

PCA9560
 Dual 5-bit multiplexed 1-bit latched ${ }^{1}{ }^{2} \mathrm{C}$ EEPROM DIP switch

Product data sheet
Supersedes data of 2003 Jun 27

FEATURES

- 5-bit 3-to-1 multiplexer, 1-bit latch DIP switch
- 5-bit external hardware pins
- Two 6-bit internal non-volatile registers, fully pin-to-pin compatible with PCA9559
- Selection between the two non-volatile registers
- Selection between non-volatile registers and external hardware pins
- ${ }^{2} \mathrm{C} /$ SMBus interface logic
- Internal pull-up resistors on input pin and control signals
- Active high write protect on input controls the ability to write to the non-volatile registers
- 2 address pins, allowing up to 4 devices on the $\mathrm{I}^{2} \mathrm{C}$-bus
- 5 open drain multiplexed outputs
- Open drain non-multiplexed output
- Internal 6-bit non-volatile registers programmable and readable via ${ }^{2}$ 2C-bus
- External hardware 5-bit value readable via $\mathrm{I}^{2} \mathrm{C}$-bus
- Multiplexer selection can be overridden by $\mathrm{I}^{2} \mathrm{C}$-bus
- Operating power supply voltage 3.0 V to 3.6 V
- 5 V and 2.5 V tolerant inputs/outputs
- 0 to 400 kHz clock frequency
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115, and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JESDEC Standard JESD78 which exceeds 100 mA .
- Package offering: SO20, TSSOP20

DESCRIPTION

The PCA9560 is a 20 -pin CMOS device consisting of two 6-bit non-volatile EEPROM registers, 5 hardware pin inputs and a 5-bit multiplexed output with one latched EEPROM bit. It is used for DIP switch-free or jumper-less system configuration and supports Mobile and Desktop VID Configuration, where 3 preset values (2 sets of internal non-volatile registers and 1 set of external hardware pins) set processor voltage for operation in either performance, deep sleep or deeper sleep modes. The PCA9560 is also useful in server and telecom/networking applications when used to replace DIP switches or jumpers, since the settings can be easily changed via $\mathrm{I}^{2} \mathrm{C} /$ SMBus without having to power down the equipment to open the cabinet. The non-volatile memory retains the most current setting selected before the power is turned off.

The PCA9560 typically resides between the CPU and Voltage Regulator Module (VRM) when used for CPU VID (Voltage

IDentification code) configuration. It is used to bypass the CPU-defined VID values and provide a different set of VID values to the VRM, if an increase in the CPU voltage is desired. An increase in CPU voltage combined with an increase in CPU frequency leads to a performance boost of up to 7.5%. Lower CPU voltage reduces power consumption. The main advantage of the PCA9560 over the older PCA9559 device in this application is that it contains two internal non-volatile EEPROM registers instead of just one, allowing three independent settings (performance operation, deep sleep mode and deeper sleep mode) instead of only two (performance operation and deep sleep mode). The PCA9560 is footprint compatible and a drop-in replacement for the PCA9559, without any software modifications required.

The PCA9560 has 2 address pins allow up to 4 devices to be placed on the same $\mathrm{I}^{2} \mathrm{C}$ bus or SMBus.

PIN CONFIGURATION

Figure 1. Pin configuration

PIN DESCRIPTION

PIN	SYMBOL	FUNCTION
1	SCL	Serial I²C-bus clock
2	SDA	Serial bi-directional I²C-bus data
3	A1	Programmable LSBs of I²C address
4	A0	External inputs to multiplexer
$5-9$	MUX_IN A-E	Ground
10	GND	MUX Selects MUX_IN inputs or register contents for MUX_OUT outputs
11	SELECT_0	
$12-16$	MUX_OUT E-A	Open drain multiplexed outputs
19	MON-MUXED_- OUTPUT	Open drain output from non-volatile memory
19	WELECT_1	Selects between the two non-volatile registers
20	VDD	Active high non-volatile register write-protect input

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	TOPSIDE MARK	DRAWING NUMBER
20-Pin Plastic SO	-40 to $+85^{\circ} \mathrm{C}$	PCA9560D	PCA9560D	SOT163-1
20-Pin Plastic TSSOP	-40 to $+85^{\circ} \mathrm{C}$	PCA9560PW	PCA9560	SOT360-1

Standard packing quantities and other packaging data are available at www.philipslogic.com/packaging.

Dual 5-bit multiplexed 1-bit latched $I^{2} \mathrm{C}$ EEPROM DIP switch

BLOCK DIAGRAM

Figure 2. Block diagram

DEVICE ADDRESS

Following a START condition the bus master must output the address of the slave it is accessing. The address of the PCA9560 is shown in Figure 3. To conserve power, no internal pull-up resistors are incorporated on the hardware selectable address pins and they must be pulled HIGH or LOW.

The last bit of the slave address byte defines the operation to be performed. When set to logic 1 a read is selected while a logic 0 selects a write operation.

CONTROL REGISTER

Following the successful acknowledgement of the slave address, the bus master will send a byte to the PCA9560, which will be stored in the control register. This register can be written and read via the $\mathrm{I}^{2} \mathrm{C}$-bus.

Figure 4. Control Register

Figure 3. Slave address

CONTROL REGISTER DEFINITION

Following the address and acknowledge bit with logic 0 in the read/write bit, the first byte written is the command byte. If the command byte is reserved and therefore not valid, it will not be acknowledged. Only valid command bytes will be acknowledged.

Table 1. Register Addresses

D7	D6	D5	D4	D3	D2	D1	D0	REGISTER NAME	TYPE	REGISTER FUNCTION
0	0	0	0	0	0	0	0	EEPROM 0	Read/Write	EEPROM byte 0 register
0	0	0	0	0	0	0	1	EEPROM 1	Read/Write	EEPROM byte 1 register
1	1	1	1	1	1	1	1	MUX_IN	Read	MUX_IN values register

Table 2. Commands

D7	D6	D5	D4	D3	D2	D1	D0	
1	1	1	1	1	0	0	0	MUX_OUT from EEPROM byte 0
1	1	1	1	1	1	0	0	MUX_OUT from EEPROM byte 1
1	1	1	1	1	X	1	0	MUX_OUT from MUX_IN
1	1	1	1	1	X	X	1	MUX_OUT from MUX_SELECT 2

NOTE:

1. All other combinations are reserved.
2. MUX_SELECT pins select between MUX_IN and EEPROM to MUX_OUT.

REGISTER DESCRIPTION

If the command byte is an EEPROM address, the next byte sent will be programmed into that EEPROM address on the following STOP condition, if the WP is logic 0 . If more than one byte is sent sequentially, the second byte will be written in the other-volatile register, on the following STOP condition. If any more data bytes are sent after the second byte, they will not be acknowledged and no bytes will be written to the non-volatile registers. After a byte is read from or written to the EEPROM, the part automatically points to the next non-volatile register. If the command code was FFH, the MUX_IN values are sent with the three MSBs padded with zeroes as shown below. If the command codes was 00 H , then the non-volatile register 1 is sent, and if the command code was 01 H , then the non-volatile register 1 is sent.

EEPROM Byte 0 Register

	D7	D6	D5	D4	D3	D2	D1	D0
Write	X	X	Non-Muxed Data	EEPROM 0 Data E	EEPROM 0 Data D	EEPROM 0 Data C	EEPROM 0 Data B	EEPROM 0 Data A
Read	0	0	Non-Muxed Data	EEPROM 0 Data E	EEPROM 0 Data D	EEPROM 0 Data C	EEPROM 0 Data B	EEPROM 0 Data A
Default	0	0	0	0	0	0	0	0

EEPROM Byte 1 Register

	D7	D6	D5	D4	D3	D2	D1	D0
Write	X	X	Non-Muxed Data	EEPROM 1 Data E	EEPROM 1 Data D	EEPROM 1 Data C	EEPROM 1 Data B	EEPROM 1 Data A
Read	0	0	Non-Muxed Data	EEPROM 1 Data E	EEPROM 1 Data D	EEPROM 1 Data C	EEPROM 1 Data B	EEPROM 1 Data A
Default	0	0	0	0	0	0	0	0

MUX_IN Register

	D7	D6	D5	D4	D3	D2	D1	D0
Read	0	0	0	MUX_IN DataE	MUX_IN DataD	MUX_IN DataC	MUX_IN Data B	MUX_IN DataA

If the command byte is a MUX command byte, any additional data bytes sent after the MUX command code will not be acknowledged. If the read/write bit in the address is a logic 1, then a read operation follows and the data sent out depends on the previously stored command code.

The MUX_SELECT_1 pin can function as the over-ride pin as on the PCA9559 if the non-volatile register 1 is left at all 0 s.
The NON_MUXED_OUT pin is a latched output. It is latched when MUX_SELECT_ $0=1$. It is transparent when the MUX_SELECT_ $0=0$. The data sent out on the NON_MUXED_OUT output is the 6th most significant bit of the non-volatile register. Whether this comes from the non-volatile register 0 or non-volatile register 1 depends on the command code or the external mux-select pins.

After a valid $\mathrm{I}^{2} \mathrm{C}$ write operation to the EEPROM, the part cannot be addressed via the $\mathrm{I}^{2} \mathrm{C}$ for 3.6 ms . If the part is addressed prior to this time, the part will not acknowledge its address.

NOTE:

1. To ensure data integrity, the non-volatile register must be internally write protected when $V_{D D}$ to the $I^{2} \mathrm{C}$ bus is powered down or V_{DD} to the component is dropped below normal operating levels.

CONVERSION FROM THE PCA9559 TO THE PCA9560

The PCA9560 is a drop in replacement to the PCA9559 with no software modifications. The PCA9559 has only one MUX_SELECT pin to choose between the MUX_IN values and the single non-volatile register. Since the PCA9560 has two internal non-volatile registers, if Register 1 is left to all 0's (default condition) then the MUX_SELECT_1 pin can function the same as the PCA9559 OVERRIDE \# pin and MUX_SELECT_0 pin can function the same as the PCA9559 MUX_IN pin.
The PCA9560 can read the MUX_IN_X values via ${ }^{2} \mathrm{C}$ that the PACA9559 cannot do. Another difference is that the MUX_SELECT_X control pins can be overridden by ${ }^{2} \mathrm{C}$. To replace the PCA9559 with the PCA9560, the function table for the MUX_OUT outputs and the NON_MUXED_OUT output must stay the same and the MUX_SELECT pin functions should not be overridden by ${ }^{2} \mathrm{C}$.

EXTERNAL CONTROL SIGNALS

The Write Protect (WP) input is used to control the ability to write the content of the non-volatile registers. If the WP signal is logic 0 , the $I^{2} \mathrm{C}$ bus will be able to write the contents of the non-volatile registers. If the WP signal is logic 1 , data will not be allowed to be written into the non-volatile registers. In this case, the slave address and the command code will be acknowledged but the following data bytes will not be acknowledged and the EEPROM is not updated.
The factory default for the contents of the non-volatile register are all logic 0 . These stored values can be read or written using the $\mathrm{I}^{2} \mathrm{C}$-bus (described in the next section).
The WP, MUX_IN*, MUX_SELECT_0, and MUX_SELECT_1 signals have internal pull-up resistors. See the DC and AC Characteristics for hysteresis and signal spike suppression figures.
Function Table ${ }^{1}$

WP	MUX_SELECT_0	MUX_SELECT_1	COMMANDS
0	X	X	Write to the non-volatile registers through I²C bus allowed
1	0	X	Write to the non-volatile registers through IC bus not
allowed			

NOTE:

1. This table is valid when not overridden by $\mathrm{I}^{2} \mathrm{C}$ control register.

POWER-ON RESET (POR)

When power is applied to V_{DD}, an internal power-on reset holds the PCA9560 in a reset state until V_{DD} has reached $\mathrm{V}_{\text {POR }}$. At that point, the reset condition is released and the PCA9560 volatile registers and $I^{2} \mathrm{C} /$ SMBus state machine will initialize to their default states.
The MUX_OUT and NON_MUXED_OUT pin values depend on:

- the MUX_SELECT_0 and MUX_SELECT_1 logic levels, selecting either the MUX_IN input pins or one of the two 6-bit EEPROMs
- the previously stored values in the EEPROM registers/current MUX_IN pin values as shown in the Function Table

Dual 5-bit multiplexed 1-bit latched $I^{2} \mathrm{C}$ EEPROM DIP switch

CHARACTERISTICS OF THE I²C-BUS

The I^{2} C-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 5).

Figure 5. Bit transfer

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P) (see Figure 6).

System configuration

A device generating a message is a 'transmitter', a device receiving is the 'receiver'. The device initiates a transfer is the 'master' and the devices which are controlled by the master are the 'slaves' (see Figure 7).

Figure 6. Definition of start and stop conditions

Figure 7. System configuration

Dual 5-bit multiplexed 1-bit latched

$I^{2} \mathrm{C}$ EEPROM DIP switch

Acknowledge

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH-level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account.
A receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Figure 8. Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus

Bus Transactions

Data is transmitted to the PCA9560 registers using Write Byte transfers (see Figures 9 and 10). Data is read from the PCA9560 registers using Read and Receive Byte transfers (see Figure 11).

Figure 9. WRITE on 1 EEPROM - assuming WP $=0$

Figure 10. WRITE on 2 EEPROMs - assuming WP $=0$

Figure 11. READ MUX_IN register

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

In accordance with the Absolute Maximum Rating System (IEC 134)
Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{DD}	DC supply voltage	-0.5 to +4.0	V	
$\mathrm{~V}_{\text {IN }}$	DC input voltage	Note 3	-0.5 to +5.5	V
$\mathrm{~V}_{\text {OUT }}$	DC output voltage	Note 3	-0.5 to +5.5	V
$\mathrm{~T}_{\text {Stg }}$	Storage temperature range		-60 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The maximum input or output voltage is the lesser of 5.5 V or $\mathrm{V}_{\mathrm{DD}}+4.0 \mathrm{~V}$, except for very short (e.g., system start-up or shut-down) durations.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		CONDITIONS	LIMITS		UNIT	
			MIN	MAX			
V_{DD}	DC supply voltage			-	3.0	3.6	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	SCL, SDA	$\mathrm{l} \mathrm{OL}=3 \mathrm{~mA}$	-0.5	0.9	V	
V_{IH}	HIGH-level input voltage	SCL, SDA	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$	2.7	$5.5{ }^{1}$	V	
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	SCL, SDA	$\mathrm{l} \mathrm{OL}=3 \mathrm{~mA}$	-	0.4	V	
			$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	-	0.6		
VIL	LOW-level input voltage	MUX IN, MUX SELECT 0, MUX_SELECT_1	-	-0.5	0.8	V	
V_{IH}	HIGH-level input voltage	MUX IN, MUX SELECT_0, MUX_SELECT﹎﹎́1	-	2.0	$5.5{ }^{1}$	V	
loL	LOW-level output current	MUX OUT, NON_MUXXED_OUT	-	-	8	mA	
IOH	HIGH-level output current	MUX_OUT, NON_MUXXED_OUT	-	-	100	$\mu \mathrm{A}$	
dt/dv	Input transition rise or fall time	dt/dv	-	0	10	ns/V	
$\mathrm{T}_{\text {amb }}$	Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-	-40	85	${ }^{\circ} \mathrm{C}$	

NOTES:

1. The maximum input voltage is the lesser of 5.5 V or $\mathrm{V}_{\mathrm{DD}}+4.0 \mathrm{~V}$, except for very short (e.g., system start-up or shut-down) durations.

DC CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			MIN.	TYP.	MAX.	
Supply						
VDD	Supply voltage		3	-	3.6	V
IDDL	Supply current	Operating mode ALL inputs $=0 \mathrm{~V}$	-	-	1	mA
$\mathrm{I}_{\text {DDH }}$	Supply current	Operating mode ALL inputs $=\mathrm{V}_{\mathrm{DD}}$	-	-	600	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	Power-on reset voltage	No load; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or GND	-	2.3	2.7	V
Input SCL: Input/Output SDA						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		-0.5	-	0.8	V
$\mathrm{V}_{1 \mathrm{H}}$	HIGH-level input voltage		2	-	$5.5{ }^{1}$	V
$\mathrm{l}_{\text {OL }}$	LOW-level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA
$\mathrm{l}_{\text {OL }}$	LOW-level output current	$\mathrm{V}_{\mathrm{OL}}=0.6 \mathrm{~V}$	6	-	-	mA
I_{H}	Leakage current HIGH	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LL }}$	Input current LOW	$\mathrm{V}_{1}=$ GND	-1	-	1	$\mu \mathrm{A}$
C_{1}	Input capacitance		-	3	6	pF

WP, MUX_SELECT_0, MUX_SELECT_1

$I_{I H}$	Leakage current HIGH	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{~A}$
I_{IL}	Input current LOW	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$	-20	-	-50	$\mu \mathrm{~A}$
C_{I}	Input capacitance		-	2.5	5	pF

MUX_IN A \rightarrow E

$I_{I H}$	Leakage current HIGH	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{~A}$
I_{IL}	Input current LOW	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$	-20	-	-50	$\mu \mathrm{~A}$
C_{I}	Input capacitance		-	2.5	5	pF

A0, A1 Inputs

$\mathrm{IIH}^{\text {H }}$	Leakage current HIGH	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
IIL	Input current LOW	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$	-20	-	-50	$\mu \mathrm{A}$
C_{1}	Input capacitance		-	2	4	pF
MUX_OUT						
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	l OL $=100 \mu \mathrm{~A}$	-	-	0.4	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{l} \mathrm{OL}=4 \mathrm{~mA}$	-	-	0.7	V
I_{OH}	HIGH-level output current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	-	-	100	$\mu \mathrm{A}$
NON-MUXED_OUT						
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$	-	-	0.4	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{l} \mathrm{OL}=2 \mathrm{~mA}$	-	-	0.7	V

NOTE:

1. The maximum input voltage is the lesser of 5.5 V or $\mathrm{V}_{\mathrm{DD}}+4.0 \mathrm{~V}$, except for very short (e.g., system start-up or shut-down) durations.

NON-VOLATILE STORAGE SPECIFICATIONS

PARAMETER	SPECIFICATION
Memory cell data retention	10 years min
Number of memory cell write cycles	100,000 cycles min

[^0]Dual 5-bit multiplexed 1-bit latched $I^{2} \mathrm{C}$ EEPROM DIP switch

SAC CHARACTERISTICS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN.	TYP.	MAX.	
MUX_IN \Rightarrow MUX_OUT					
$\mathrm{t}_{\text {PLH }}$	LOW-to-HIGH transition time	-	28	40	ns
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW transition time	-	8	15	ns
Select \Rightarrow MUX_OUT					
tpLH	LOW-to-HIGH transition time	-	30	43	ns
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW transition time	-	10	15	ns
t_{R}	Output rise time	1.0	-	3	ns/V
$\mathrm{t}_{\text {F }}$	Output fall time	1.0	-	3	ns / V
C_{L}	Test load capacitance on outputs	-	-	50	pF
Select \Rightarrow NON-MUXED_OUT					
tpLH	LOW-to-HIGH transition time	-	30	40	ns
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW transition time	-	9	15	ns

AC SPECIFICATIONS

SYMBOL	PARAMETER	STANDARD MODE $1^{2} \mathrm{C}$-BUS		$\begin{aligned} & \text { FAST MODE } \\ & \text { I²C-BUS } \end{aligned}$		UNITS
		MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {SCL }}$	Operating frequency	0	100	0	400	kHz
$\mathrm{t}_{\text {BUF }}$	Bus free time between STOP and START conditions	4.7	-	1.3	-	$\mu \mathrm{s}$
$t_{\text {HD } ; \text { STA }}$	Hold time after (repeated) START condition	4.0	-	0.6	-	$\mu \mathrm{s}$
tsu;STA	Repeated START condition setup time	4.7	-	0.6	-	$\mu \mathrm{s}$
tsu;Sto	Set-up time for STOP condition	4.0	-	0.6	-	$\mu \mathrm{S}$
$\mathrm{thD}^{\text {dat }}$	Data in hold time	0	-	0	-	ns
tvo;ACK	Valid time for ACK condition ${ }^{2}$	0.3	3.45	0.1	0.9	$\mu \mathrm{S}$
tvD;DAT	Data out valid time ${ }^{3}$	300	-	50	-	ns
${ }_{\text {t }}$ U;DAT	Data set-up time	250	-	100	-	ns
tow	Clock LOW period	4.7	-	1.3	-	$\mu \mathrm{s}$
thigh	Clock HIGH period	4.0	-	0.6	-	$\mu \mathrm{S}$
t_{F}	Clock/Data fall time	-	300	$20+0.1 \mathrm{C}{ }^{1}$	300	ns
t_{R}	Clock/Data rise time	-	1000	$20+0.1 \mathrm{C}^{1}{ }^{1}$	300	ns
$\mathrm{t}_{\text {SP }}$	Pulse width of spikes that must be suppressed by the input filters	-	50	-	50	ns

NOTES:

1. $\mathrm{C}_{\mathrm{b}}=$ total capacitance of one bus line in pF .
2. $\mathrm{t}_{\mathrm{VD} ; \mathrm{ACK}}=$ time for Acknowledgement signal from SCL LOW to SDA (out) LOW.
3. $\mathrm{t}_{\mathrm{VD} ; \mathrm{DAT}}=$ minimum time for SDA data out to be valid following SCL LOW.

Dual 5-bit multiplexed 1-bit latched $I^{2} \mathrm{C}$ EEPROM DIP switch

SU00645
Figure 12. Definition of timing

Figure 13. Open drain output enable and disable times

Figure 14. Test circuit

Dual 5-bit multiplexed 1-bit latched

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.1	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.05	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

| OUTLINE
 VERSION | REFERENCES | | | EUROPEAN | PROJECTION |
| :---: | :---: | :---: | :---: | :---: | :---: | ISSUE DATE

Dual 5-bit multiplexed 1-bit latched

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$
mm	1.1	0.15	0.95	0.25	0.30	0.2	6.6	4.5	0.6	6.6	1	0.75	0.4	0.2	0.13	0.1	0.5

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT360-1		MO-153			$\begin{gathered} -9-12-27 \\ 03-02-19 \end{gathered}$

Dual 5-bit multiplexed 1-bit latched $I^{2} \mathrm{C}$ EEPROM DIP switch

REVISION HISTORY

Rev	Date	Description
-4	20040519	Product data sheet (9397 750 13154). Supersedes data of 2003 Jun 27 (9397 750 11676). Modifications: - Features section, $16^{\text {th }}$ bullet: from "inputs" to "inputs/outputs" - Absolute maximum ratings table: $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IN}}$, and $\mathrm{V}_{\mathrm{OUT}}$ limits modified. Note 3 re-written. - Recommended operating conditions - $\mathrm{V}_{\mathbb{I H}}$ max. (on SCL, SDA) changed from 4.0 V to 5.5 V (with Note 1 added). - V_{IH} max. (on MUX_IN, MUX_SELECT_0, MUX_SELECT_1) changed from 4.0 V to 5.5 V (with Note 1 added). - DC characteristics table: Input SCL: Input/Output SDA; V_{IH} parameter max. limit modified, and Note 1 added.
-3	20030627	Product data (9397 750 11676); ECN 853-2286 29936 dated 19 May 2003. Supersedes data of 2002 May 24 (9397750 09892).
-2	20020524	Product data (9397 750 09892); ECN 853-2286 28310 of 24 May 2002.

Purchase of Philips $\mathrm{I}^{2} \mathrm{C}$ components conveys a license under the Philips' $\mathrm{I}^{2} \mathrm{C}$ patent to use the components in the $\mathrm{I}^{2} \mathrm{C}$ system provided the system conforms to the $1^{2} \mathrm{C}$ specifications defined by Philips. This specification can be ordered using the code 939839340011.

Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definitions
I	Objective data sheet	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data sheet	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data sheet	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

© Koninklijke Philips Electronics N.V. 2004
For additional information please visit
http://www.semiconductors.philips.com.
Fax: +31 402724825
All rights reserved. Printed in U.S.A.

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

NXP:
PCA9560D,112 PCA9560D,118 PCA9560PW,112 PCA9560PW,118

[^0]: Application Note AN250 I²C DIP Switch provides additional information on memory cell data retention and the minimum number of write cycles.

