

Is Now Part of

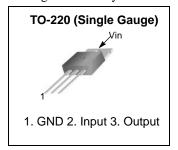
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

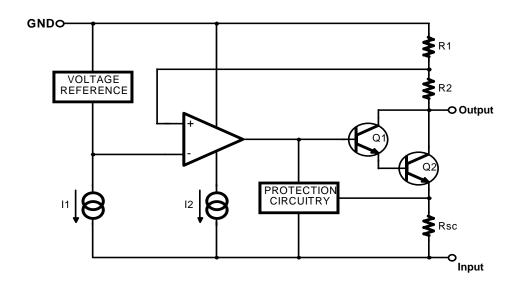
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

LM79XX


3-Terminal 1A Negative Voltage Regulator

Features


- Output Current in Excess of 1A
- Output Voltages of -5, -6, -8, -9, -10, -12, -15, -18 and -24V
- Internal Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Compensation

Description

The LM79XX series of three terminal negative regulators are available in TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage	VI	-35	V
Thermal Resistance Junction-Case (Note1)	R _θ JC	5	°C/W
Thermal Resistance Junction-Air (Note1, 2)	RθJA	65	C/VV
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Note:

- 1. Thermal resistance test board Size: 76.2mm * 114.3mm * 1.6mm(1S0P) JEDEC standard: JESD51-3, JESD51-7
- 2. Assume no ambient airflow

Electrical Characteristics (LM7905)

(V_I = -10V, I_O = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, C_I =2.2 μ F, C_O =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		VO IO = 5mA to 1A PO < 15W		-4.8	-5.0	-5.2	
Output Voltage	Vo			-4.75	-5.0	-5.25	V
Line Regulation (Note2)	4)/0	T _J = +25°C	VI = -7V to -25V		35	100	mV
Line Regulation (Note3)	ΔVO	1J = +25 C	V _I = -8V to -12V	=.	8	50	IIIV
Load Regulation (Note3)	ΔVο	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5a$	A	-	10	100	mV
Load Regulation (Notes)	ΔνΟ	TJ =+25°C IO = 250mA to 750mA		-	3	50	IIIV
Quiescent Current	lQ	T _J =+25°C		-	3	6	mA
Quiescent Current Change	Alo	IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	VI = -8V to -25V		-	0.1	0.8	IIIA
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	- 0.4	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A =+25°C	кНz	-	40	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	TJ = +25°C IO = 1A		-	2	-	V
Short Circuit Current	Isc	T _J =+25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	TJ =+25°C		-	2.2	-	Α

Note

3. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7906) (Continued)

(VI = -11V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-5.75	-6	-6.25	
Output Voltage	Vo		IO = 5mA to 1A, PO ≤ 15W VI = -9V to -21V		-6	-6.3	V
Line Regulation (Note1)	4\/0	T _J = +25°C	VI = -8V to -25V	-	10	120	mV
Line Regulation (Note1)	ΔVO	1J = +25 C	V _I = -9V to -13V	-	5	60	IIIV
Load Regulation (Note1)	ΔVΩ	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$	4	-	10	120	mV
Load Regulation (Note 1)	Δ۷Ο	TJ =+25°C IO = 250mA to 750mA		-	3	60	- IIIV
Quiescent Current	IQ	TJ =+25°C		-	3	6	mA
Quincant Current Change	Ma	$I_O = 5mA$ to $1A$		-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	VI = -8V to -25V		-	0.1	1.3	
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A =+25°C	Hz	-	130	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	2.2	-	А

Note

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7908) (Continued)

(VI = -14V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		VO IO = 5mA to 1A PO < 15W		-7.7	-8	-8.3	
Output Voltage	Vo			-7.6	-8	-8.4	V
Line Regulation (Note1)	ΔVο	T 125°C	V _I = -10.5V to -25V	-	10	160	mV
Line Regulation (Note1)	ΔνΟ	TJ = +25°C	V _I = -11V to -17V	-	5	80	IIIV
Load Regulation (Note1)	ΔVο	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.8$	5A	-	12	160	mV
Load (Note I)	ΔνΟ	TJ =+25°C IO = 250mA to 750mA		-	4	80	IIIV
Quiescent Current	IQ	T _J =+25°C		-	3	6	mA
Quioccont Current Change	Alo	$I_O = 5mA \text{ to } 1A$	1	-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	VI = -10.5V to	·25V	-	0.1	1	ША
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-0.6	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100 T _A =+25°C)kHz	-	175	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	TJ = +25°C	T _J = +25°C		2.2	-	Α

Note

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7909) (Continued)

(VI = -15V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-8.7	-9.0	-9.3	
Output Voltage	Vo		IO = 5mA to 1A, PO ≤ 15W VI = -1.5V to -23V		-9.0	-9.4	V
Line Regulation (Note1)	ΔVο	TJ = +25°C	V _I = -11.5V to -26V	-	10	180	mV
Line Regulation (Note1)	ΔνΟ	1J = +25 C	V _I = -12V to -18V	-	5	90	IIIV
Load Regulation (Note1)	ΔVο	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$	Ą	-	12	180	mV
Load Negdiation (Note I)	ΔνΟ	TJ = +25°C IO = 250mA to 750mA		-	4	90	IIIV
Quiescent Current	IQ	T _J = +25°C		-	3	6	mA
Quiescent Current Change	ΔlQ	$I_O = 5mA$ to $1A$		-	0.05	0.5	mA
Quiescent Current Change	ΔIQ	V _I = -11.5V to -2	6V	-	0.1	1	IIIA
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-0.6	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A = +25°C	Hz	-	175	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7910) (Continued)

(VI = -17V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C	T _J = +25°C		-10	-10.4	
Output Voltage	Vo	IO = 5mA to 1A, Pd ≤ 15W VI = -12V to -28		-9.5	-10	-10.5	V
Line Regulation (Note1)	ΔVο	T _J = +25°C	V _I = -12.5V to -28V	-	12	200	mV
Line Regulation (Note1)	ΔνΟ	1J = +25 C	V _I = -14V to -20V	-	6	100	1117
Load Regulation (Note1)	ΔVο	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$	4	-	12	200	mV
Load Regulation (Note I)	ΔνΟ	T _J = +25°C I _O = 250mA to 750mA		-	4	100	
Quiescent Current	IQ	T _J = +25°C		-	3	6	mA
Ouissant Current Change	A.I.o.	IO = 5mA to 1A		-	0.05	0.5	A
Quiescent Current Change	ΔlQ	V _I = -12.5V to -2	8V	-	0.1	1 mA	
Temperature Coefficient of VO	ΔVο/ΔΤ	IO = 5mA		•	-1	-	mV/°C
Output Noise Voltage	VN	10Hz ≤ f ≤ 100kH T _A =+25°C	Ηz	-	280	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7912) (Continued)

(VI = -19V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-11.5	-12	-12.5	
Output Voltage	Vo		IO = 5mA to 1A, PO ≤ 15W VI = -15.5V to -27V		-12	-12.6	V
Line Regulation (Note1)	41/0	T _J = +25°C	VI = -14.5V to -30V	-	12	240	mV
Line Regulation (Note1)	ΔVO	1J = +25°C	V _I = -16V to -22V	-	6	120	IIIV
Load Regulation (Note1)	11/0	T _J = +25°C I _O = 5mA to 1.5A	4	-	12	240	m\/
Load Regulation (Note1)	ΔVΟ	TJ = +25°C IO = 250mA to 750mA		-	4	120	120 mV
Quiescent Current	IQ	T _J = +25°C		-	3	6	mA
Quioscont Current Change	Alo.	IO = 5mA to 1A		-	0.05	0.5	mΛ
Quiescent Current Change	ΔlQ	$V_I = -14.5V \text{ to } -3$	0V	-	0.1	1	— mA
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A = +25°C	Hz	-	200	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7915) (Continued)

(VI = -23V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-14.4	-15	-15.6	
Output Voltage	Vo		IO = 5mA to 1A, PO ≤ 15W VI = -18V to -30V		-15	-15.75	V
Line Regulation (Note1)	ΔVο	T _J = +25°C	VI = -17.5V to -30V	-	12	300	mV
Line Regulation (Note1)	ΔνΟ	1J = +25 C	V _I = -20V to -26V	-	6	150	IIIV
Load Regulation (Note1)	ΔVο	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5a$	A	-	12	300	mV
Load Regulation (Note I)	TJ =	T _J = +25°C I _O = 250mA to 750mA		-	4	150	IIIV
Quiescent Current	IQ	T _J = +25°C		-	3	6	mA
Quincant Current Change	A.I.O.	$I_O = 5mA$ to $1A$		-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	$V_I = -17.5V \text{ to } -3$	30V	-	0.1 1	ША	
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-0.9	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A =+25°C	kHz	-	250	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	2.2	-	Α

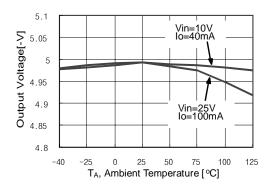
^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM7918) (Continued)

(VI = -27V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		VO IO = 5mΔ to 1Δ PO < 15W		-17.3	-18	-18.7	
Output Voltage	Vo			-17.1	-18	-18.9	V
Line Regulation (Note1)	ΔVο	T _J = +25°C	VI = -21V to -33V	-	15	360	mV
Line Regulation (Note I)	ΔνΟ	1J = +25 C	V _I = -24V to -30V	-	8	180	IIIV
Load Regulation (Note1)	ΔVο	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$	Ą	-	15	360	mV
Load (Note I)	ΔνΟ	TJ = +25°C IO = 250mA to 750mA		-	5	180	IIIV
Quiescent Current	IQ	T _J = +25°C		-	3	6	mA
Quioccont Current Change	Alo	IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	VI = -21V to -33\	/	-	0.1	1	ША
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A = +25°C	Hz	-	300	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.


Electrical Characteristics (LM7924) (Continued)

(VI = -33V, IO = 500mA, 0° C \leq TJ \leq +125 $^{\circ}$ C, CI =2.2 μ F, CO =1 μ F, unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		-23	-24	-25	
Output Voltage	Vo		IO = 5mA to 1A, PO ≤ 15W VI = -27V to -38V		-24	-25.2	V 25.2
Line Regulation (Note1)	41/0	T _J = +25°C	VI = -27V to -38V	-	15	480	mV
Line Regulation (Note1)	ΔVO	1J = +25°C	V _I = -30V to -36V	-	8	180	IIIV
Load Regulation (Note1)	ΔVο	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5a$	A	-	15	480	mV
Load Regulation (Note 1)	Δ۷Ο	T _J = +25°C I _O = 250mA to 750mA		-	5	240	mv
Quiescent Current	lQ	T _J = +25°C		-	3	6	mA
Quiagont Current Change	Alo	IO = 5mA to 1A		-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	$V_I = -27V \text{ to } -38$	V	-	0.1	1] IIIA
Temperature Coefficient of VD	ΔVο/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100k T _A = +25°C	кНz	-	400	-	μV
Ripple Rejection	RR	f = 120Hz ΔVI = 10V		54	60	-	dB
Dropout Voltage	VD	T _J = +25°C I _O = 1A		-	2	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	2.2	-	А

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Performance Characteristics

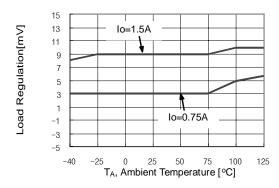
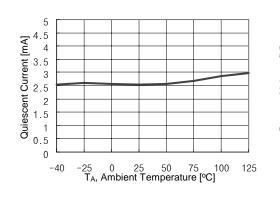



Figure 1. Output Voltage

Figure 2. Load Regulation

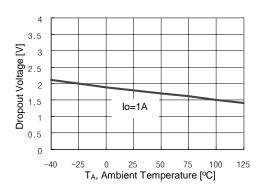
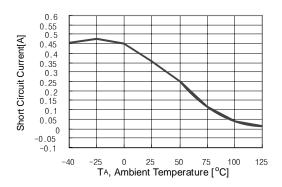



Figure 3. Quiescent Current

Figure 4. Dropout Voltage

Figure 5. Short Circuit Current

Typical Applications

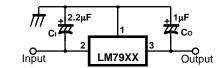


Figure 6. Negative Fixed output regulator

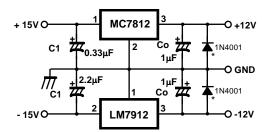
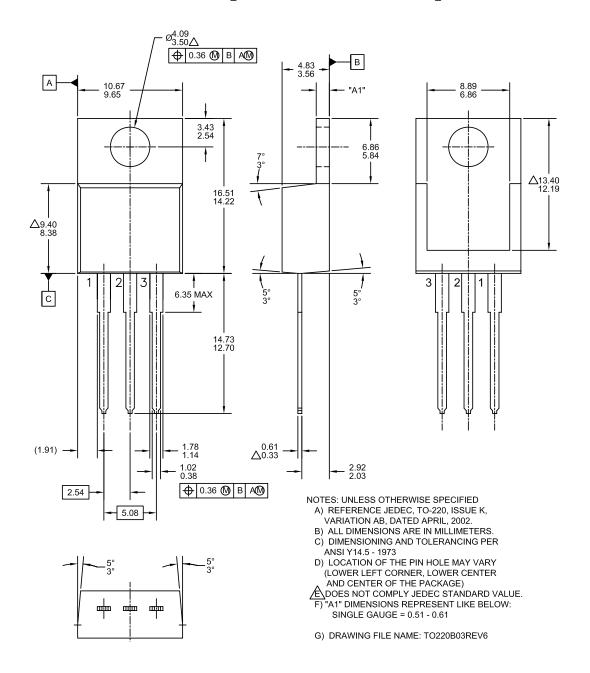


Figure 7. Split power supply (\pm 12V/1A)


- (1) To specify an output voltage, substitute voltage value for "XX"
- (2) Required for stability. For value given, capacitor must be solid tantalum. If aluminium electronics are used, at least ten times value shown should be selected. C_I is required if regulator is located an appreciable distance from power supply filter.
- (3) To improve transient response. If large capacitors are used, a high current diode from input to output (1N400l or similar) should be introduced to protect the device from momentary input short circuit.

Mechanical Dimensions

Package

Dimensions in millimeters

TO-220 [SINGLE GAUGE]

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature		
LM7905CT					
LM7906CT					
LM7908CT					
LM7909CT		TO-220 (Single Gauge)			
LM7910CT	±4%		0 ~ +125°C		
LM7912CT		(emigio edago)			
LM7915CT					
LM7918CT					
LM7924CT					

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

LM7912CT