Vishay Draloric

www.vishay.com

ADDITIONAL RESOURCES

The pulse proof, high power thick film chip resistors series is the perfect choice for most fields of power measurement electronics where reliability, stability, high power rating and excellent pulse load performance are of major concern. Typical applications include battery management systems in automotive appliances.

FEATURES

- Excellent pulse load capability
- Enhanced power rating
- Double side printed resistor element
- AEC-Q200 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Automotive
- Industrial
- Commercial
- High power

TECHNICAL SPECIFICATIONS								
DESCRIPTION	CRCW0402- HP e3	CRCW0603- HP e3	CRCW0805- HP e3	CRCW1206- HP e3	CRCW1210- HP e3	CRCW1218- HP e3	CRCW2010- HP e3	CRCW2512- HP e3
Imperial size	0402	0603	0805	1206	1210	1218	2010	2512
Metric size code	RR1005M	RR1608M	RR2012M	RR3216M	RR3225M	RR3246M	RR5025M	RR6332M
Resistance range				1 Ω to 1 M Ω	; jumper (0 Ω)			
Resistance tolerance				± 5 %; ± 1	%; ± 0.5 %			
Temperature coefficient				± 200 ppm/K	; ± 100 ppm/K			
Rated dissipation, P ₇₀ ⁽¹⁾	0.2 W ⁽²⁾	0.33 W	0.5 W	0.75 W ⁽³⁾	0.75 W	1.5 W	1.0 W	1.5 W
Operating voltage, U _{max.} AC _{RMS} /DC	50 V	75 V	150 V	200 V	200 V	200 V	400 V	500 V
Permissible film temperature, $\mathcal{P}_{\text{F max.}}$ ⁽¹⁾		155 °C						
Operating temperature range		-55 °C to +155 °C						
Max. resistance change at P_{70} for resistance range, $ \Delta R/R $ after:								
1000 h		≤ 2.0 %						
8000 h		\leq 4.0 %						
Permissible voltage against ambient (insulation):								
1 min, U _{ins}	75 V	100 V	200 V	300 V	300 V	300 V	300 V	300 V

Notes

Marking: see document "Surface Mount Resistor Marking" (www.vishay.com/doc?20020)

⁽¹⁾ Please refer to APPLICATION INFORMATION below

CRCW0402-HP resistors feature a single side printed resistive layer only (2)

⁽³⁾ Specified power rating requires a thermal resistance of $R_{\rm th}$ = 110 K/W

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

1

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Revision: 14-Nov-2019

RoHS COMPLIANT HALOGEN FREE

Revision: 14-Nov-2019

2 For technical questions, contact: thickfilmchip@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

CRCW-HP e3 Vishay Draloric

-

E24

E24; E96

E24

E24; E96

-

Document Number: 20043

TCR	TOLERANCE	RESISTANCE	E-SERIES	
± 200 ppm/K	± 5 %	1 Ω to 1 MΩ	E24	
+ 100 ppm/K	±1%	1 O to 1 MO	E24; E96	
± 100 ppm/K	± 0.5 %	1 22 10 1 10122	L24, L90	
Jumper, I _{max.} = 3 A	\leq 10 m Ω	0 Ω	-	
± 200 ppm/K	± 5 %	1 Ω to 1 M Ω	E24	
+ 100 ppm/K	±1%	1 O to 1 MO	E24; E96	
± 160 ppm/K	± 0.5 %	1 32 10 1 10122	L24, L90	
Jumper, I _{max.} = 5 A	\leq 8 m Ω	0 Ω	-	
± 200 ppm/K	± 5 %	1 Ω to 1 M Ω	E24	
+ 100 ppm/K	± 1 %	1 O to 1 MO	E24; E96	
± 160 ppm/K	± 0.5 %	1 32 10 1 10122	224, 230	
Jumper, I _{max.} = 6 A	$\leq 5 \ m\Omega$	0 Ω	-	
± 200 ppm/K	± 5 %	1 Ω to 1 M Ω	E24	
+ 100 ppm/K	± 1 %	1.0 to 1.MO	E24; E96	
	± 0.5 %	1 32 10 1 10132		
Jumper, I _{max.} = 10 A	$\leq 5 \text{ m}\Omega$	0 Ω	-	
± 200 ppm/K	± 5 %	1 Ω to 1 M Ω	E24	
+ 100 ppm/K	± 1 %	1.0 to 1 MO	E24; E96	
± 160 ppm/K	± 0.5 %	1 32 10 1 10122	L24, L90	
Jumper, I _{max.} = 12 A	$\leq 4 \text{ m}\Omega$	0 Ω	-	
± 200 ppm/K	± 5 %	1 Ω to 1 MΩ	E24	
+ 100 ppm/K	± 1 %	1.0 to 1 MO	E24; E96	
	± 0.5 %	1 32 10 1 10122	224, 230	
	± 200 ppm/K ± 100 ppm/K Jumper, / _{max.} = 3 A ± 200 ppm/K ± 100 ppm/K Jumper, / _{max.} = 5 A ± 200 ppm/K ± 100 ppm/K Jumper, / _{max.} = 6 A ± 200 ppm/K ± 100 ppm/K ± 100 ppm/K Jumper, / _{max.} = 10 A ± 200 ppm/K Jumper, / _{max.} = 12 A	$\begin{array}{c c} \pm 200 \text{ ppm/K} & \pm 5 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 1 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 0.5 \% \\ \hline \text{Jumper, } I_{max.} = 3 \text{ A} & \leq 10 \text{ m}\Omega \\ \hline \pm 200 \text{ ppm/K} & \pm 5 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 1 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 1 \% \\ \hline \pm 200 \text{ ppm/K} & \pm 1 \% \\ \hline \pm 200 \text{ ppm/K} & \pm 5 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 5 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 5 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 1 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 1 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 1 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 5 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 5 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 5 \% \\ \hline \pm 100 \text{ ppm/K} & \pm 1 \% \\ \hline \pm 100 \text{ pm/K} & \pm 1 \% \\ \hline \pm 10 \text{ pm/K} & \pm 1 \% \\ \hline \pm 10 \text{ pm/K} & \pm 1 \% \\ \hline \pm 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

 $\leq 4 \ m\Omega$

±5%

±1%

± 0.5 %

 $\leq 5 \text{ m}\Omega$

±5%

±1%

± 0.5 %

 $\leq 5 \text{ m}\Omega$

0Ω

1 Ω to 1 $M\Omega$

1 Ω to 1 $M\Omega$

0Ω

1 Ω to 1 $M\Omega$

1 Ω to 1 $M\Omega$

0Ω

CRCW2010-HP e3

CRCW2512-HP e3

Note • The temperature coefficient of resistance (TCR) is not specified for 0 Ω jumpers

Jumper, $I_{max} = 20 \text{ A}$

± 200 ppm/K

± 100 ppm/K

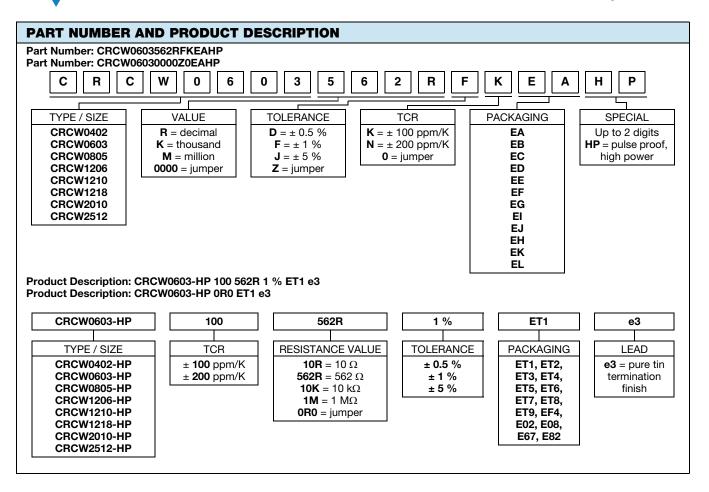
Jumper, *I*_{max.} = 12 A ± 200 ppm/K

± 100 ppm/K

Jumper, I_{max.} = 16 A

PACKAGING						
TYPE / SIZE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	РІТСН	PACKAGING DIMENSIONS
CRCW0402-HP e3	ED = ET7	10 000			2 mm	Ø 180 mm / 7"
0110110402 111 00	EE = EF4	50 000				Ø 330 mm / 13"
	EI = ET2	5000				Ø 180 mm / 7"
	ED = ET3	10 000			2 mm	Ø 180 mm / 7"
	EL = ET4	20 000			2 11111	Ø 285 mm / 11.25"
CRCW0603-HP e3	EE = ET8	20 000				Ø 330 mm / 13"
	EA = ET1	5000			4 mm	Ø 180 mm / 7"
	EB = ET5	10 000	Paper tape acc. to IEC 60286-3, type 1a	8 mm		Ø 285 mm / 11.25"
	EC = ET6	20 000				Ø 330 mm / 13"
	EA = ET1	5000			4 mm	Ø 180 mm / 7"
CRCW0805-HP e3	EB = ET5	10 000				Ø 285 mm / 11.25"
	EC = ET6	20 000				Ø 330 mm / 13"
	EA = ET1	5000			4 mm	Ø 180 mm / 7"
CRCW1206-HP e3	EB = ET5	10 000				Ø 285 mm / 11.25"
	EC = ET6	20 000				Ø 330 mm / 13"
	EA = ET1	5000	1			Ø 180 mm / 7"
CRCW1210-HP e3	EB = ET5	10 000				Ø 285 mm / 11.25"
	EC = ET6	20 000				Ø 330 mm / 13"
CRCW1218-HP e3	EK = ET9	4000			4 mm	Ø 180 mm / 7"
CRCW2010-HP e3	EF = E02	4000			4 mm	Ø 180 mm / 7"
CRCW2010-HP e3	EJ = E08	16 000	Blister tape acc. to	12 mm	4 mm	Ø 330 mm / 13"
CRCW2512-HP e3	EG = E67	2000	IEC 60286-3, type 2a		8 mm	Q 100
Chuw2312-HP e3	EH = E82	4000	1		4 mm	Ø 180 mm / 7"

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE


www.vishay.com

CRCW-HP e3

www.vishay.com

Vishay Draloric

Vishay Draloric

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list,

Hence the products fully comply with the following

• 2000/53/EC End-of-Life Vehicle Directive (ELV) and

• 2011/65/EU Restriction of the Use of Hazardous

2012/19/EU Waste Electrical and Electronic Equipment

Vishay pursues the elimination of conflict minerals from its

supply chain, see the Conflict Minerals Policy at

Where applicable, the resistors are tested in accordance

with EN 140401-802 which refers to EN 60115-1,

EN 60115-8 and the variety of environmental test

For more information about products with superior surge

For thick film resistors with standard requirements for power

For anti-surge products and high power rating, please refer

RCS e3, Anti-Surge High Power Thick Film Chip Resistors

and pulse performance please refer to datasheet:

D/CRCW-IF e3, Pulse Proof Thick Film Chip Resistors

The resistors are qualified according to AEC-Q200.

procedures of the IEC 60068 (1) series.

(RoHS)

with

amendment

see www.vishay.com/how/leadfree.

Directive

directives:

Annex II (ELV II)

Substances

APPROVALS

2015/863/EU

Directive (WEEE)

www.vishay.com/doc?49037.

RELATED PRODUCTS

www.vishay.com/doc?20024.

www.vishay.com/doc?20035.

www.vishay.com/doc?20065.

to datasheet:

rating, please refer to datasheet:

D/CRCW e3, Standard Thick Film Chip

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A cermet film layer and a glass-over are deposited on both sides of a high grade (Al₂O₃) ceramic substrate with its prepared inner contacts on both sides. A special laser is used to achieve the target value by smoothly fine trimming the resistive layer without damaging the ceramics. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating. A three or four-character code marking designates the resistance values in accordance with IEC 60062. The three-character code system is applicable to values from E24 series only, while the four-character code system is applicable to values from E96 and E24 series.

The result of the determined production is verified by an extensive testing procedure on 100 % of the individual chip resistors. Only accepted products are laid directly into the tape in accordance with IEC 60286-3 Type 1a and Type 2a (1).

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering wave, reflow or vapor phase as shown in IEC 61760-1 (1). The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

The resistors are RoHS-compliant, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. Solderability is specified for 2 years after production or regualification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

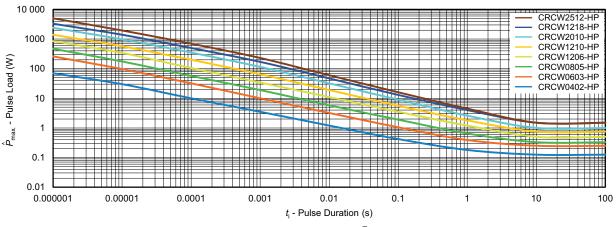
MATERIALS

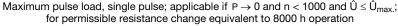
Vishay acknowledges the following systems for the regulation of hazardous substances:

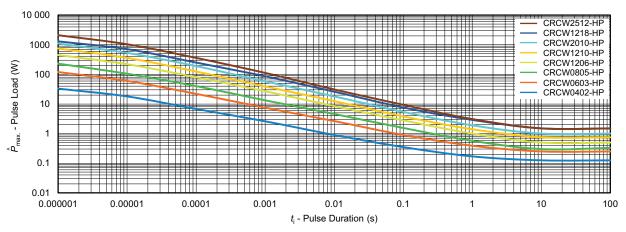
- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (2)
- The Global Automotive Declarable Substance List (GADSL) (3)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (4) for its supply chain

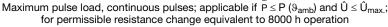
Notes

- ⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents
- ⁽²⁾ The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474
- (3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org
- ⁽⁴⁾ The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table

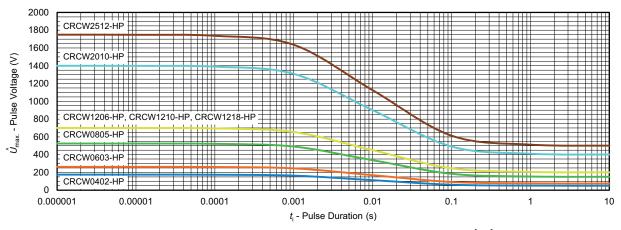

Document Number: 20043


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

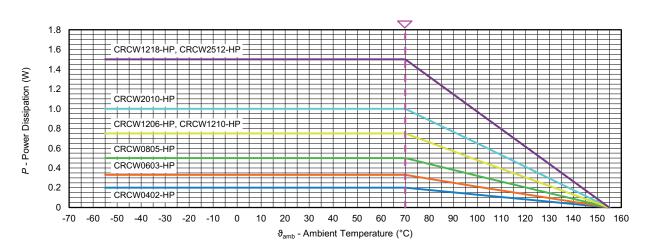

FUNCTIONAL PERFORMANCE


Single Pulse

Continuous Pulse


CRCW-HP e3

Vishay Draloric


Vishay Draloric

Pulse Voltage

Maximum pulse voltage, single and continuous pulses; applicable if $\hat{P} \leq \hat{P}_{max.}$; for permissible resistance change equivalent to 8000 h operation

Derating

www.vishay.com

TESTS AND REQUIREMENTS

All executed tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8 (successor of EN 140400), sectional specification

EN 140401-802, detail specification

IEC 60068-2-xx, test methods

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-802. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included.

TEST PROCEDURES AND REQUIREMENTS

The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C

Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on boards in accordance with EN 60115-8, 2.4.2 unless otherwise specified.

IESI PR	OCEDURI	ES AND REQUIR	EMENIS	
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (\\AR)
			Stability for product types:	STABILITY CLASS 2 OR BETTER
			CRCW-HP e3	1 Ω to 1 M Ω
4.5	-	Resistance	-	± 0.5 %; ± 1 %; ± 5 %
4.8	-	Temperature coefficient	(20 / -55 / 20) °C and (20 / 155 / 20) °C	± 100 ppm/K; ± 200 ppm/K
4.25.1	_	Endurance at 70 °C	$U = \sqrt{P_{70} \times R} \text{ or } U = U_{\text{max.}};$ whichever is the less severe; 1.5 h on; 0.5 h off	
1.2011			70 °C; 1000 h	\pm (2 % R + 0.1 Ω)
			70 °C; 8000 h	\pm (4 % R + 0.1 Ω)
4.25.3	-	Endurance at upper category temperature	155 °C, 1000 h	± (2 % <i>R</i> + 0.1 Ω)
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH;	± (1 % <i>R</i> + 0.05 Ω)
4.37	67 (Cy)	Damp heat, steady state, accelerated	$ \begin{array}{l} (85 \pm 2) \ ^\circ \text{C}; \ (85 \pm 5) \ \% \ \text{RH}; \\ U = \sqrt{0.1 \ x \ P_{85} \ x \ R} \ \leq 100 \ \text{V}; \\ 1000 \ \text{h} \end{array} $	± (2 % <i>R</i> + 0.1 Ω)
4.23	-	Climatic sequence:	-	
4.23.2	2 (Bb)	dry heat	125 °C; 16 h	
4.23.3	30 (Db)	damp heat, cyclic	55 °C; 24 h; ≥ 90 % RH; 1 cycle	
4.23.4	1 (Ab)	cold	-55 °C; 2 h	± (2 % <i>R</i> + 0.1 Ω)
4.23.5	13 (M)	low air pressure	8.5 kPa; 2 h; (25 ± 10) °C	_ (_ /
4.23.6	30 (Db)	damp heat, cyclic	55 °C; 24 h; ≥ 90 % RH; 5 cycles	
4.23.7	-	DC load	$U = \sqrt{P_{70} \times R} \le U_{\text{max.;}}$ 1 min	
-	1 (Aa)	Cold	-55 °C; 2 h	$\pm (0.5 \% R + 0.05 \Omega)$

Document Number: 20043

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay Draloric

www.vishay.com

CRCW-HP e3

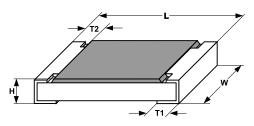
Vishay Draloric

TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (∆ <i>R</i>)			
			Stability for product types:	STABILITY CLASS 2 OR BETTER			
			CRCW-HP e3	1 Ω to 1 MΩ			
4.19	14 (Na)	Rapid change of temperature	30 min at -55 °C and 30 min at 125 °C; 1000 cycles	± (1 % <i>R</i> + 0.05 Ω) no visible damage			
4.13	-	Short time overload	$U = 2.5 \text{ x } \sqrt{P_{70} \text{ x } R} \le 2 \text{ x } U_{\text{max.};}$ whichever is the less severe; 5 s	± (2 % <i>R</i> + 0.05 Ω)			
4.27	-	Single pulse high voltage overload	Severity no. 4: $U = 10 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{max.;}$ whichever is the less severe; 10 pulses 10 µs/700 µs	± (1 % <i>R</i> + 0.05 Ω) no visible damage			
4.39	-	Periodic electric overload	$U = \sqrt{15 \times P_{70} \times R} \text{ or}$ $U = 2 \times U_{\text{max};}$ whichever is the less severe; 0.1 s on; 2.5 s off; 1000 cycles	± (1 % <i>R</i> + 0.05 Ω) no visible damage			
4.38	-	Electrostatic discharge (human body model)	IEC 61340-3-1 ⁽¹⁾ ; 3 pos. + 3 neg. discharges; ESD voltage acc. to the size	± (1 % <i>R</i> + 0.05 Ω)			
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude \leq 1.5 mm or \leq 200 m/s ² ; 7.5 h	± (0.5 % <i>R</i> + 0.05 Ω) no visible damage			
4.17	7 58 (Td) Solderability		Solder bath method; Sn60Pb40 non-activated flux; (235 ± 5) °C; (2 ± 0.2) s Solder bath method; Sn96.5Ag3Cu0.5 non-activated flux;	Good tinning (≥ 95 % covered) no visible damage			
4.18	58 (Td)	Resistance to soldering heat	(245 ± 5) °C; (3 ± 0.3) s Solder bath method (260 ± 5) °C;	± (0.5 % <i>R</i> + 0.05 Ω)			
4.29	45 (XA)	Component solvent resistance	(10 ± 1) s Isopropyl alcohol; +50 °C; method 2	No visible damage			
4.32	21 (Uu ₃)	Shear (adhesion)	CRCW0402-HP and CRCW0603-HP: 9 N CRCW0805-HP to CRCW2512-HP: 45 N	No visible damage			
4.33	21 (Uu ₁)	Substrate bending	Depth 2 mm; 3 times	\pm (0.25 % R + 0.05 Ω) no visible damage, no open circuit in bent position			
4.7	-	Voltage proof	<i>U</i> = 1.4 x <i>U</i> _{ins} ; 60 s	No flashover or breakdown			
4.35	-	Flammability, needle flame test	IEC 60695-11-5 ⁽¹⁾ ; 10 s	No burning after 30 s			

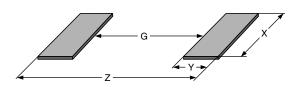
Note

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

Revision: 14-Nov-2019


Document Number: 20043

CRCW-HP e3


Vishay Draloric

DIMENSIONS

DIMENSIONS AND MASS									
TYPE / SIZE	L (mm)	W (mm)	H (mm)	T1 (mm)	T2 (mm)	MASS (mg)			
CRCW0402-HP e3	1.0 ± 0.05	0.5 ± 0.05	0.3 ± 0.10	0.25 ± 0.10	0.2 ± 0.10	0.65			
CRCW0603-HP e3	1.6 ± 0.10	0.85 ± 0.10	0.45 ± 0.10	0.3 ± 0.20	0.3 ± 0.20	2			
CRCW0805-HP e3	2.0 ± 0.15	1.25 ± 0.15	0.5 ± 0.10	0.4 ± 0.20	0.35 ± 0.20	5.5			
CRCW1206-HP e3	3.1 ± 0.20	1.6 ± 0.15	0.5 ± 0.15	0.5 ± 0.20	0.45 ± 0.20	10			
CRCW1210-HP e3	3.2 ± 0.20	2.5 ± 0.20	0.6 ± 0.10	0.45 ± 0.20	0.4 ± 0.20	18			
CRCW1218-HP e3	3.1 ± 0.20	4.6 ± 0.20	0.6 ± 0.10	0.45 ± 0.20	0.4 ± 0.20	31			
CRCW2010-HP e3	5.0 ± 0.15	2.5 ± 0.15	0.6 ± 0.10	0.6 ± 0.20	0.6 ± 0.20	25.5			
CRCW2512-HP e3	6.3 ± 0.20	3.15 ± 0.15	0.6 ± 0.10	0.6 ± 0.20	0.6 ± 0.20	42			

SOLDER PAD DIMENSIONS

RECOMMENDED SOLDER PAD DIMENSIONS								
TYPE / SIZE	WAVE SOLDERING				REFLOW SOLDERING			
	G (mm)	Y (mm)	X (mm)	Z (mm)	G (mm)	Y (mm)	X (mm)	Z (mm)
CRCW0402-HP e3	-	-	-	-	0.45	0.6	0.6	1.65
CRCW0603-HP e3	0.65	1.10	1.25	2.85	0.75	0.75	1.00	2.25
CRCW0805-HP e3	0.90	1.30	1.60	3.50	1.00	0.95	1.45	2.90
CRCW1206-HP e3	1.40	1.40	1.95	4.20	1.50	1.05	1.8	3.60
CRCW1210-HP e3	1.80	1.45	2.95	4.70	1.70	1.10	2.80	3.90
CRCW1218-HP e3	1.60	1.50	5.10	4.60	1.70	1.10	4.90	3.90
CRCW2010-HP e3	3.60	1.65	2.85	6.90	3.70	1.20	2.70	6.10
CRCW2512-HP e3	4.90	1.60	3.50	8.10	5.00	1.25	3.35	7.50

Notes

 The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g in standards IEC 61188-5-x⁽¹⁾ or in publication IPC-7351.

Still, the given solder pad dimensions will be found adequate for most general applications

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay: CRCW251243R0FKEGHP