \ \mathsf{V}_\mathsf{O} = \mathsf{V}{+}{/}{2})$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Gain Bandwidth Product	GBWP	C _L = 200 pF		1		MHz
Phase Margin	Θm			60		0
Gain Margin	G _m			10		dB
Input–Referred Voltage Noise	e _n	f = 50 kHz		50		nV/√ Hz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Guaranteed by design and/or characterization.

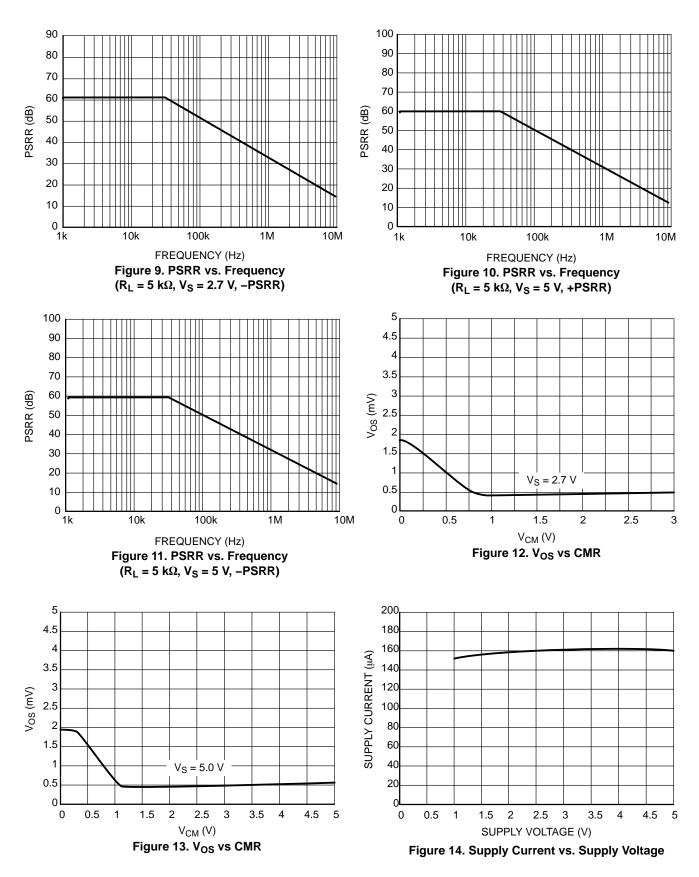
5.0 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, V⁺ = 5.0 V, $\mathsf{R}_\mathsf{L} = 1 \ \mathsf{M}\Omega, \ \mathsf{V}^- = 0 \ \mathsf{V}, \ \mathsf{V}_\mathsf{O} = \mathsf{V} {+} {/} {2})$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		1.7	9	mV
Input Offset Voltage Average Drift	T _C V _{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		5		μV/°C
Input Bias Current (Note 3)	Ι _Β	$T_A = -40^{\circ}C$ to +85°C		< 1		nA
Input Offset Current (Note 3)	I _{IO}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		< 1		nA
Common Mode Rejection Ratio	CMRR	$0 \text{ V} \leq \text{V}_{\text{CM}} \leq 4 \text{ V}$	50	65		dB
Power Supply Rejection Ratio	PSRR	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V+} \leq 5 \ \text{V}, \\ \text{V}_{O} = 1 \ \text{V}, \ \text{V}_{CM} = 1 \ \text{V} \end{array}$	50	60		dB
Input Common-Mode Voltage Range	V _{CM}	For CMRR \geq 50 dB	0 to 4	-0.2 to 4.2		V
Large Signal Voltage Gain (Note 3)	A _V	$R_L = 2 k\Omega$	15	100		V/mV
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	10			
Output Swing	V _{OH}	$R_L = 2 k\Omega$ to 2.5 V $T_A = -40^{\circ}$ C to +85°C	V _{CC} - 300 V _{CC} - 400	V _{CC} – 40		mV
	V _{OL}	$R_L = 2 k\Omega$ to 2.5 V (Note 3) $T_A = -40^{\circ}$ C to +85°C		120	300 400	mV
	V _{OH}	R_L = 10 kΩ to 2.5 V (Note 3) T_A = -40°C to +85°C	V _{CC} - 100 V _{CC} - 200			mV
	V _{OL}	$R_L = 10 k\Omega$ to 2.5 V $T_A = -40$ °C to +85°C		65	180 280	mV
Output Short Circuit Current	Ι _Ο	Sourcing = $V_O = 0 V$ (Note 3) Sinking = $V_O = 5 V$ (Note 3)	10 10	60 160		mA
Supply Current	ICC	LMV321 T _A = -40°C to +85°C		130	250 350	μΑ
		LMV358 Both Amplifiers $T_A = -40^{\circ}C$ to +85°C		210	440 615	
		LMV324 All Four Amplifiers $T_A = -40^{\circ}C$ to +85°C		410	830 1160	

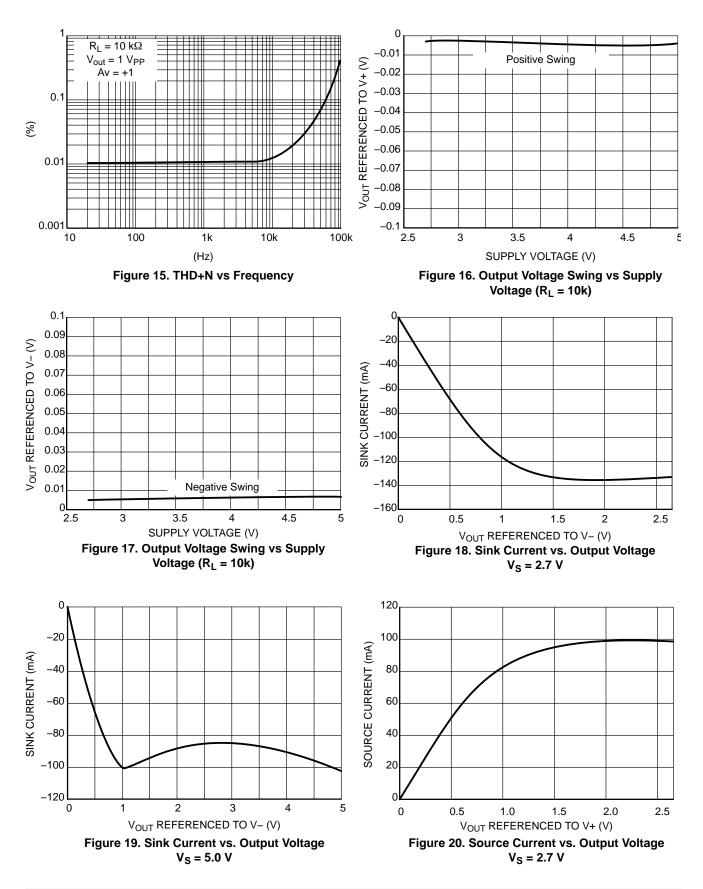

5.0 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, V⁺ = 5.0 V, $\mathsf{R}_\mathsf{L}=\mathsf{1}$ MΩ, $\mathsf{V}^-=\mathsf{0}$ V, $\mathsf{V}_\mathsf{O}=\mathsf{V}{+}/2)$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Slew Rate	S _R			1		V/µs
Gain Bandwidth Product	GBWP	C _L = 200 pF		1		MHz
Phase Margin	Θm			60		0
Gain Margin	Gm			10		dB
Input–Referred Voltage Noise	e _n	f = 50 kHz		50		nV/√ Hz

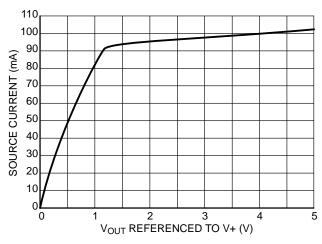
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Guaranteed by design and/or characterization.

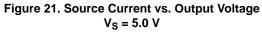

TYPICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ and } V_S = 5 \text{ V unless otherwise specified})$


TYPICAL CHARACTERISTICS

(T_A = 25°C and V_S = 5 V unless otherwise specified)


TYPICAL CHARACTERISTICS


(T_A = 25°C and V_S = 5 V unless otherwise specified)

TYPICAL CHARACTERISTICS

(T_A = 25°C and V_S = 5 V unless otherwise specified)

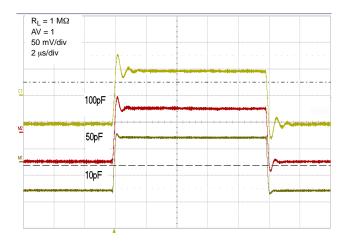


Figure 23. Settling Time vs. Capacitive Load

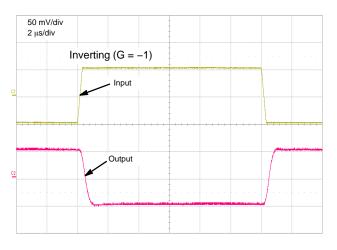


Figure 25. Step Response – Small Signal

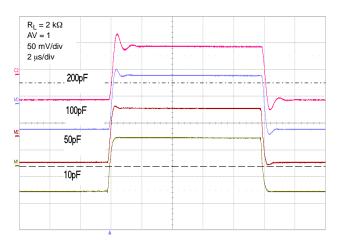


Figure 22. Settling Time vs. Capacitive Load

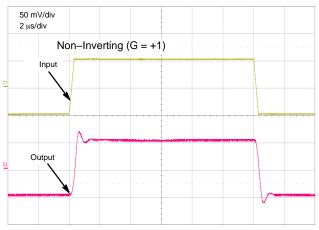
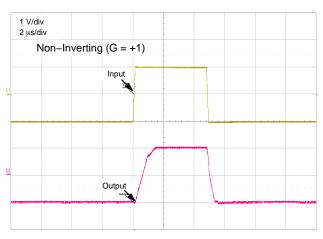



Figure 24. Step Response – Small Signal

TYPICAL CHARACTERISTICS

(T_A = 25°C and V_S = 5 V unless otherwise specified)

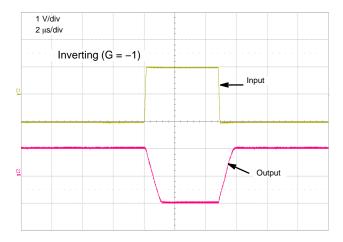
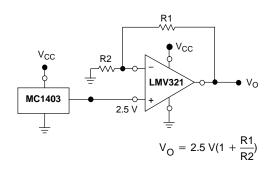
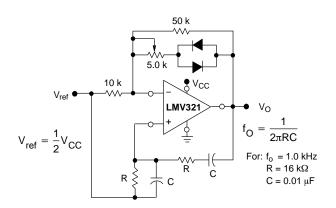




Figure 27. Step Response – Large Signal

APPLICATIONS

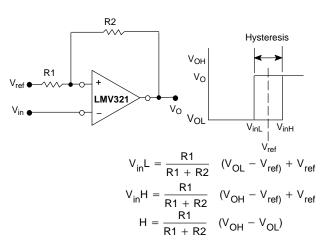
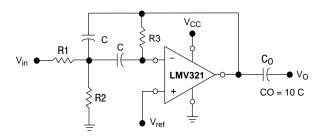
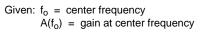
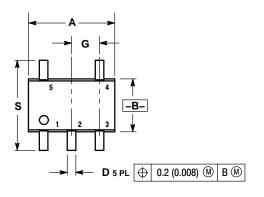




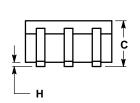
Figure 30. Comparator with Hysteresis

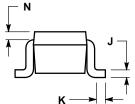
Choose value f_o, C
Then: R3 =
$$\frac{Q}{\pi f_0 C}$$

R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

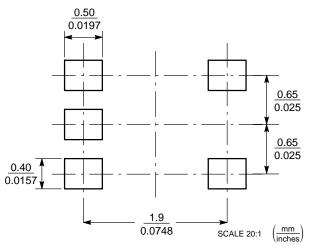
For less than 10% error from operational amplifier, $((Q_O f_O)/BW) < 0.1$ where f_o and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.


Figure 31. Multiple Feedback Bandpass Filter

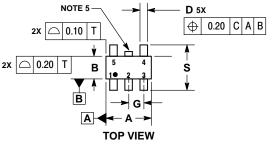

ORDERING INFORMATION

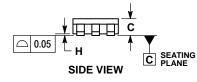

Order Number	Number of Channels	Specific Device Marking	Package Type	Shipping [†]
LMV321SQ3T2G	Single	AAC	SC–70 (Pb–Free)	3000 / Tape & Reel
LMV321SN3T1G	Single	ЗАС	TSOP–5 (Pb–Free)	3000 / Tape & Reel
LMV358DMR2G	Dual	V358	Micro8 (Pb–Free)	4000 / Tape & Reel
LMV358MUTAG	Dual	AC	UDFN8 (Pb–Free)	3000 / Tape & Reel
LMV358DR2G	Dual	V358	SOIC-8 (Pb-Free)	2500 / Tape & Reel
LMV324DR2G	Quad	LMV324	SOIC-14 (Pb-Free)	2500 / Tape & Reel
LMV324DTBR2G	Quad	LMV 324	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

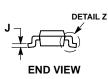
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L

SOLDER FOOTPRINT

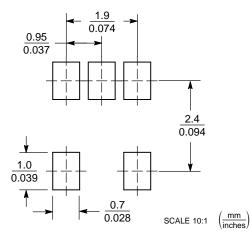

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.


	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
Κ	0.004	0.012	0.10	0.30
Ν	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

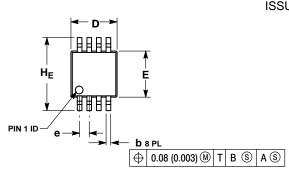

TSOP-5 CASE 483-02 ISSUE K

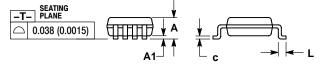
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONIS A AND R DO NOT INCLUDE MOLD
- 4.
- MINIMUM HICKNESS OF BASE MATERIAL. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
- OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 5. FROM BODY.

	MILLIMETERS			
DIM	MIN	MAX		
Α	3.00	BSC		
В	1.50	BSC		
С	0.90	1.10		
D	0.25	0.50		
G	0.95	BSC		
Н	0.01	0.10		
J	0.10	0.26		
к	0.20	0.60		
М	0 °	10 °		
S	2.50	3.00		



DETAIL Z

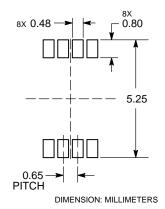

SOLDERING FOOTPRINT*



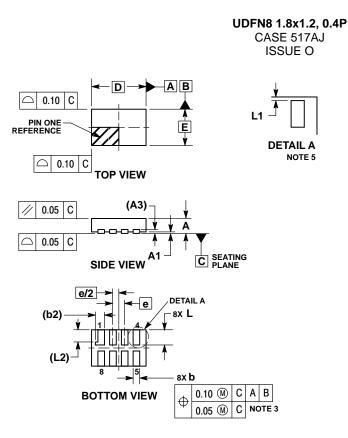
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

Micro8TM CASE 846A-02 ISSUE J

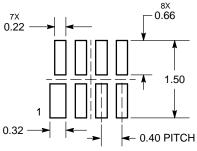


NOTES:


- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 846A-01 OBSOLETE, NEW STANDARD 846A-02.

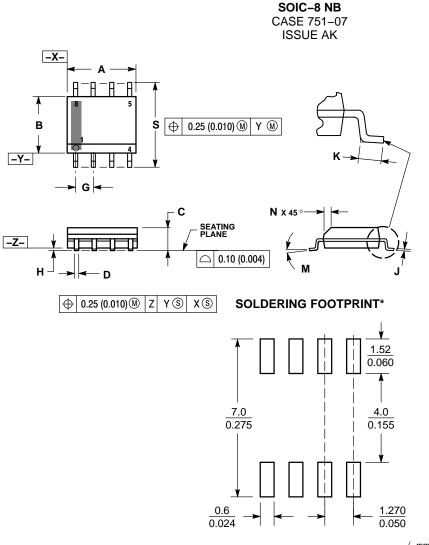
	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10		-	0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	2.90	3.00	3.10	0.114	0.118	0.122
е		0.65 BSC			0.026 BSC	;
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.
 MOLD FLASH ALLOWED ON TERMINALS ALONG EDGE OF PACKAGE. FLASH MAY NOT EXCEED 0.03 ONTO BOTTOM SURFACE OF TERMINALS.
 DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.
- R TERMINALS.

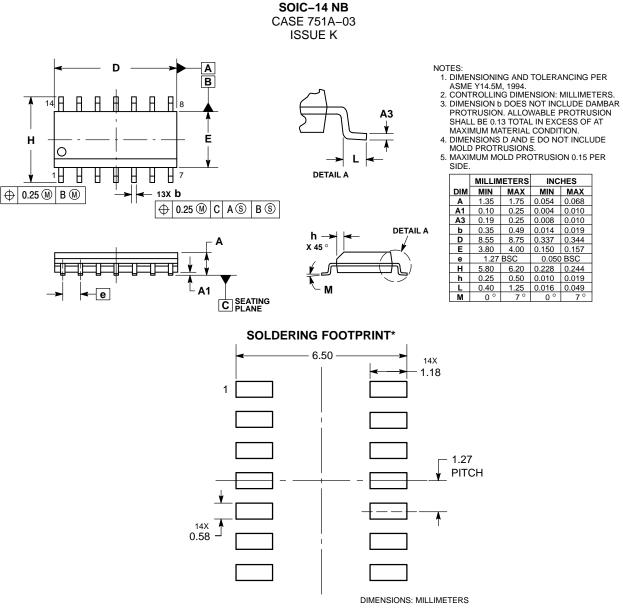

CONSTRUCTION FO						
	MILLIM	MILLIMETERS				
DIM	MIN	MAX				
Α	0.45	0.55				
A1	0.00	0.05				
A3	0.127	0.127 REF				
b	0.15	0.25				
b2	0.30	REF				
D	1.80	BSC				
Е	1.20	BSC				
е	0.40	BSC				
L	0.45	0.55				
L1	0.00	0.03				
L2	0.40	REF				

MOUNTING FOOTPRINT* SOLDERMASK DEFINED

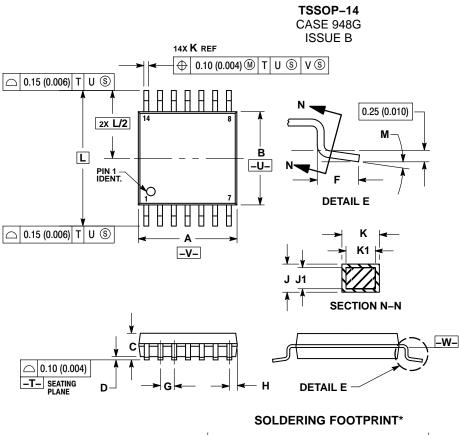
DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

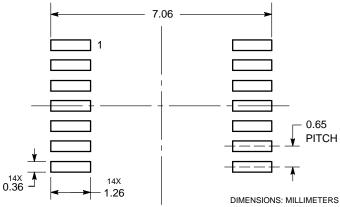
NOTES:


1. DIMENSIONING AND TOLERANCING PER

- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. 2.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 3.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES				
DIM	MIN	MAX	MIN	MAX				
Α	4.80	5.00	0.189	0.197				
В	3.80	4.00	0.150	0.157				
С	1.35	1.75	0.053	0.069				
D	0.33	0.51	0.013	0.020				
G	1.27	7 BSC	0.05	0 BSC				
Н	0.10	0.25	0.004	0.010				
J	0.19	0.25	0.007	0.010				
к	0.40	1.27	0.016	0.050				
м	0 °	8 °	0 °	8 °				
Ν	0.25	0.50	0.010	0.020				
S	5.80	6.20	0.228	0.244				

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



NOTES:

1. DIMENSIONING AND TOLERANCING PER

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. 7.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252 BSC	
М	0 °	8 °	0 °	8 °

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Micro8 is a trademark of International Rectifier.

ON Semiconductor and the way are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILC is an Equal Opportunity/Affirmative Action Employer. This litera

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

LMV321AS5X LMV358AMU8X LMV324AMTC14X LMV358AM8X LMV321AP5X LMV324AM14X LMV324DR2G LMV324DTBR2G LMV358DMR2G LMV321SQ3T2G LMV358DR2G LMV321SN3T1G LMV358MUTAG LMV321AS5X_Q LMV358AMU8X_Q LMV324AMTC14X_Q LMV321AP5X_Q