4-Bit 100 Mb/s Configurable Dual-Supply Level Translator

The NLSX4014 is a 4–bit configurable dual–supply bidirectional level translator without a direction control pin. The I/O V_{CC}– and I/O V_L–ports are designed to track two different power supply rails, V_{CC} and V_L respectively. The V_{CC} supply rail is configurable from 1.3 V to 4.5 V while the V_L supply rail is configurable from 0.9 V to (V_{CC} – 0.4) V. This allows lower voltage logic signals on the V_L side to be translated into higher voltage logic signals on the V_{CC} side, and vice–versa. Both I/O ports are auto–sensing; thus, no direction pin is required.

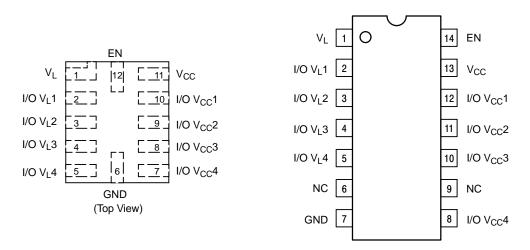

The Output Enable (EN) input, when Low, disables both I/O ports by putting them in 3–state. This significantly reduces the supply currents from both V_{CC} and V_L . The EN signal is designed to track V_L .

Features

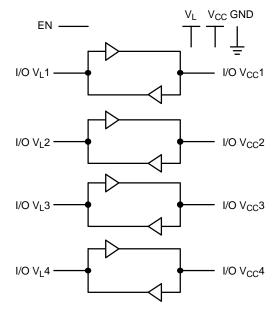
- Wide High–Side V_{CC} Operating Range: 1.3 V to 4.5 V
 Wide Low–Side V_L Operating Range: 0.9 V to (V_{CC} 0.4) V
- Power Supply Isolation
 - All Outputs are in the High Impedance State if Either V_L or V_{CC} is at Ground
- High–Speed with 100 Mb/s Guaranteed Date Rate for $V_L > 1.6 \ V$
- Low Bit-to-Bit Skew
- Overvoltage Tolerant Enable and I/O Pins
- Non-preferential Powerup Sequencing
- Small packaging: 1.7 mm x 2.0 mm UQFN12
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These are Pb–Free Devices

Typical Applications

• Mobile Phones, PDAs, Other Portable Devices



ORDERING INFORMATION


Device	Package	Shipping [†]
NLSX4014MUTAG	UQFN12 (Pb-Free)	3000/Tape & Reel
NLVSX4014MUTAG	UQFN12 (Pb-Free)	3000/Tape & Reel
NLSX4014DR2G	SO–14 (Pb–Free)	2500/Tape & Reel
NLSX4014DTR2G	TSSOP14 (Pb-Free)	2500/Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NLSX4014

PIN ASSIGNMENT

Pins	Description
V _{CC}	V _{CC} Input Voltage
VL	V _L Input Voltage
GND	Ground
EN	Output Enable
I/O V _{CC} n	I/O Port, Referenced to V _{CC}
I/O V _L n	I/O Port, Referenced to VL

FUNCTION TABLE

EN	Operating Mode
L	Hi–Z
Н	I/O Buses Connected

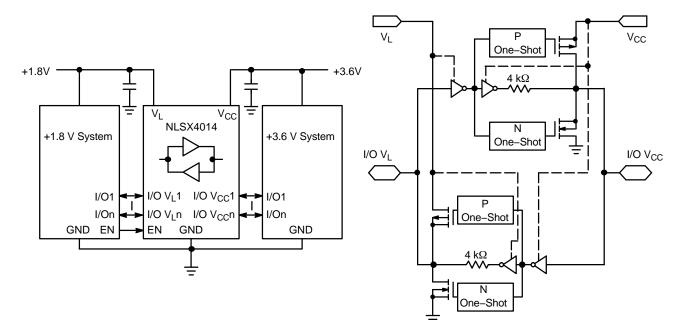


Figure 3. Typical Application Circuit

Figure 4. Simplified Functional Diagram (1 I/O Line) (EN = 1)

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	V _{CC} Supply Voltage	-0.5 to +5.5		V
VL	V _L Supply Voltage	-0.5 to +5.5		V
I/O V _{CC}	V _{CC} -Referenced DC Input/Output Voltage	–0.5 to (V _{CC} + 0.3)		V
I/O V _L	V _L -Referenced DC Input/Output Voltage	–0.5 to (V _L + 0.3)		V
V _{EN}	Enable Control Pin DC Input Voltage	-0.5 to +5.5		V
I _{IK}	Input Diode Clamp Current	-50	V _I < GND	mA
I _{OK}	Output Diode Clamp Current	-50	V _O < GND	mA
I _{CC}	DC Supply Current Through V _{CC}	±100		mA
ΙL	DC Supply Current Through VL	±100		mA
I _{GND}	DC Ground Current Through Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Symbol Parameter			Max	Unit
V _{CC}	V _{CC} Supply Voltage		1.3	4.5	V
VL	V _L Supply Voltage		0.9	V _{CC} – 0.4	V
V _{EN}	Enable Control Pin Voltage		GND	4.5	V
V _{IO}	Bus Input/Output Voltage	I/O V _{CC} I/O V _L	GND GND	4.5 4.5	V
T _A	Operating Temperature Range		-40	+85	°C
ΔΙ/ΔV	Input Transition Rise or Rate V _I , V _{IO} from 30% to 70% of V _{CC} ; V _{CC} = 3.3 V \pm 0.3 V		0	10	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

					-4	0°C to +85	5°C	
Symbol	Parameter	Test Conditions (Note 1)	V _{CC} (V) (Note 2)	V _L (V) (Note 3)	Min	Typ (Note 4)	Мах	Unit
V _{IHC}	I/O V _{CC} Input HIGH Voltage		1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	0.8 * V _{CC}	-	-	V
V _{ILC}	I/O V _{CC} Input LOW Voltage		1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	-	-	0.2 * V _{CC}	V
V _{IHL}	I/O V _L Input HIGH Voltage		1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	0.8 * V _L	-	-	V
V _{ILL}	I/O V _L Input LOW Voltage		1.3 to 4.5	0.9 to (V _{CC} – 0.4)	-	-	0.2 * V _L	V
V _{IH}	Control Pin Input HIGH Voltage	T _A = +25°C	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	0.8 * V _L	-	-	V
V _{IL}	Control Pin Input LOW Voltage	T _A = +25°C	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	-	-	0.2 * V _L	V
V _{OHC}	I/O V _{CC} Output HIGH Voltage	I/O V _{CC} Source Current = $20 \ \mu A$	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	0.8 * V _{CC}	-	-	V
V _{OLC}	I/O V _{CC} Output LOW Voltage	I/O V _{CC} Sink Current = 20 μ A	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	-	-	0.2 * V _{CC}	V
V _{OHL}	I/O V _L Output HIGH Voltage	I/O V _L Source Current = 20 μ A	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	0.8 * V _L	-	-	V
V _{OLL}	I/O V _L Output LOW Voltage	I/O V _L Sink Current = 20 μ A	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	-	-	0.2 * V _L	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Normal test conditions are V_{EN} = 0 V, C_{IOVCC} = 15 pF and C_{IOVL} = 15 pF, unless otherwise specified.
V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions.
V_L is the supply voltage associated with the low voltage port. V_L must be less than or equal to (V_{CC} - 0.4) V during normal operation. However, during startup and shutdown conditions, V_L can be greater than (V_{CC} - 0.4) V.
Typical values are for V_{CC} = +2.8 V, V_L = +1.8 V and T_A = +25°C. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

POWER CONSUMPTION

		Test Conditions	V ~~ (\/)	V ₁ (V)	-40)°C to +8	5°C	
Symbol	Parameter	(Note 5)	V _{CC} (V) (Note 6)	(Note 7)	Min	Тур	Max	Unit
I _{Q-VCC}	Supply Current from		1.3 to 3.6	0.9 to (V _{CC} $-$ 0.4)	-	-	1.0	μΑ
	V _{CC}	I/O $V_{CCn} = V_{CC}$ or I/O $V_{Ln} = V_L$ and $I_0 = 0$	0	4.1	-	-	2.0	1
			4.5	0	-	-	2.0	1
I_{Q-VL}	Supply Current from V_L	$ \begin{array}{l} EN=V_{L;} \text{ I/O } V_{CCn}=0 \text{ V, I/O } V_{Ln}=0 \text{ V,} \\ I/O V_{CCn}=V_{CC} \text{ or I/O } V_{Ln}=V_{L} \text{ and } I_{o}=0 \end{array} $	1.3 to 3.6	0.9 to $(V_{CC} - 0.4)$	-	-	1.0	μΑ
		$EN = V_{I}$, I/O $V_{CCn} = 0$ V, I/O $V_{In} = 0$ V,	-	< (V _{CC} – 0.2)				1
		$I/O V_{CC0} = V_{CC} \text{ or } I/O V_{10} = (V_{CC} - 1)$	0	4.1	-	-	2.0	
		0.2 V and $I_0 = 0$	4.5	0				
I _{TS-VCC}	V _{CC} Tristate Output Mode Supply Current	EN = 0 V	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	-	-	1.0	μΑ
I _{TS-VL}	V _L Tristate Output	EN = 0 V	1.3 to 3.6	0.9 to (V _{CC} $-$ 0.4)	-	-	0.2	μΑ
	Mode Supply Current	EN = 0 V		V _{CC} – 0.2	-	-	2.0	1
I _{OZ}	I/O Tristate Output	EN = 0 V	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	-	-	0.15	μΑ
	Mode Leakage Current	EN = 0 V		V _{CC} - 0.2	-	-	2.0	1
I _{EN}	Output Enable Pin Input Current	-	1.3 to 3.6	0.9 to (V _{CC} – 0.4)	-	-	1.0	μΑ
I _{OFF}	V _L Port	I/O V _{Ln} = 0 to 4.1 V	0 to 4.5	0	-	-	2.0	μΑ
	V _{CC} Port	I/O V _{CCn} = 0 to 4.5 V	0	0 to 4.1	-	-	2.0	1

Normal test conditions are V_{EN} = 0 V, C_{IOVCC} = 15 pF and C_{IOVL} = 15 pF, unless otherwise specified.
 V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 3.6 V.
 V_L is the supply voltage associated with the low voltage port. V_L must be less than or equal to (V_{CC} - 0.4) V during normal operation. However, during startup and shutdown conditions, V_L can be greater than (V_{CC} - 0.4) V.

TIMING CHARACTERISTICS

					-4	40°C to +85°	°C	
Symbol	Parameter	Test Conditions (Note 8)	V _{CC} (V) (Note 9)	V_L (V) (Note 10)	Min	Typ (Note 11)	Max	Unit
t _{R-VCC}	$I/O V_{CC}$ Rise Time (Output = I/O_V_{CC})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.7	2.4	ns
t _{F-VCC}	I/O V _{CC} Falltime (Output = I/O_V _{CC})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.5	1.0	ns
t _{R-VL}	$I/O V_L$ Risetime (Output = I/O_V_L)	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		1.0	3.8	ns
t_{F-VL}	$I/O V_L$ Falltime (Output = I/O_V_L)	$C_{IOVL} = 15 \text{ pF}$	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.6	1.2	ns
Z _{O-VCC}	I/O V _{CC} One–Shot Output Impedance		1.3 to 4.5	0.9 to (V _{CC} – 0.4)		30		Ω
Z _{O-VL}	I/O V _L One–Shot Output Impedance		1.3 to 4.5	0.9 to (V _{CC} – 0.4)		30		Ω
tPD_VL-VCC	Propagation Delay (Output = I/O_V_{CC} , t_{PHL} , t_{PLH})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$		4.5	9.3	ns
tPD_VCC-VL	Propagation Delay (Output = I/O_V _L , t _{PHL} , t _{PLH})	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		3.0	6.5	ns
t _{SK VL-VCC}	Channel-to-Channel Skew (Output = I/O_V _{CC})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.2	0.3	nS
tSK_VCC-VL	Channel-to-Channel Skew (Output = I/O_V _L)	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		0.2	0.3	nS
MDR	Maximum Data Rate	(Output = I/O_V _{CC} , $C_{IOVCC} = 15 \text{ pF}$)	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$	110			Mb/s
		$(Output = I/O_V_L, C_{IOVL} = 15 \text{ pF})$	> 2.2	> 1.8	140			1

8. Normal test conditions are V_{EN} = 0 V, C_{IOVCC} = 15 pF and C_{IOVL} = 15 pF, unless otherwise specified.
9. V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions.
10. V_L is the supply voltage associated with the low voltage port. V_L must be less than or equal to (V_{CC} - 0.4) V during normal operation. However, during startup and shutdown conditions, V_L can be greater than (V_{CC} - 0.4) V.
11. Typical values are for V_{CC} = +2.8 V, V_L = +1.8 V and T_A = +25°C. All units are production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

ENABLE	E / DISABLE TIME MEASUREME	INTS			_4	10°C to +85	°C
Symbol	Parameter	Test Conditions (Note 12)	V _{CC} (V) (Note 13)	V_L (V) (Note 14)	Min	Typ (Note 15)	Max
t _{EN-VCC}	Turn–On Enable Time (Output = I/O_V_{CC} , t_{pZH})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		130	180
	Turn–On Enable Time (Output = I/O_V _{CC} , t _{pZL})	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$		100	150
t _{EN-VL}	Turn–On Enable Time (Output = I/O_V _L , t _{pZH})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		95	185
	Turn–On Enable Time (Output = I/O_V _L , t _{pZL})	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		70	110
t _{DIS-VCC}	Turn–Off Disable Time (Output = I/O_V_{CC} , t_{pHZ})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$		175	250
	Propagation Delay (Output = I/O_V _{CC} , t _{PLZ})	C _{IOVL} = 15 pF	1.3 to 4.5	0.9 to (V _{CC} – 0.4)		150	190
t _{DIS-VL}	Turn–Off Disable Time (Output = I/O_V_L , t_{pHZ})	C _{IOVCC} = 15 pF	1.3 to 4.5	0.9 to $(V_{CC} - 0.4)$		180	250

Ε

Propagation Delay (Output = I/O_V_L ,

t_{PLZ})

12. Normal test conditions are $V_{EN} = 0$ V, $C_{IOVCC} = 15$ pF and $C_{IOVL} = 15$ pF, unless otherwise specified. 13. V_{CC} is the supply voltage associated with the high voltage port, and V_{CC} ranges from +1.3 V to 4.5 V under normal operating conditions. 14. V_L is the supply voltage associated with the low voltage port. V_L must be less than or equal to ($V_{CC} - 0.4$) V during normal operation. However, during startup and shutdown conditions, V_L can be greater than ($V_{CC} - 0.4$) V. 15. Typical values are for $V_{CC} = +2.8$ V, $V_L = +1.8$ V and $T_A = +25$ °C. All units are production tested at $T_A = +25$ °C. Limits over the operating temperature range are guaranteed by design

1.3 to 4.5 0.9 to (V_{CC} - 0.4)

 $C_{IOVL} = 15 \, pF$

temperature range are guaranteed by design.

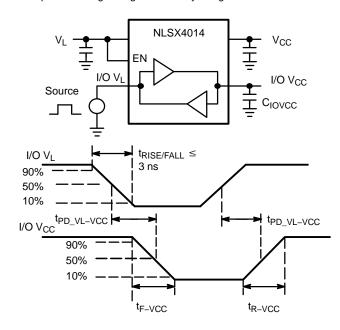
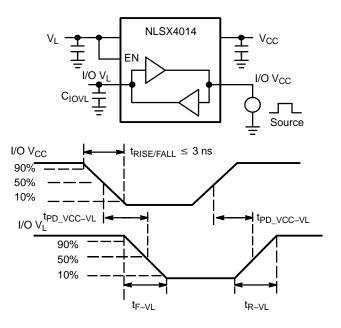



Figure 5. Driving I/O V_L Test Circuit and Timing

Unit

ns

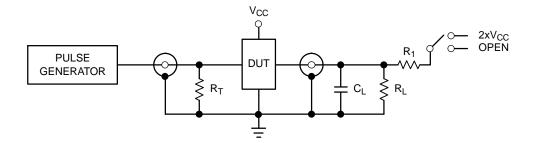
ns

ns

ns

ns

ns


ns

ns

220

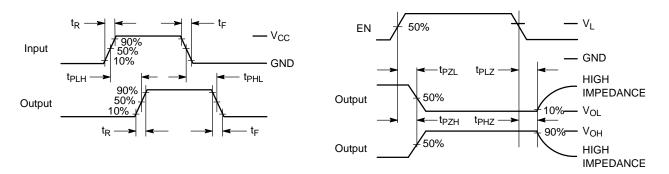

160

Figure 6. Driving I/O V_{CC} Test Circuit and Timing

Test	Switch
t _{PZH} , t _{PHZ}	Open
t _{PZL} , t _{PLZ}	2 x V _{CC}

 C_L = 15 pF or equivalent (Includes jig and probe capacitance) R_L = R_1 = 50 k Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

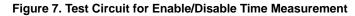


Figure 8. Timing Definitions for Propagation Delays and Enable/Disable Measurement

NLSX4014

IMPORTANT APPLICATIONS INFORMATION

Level Translator Architecture

The NLSX4014 auto sense translator provides bi-directional voltage level shifting to transfer data in multiple supply voltage systems. This device has two supply voltages, V_L and V_{CC} , which set the logic levels on the input and output sides of the translator. When used to transfer data from the V_L to the V_{CC} ports, input signals referenced to the V_L supply are translated to output signals with a logic level matched to V_{CC} . In a similar manner, the V_{CC} to V_L translation shifts input signals with a logic level compatible to V_{CC} to an output signal matched to V_L .

The NLSX4014 consists of four bi-directional channels that independently determine the direction of the data flow without requiring a directional pin. The one-shot circuits are used to detect the rising or falling input signals. In addition, the one shots decrease the rise and fall time of the output signal for high-to-low and low-to-high transitions.

Input Driver Requirements

For proper operation, the input driver to the auto sense translator should be capable of driving 2.0 mA of peak output current.

Output Load Requirements

The NLSX4014 is designed to drive CMOS inputs. Resistive pullup or pulldown loads of less than 50 k Ω should not be used with this device. The NLSX3373 or NLSX3378 open-drain auto sense translators are alternate translator options for an application such as the I²C bus that requires pullup resistors.

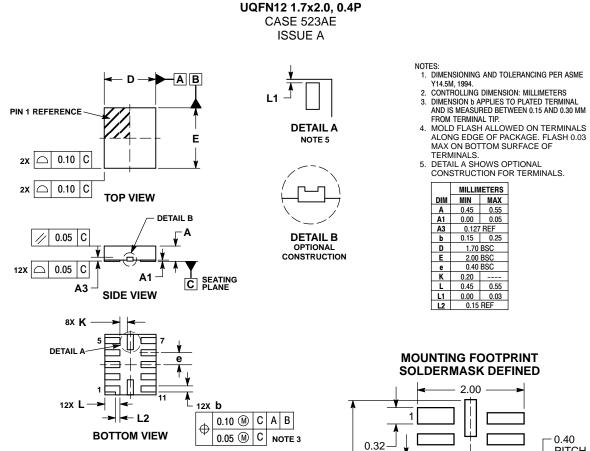
Enable Input (EN)

The NLSX4014 has an Enable pin (EN) that provides tri–state operation at the I/O pins. Driving the Enable pin to a low logic level minimizes the power consumption of the device and drives the I/O V_{CC} and I/O V_L pins to a high impedance state. Normal translation operation occurs when the EN pin is equal to a logic high signal. The EN pin is referenced to the V_L supply and has Over–Voltage Tolerant (OVT) protection.

Uni-Directional versus Bi-Directional Translation

The NLSX4014 can function as a non-inverting uni-directional translator. One advantage of using the translator as a uni-directional device is that each I/O pin can be configured as either an input or output. The configurable input or output feature is especially useful in applications such as SPI that use multiple uni-directional I/O lines to send data to and from a device. The flexible I/O port of the auto sense translator simplifies the trace connections on the PCB.

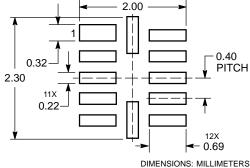
Power Supply Guidelines


It is recommended that the V_L supply should be less than or equal to the value of the V_{CC} minus 0.4 V. The sequencing of the power supplies will not damage the device during the power up operation; however, the current consumption of the device will increase if V_L exceeds V_{CC} minus 0.4 V. In addition, the I/O V_{CC} and I/O V_L pins are in the high impedance state if either supply voltage is equal to 0 V.

For optimal performance, 0.01 to 0.1 μ F decoupling capacitors should be used on the V_L and V_{CC} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the power supply voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.

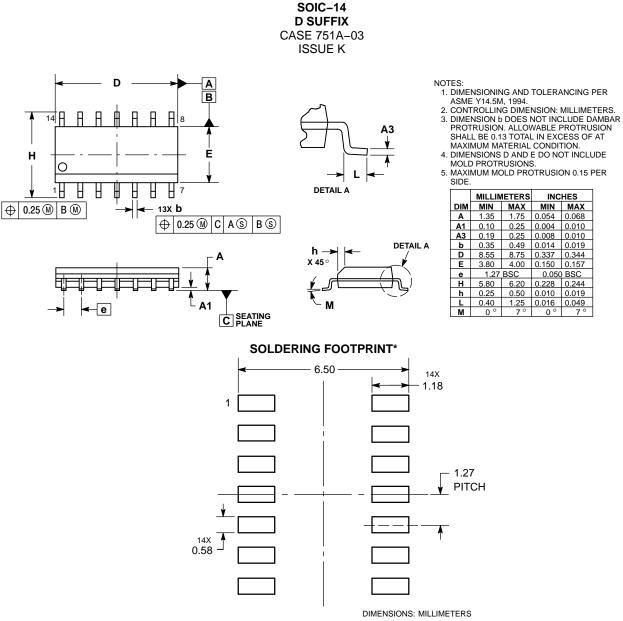
The NLSX4014 provides power supply isolation if either supply voltage V_L or V_{CC} is equal to 0 V. The isolation occurs because the I/O pins are in the high impedance state. It is recommended that pulldown resistors should be used if the V_L or V_{CC} are floated or in a high impedance state. A pulldown resistor connected from the supply voltage to ground ensures that the translator's supply voltage is equal to 0 V.

NLSX4014

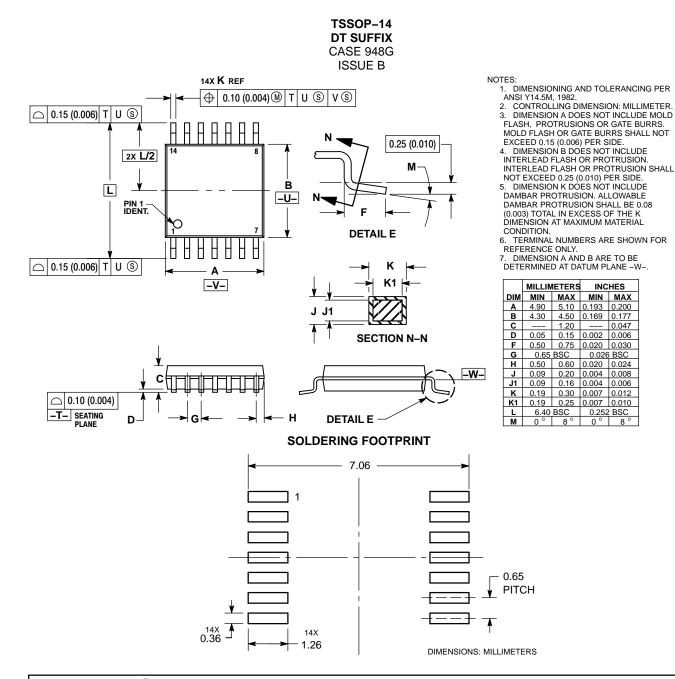

PACKAGE DIMENSIONS

- AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.
 4. MOLD FLASH ALLOWED ON TERMINALS ALONG EDGE OF PACKAGE. FLASH 0.03 MAX ON BOTTOM SURFACE OF TERMINALS.
 5. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.127	' REF			
b	0.15	0.25			
D	1.70	BSC			
Е	2.00	BSC			
е	0.40	BSC			
K	0.20				
L	0.45	0.55			
L1	0.00	0.03			
L2	0.15	REF			


MOUNTING FOOTPRINT SOLDERMASK DEFINED

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

INCHES

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

ON Semiconductor and the 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

INCHES

0.026 BSC

0.047

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NLSX4014MUTAG NLSX4014DR2G NLSX4014DTR2G