SCES067F - JUNE 1996 - REVISED JANUARY 1999

 State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus™ Design for 2.5-V and 3.3-V Operation and Low Static 	SN54ALVTH16373 WD PACKAGE SN74ALVTH16373 DGG, DGV, OR DL PACKAGE (TOP VIEW)
Power Dissipation	
 Support Mixed-Mode Signal Operation (5-V 	1Q1 2 47 11D1
Input and Output Voltages With 2.3-V to	1Q2 🛛 _{3 46} 🗍 1D2
3.6-V V _{CC})	GND 🛛 4 45 🗍 GND
 Typical V_{OLP} (Output Ground Bounce) 	1Q3 🛛 5 44 🗋 1D3
< 0.8 V at V _{CC} = 3.3 V, T _A = 25°C	1Q4 🛛 _{6 43} 🗍 1D4
 High Drive (–24/24 mA at 2.5-V and 	V _{CC} [] 7 42 [] V _{CC}
–32/64 mA at 3.3-V V _{CC})	1Q5 🛛 8 41 🖸 1D5
 Power Off Disables Outputs, Permitting 	1Q6 9 40 1D6
Live Insertion	
High-Impedance State During Power Up	
and Power Down Prevents Driver Conflict	1Q8 12 37 1D8
 Uses Bus Hold on Data Inputs in Place of 	2Q1 [] 13 36 [] 2D1
External Pullup/Pulldown Resistors to	2Q2 [14 35] 2D2
Prevent the Bus From Floating	GND [] 15 34 [] GND
 Auto3-State Eliminates Bus Current 	2Q3 [] ₁₆ 33 [] 2D3 2Q4 [] ₁₇ 32 [] 2D4
Loading When Output Exceeds V _{CC} + 0.5 V	$V_{CC} \begin{bmatrix} 17 & 32 \\ 18 & 31 \end{bmatrix} V_{CC}$
 Latch-Up Performance Exceeds 250 mA Per 	2Q5 [] 19 30 [] 2D5
JESD 17	2Q6 20 29 2D6
	GND [21 28] GND
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V 	2Q7 22 27 2D7
Using Machine Model; and Exceeds 1000 V	2Q8 22 26 2D8

Using Charged-Device Model, Robotic Method

- Flow-Through Architecture Facilitates Printed Circuit Board Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

description

The 'ALVTH16373 devices are 16-bit transparent D-type latches with 3-state outputs designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

25 🛛 2LE

SCES067F - JUNE 1996 - REVISED JANUARY 1999

description (continued)

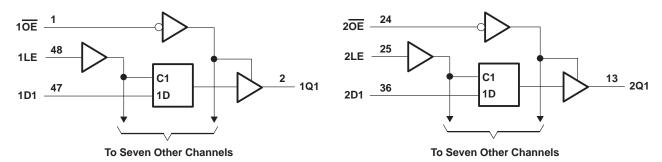
A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ALVTH16373 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH16373 is characterized for operation from -40°C to 85°C.


	(each o	-DIL Sect	.1011)
	INPUTS		OUTPUT
OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q ₀
н	Х	Х	Z

FUNCTION TABLE (oach 8-bit soction)

SCES067F - JUNE 1996 - REVISED JANUARY 1999

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	–0.5 V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)	–0.5 V to 7 V
Output current in the low state, I _O : SN54ALVTH16373	96 mA
SN74ALVTH16373	
Output current in the high state, I _O : SN54ALVTH16373	–48 mA
SN74ALVTH16373	
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	
DL package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V ± 0.2 V (see Note 3)

			SN54	ALVTH1	6373	SN74	ALVTH1	6373	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		2.3		2.7	2.3		2.7	V
VIH	High-level input voltage	1.7			1.7			V	
VIL	Low-level input voltage		14	0.7			0.7	V	
VI	Input voltage	0	Vcc	5.5	0	VCC	5.5	V	
ЮН	High-level output current			Q	-6			-8	mA
	Low-level output current			(C)	6			8	mA
IOL	Low-level output current; current duty cycle \leq	50%; f ≥ 1 kHz	5	5	18			24	ША
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	5		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate	200			200			μs/V	
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCES067F - JUNE 1996 - REVISED JANUARY 1999

recommended operating conditions, V_CC = 3.3 V \pm 0.3 V (see Note 3)

			SN54	ALVTH16	6373	SN74	ALVTH1	6373	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage		4	0.8			0.8	V	
VI	Input voltage	0	Vcc	5.5	0	VCC	5.5	V	
IOH	High-level output current			Q	-24			-32	mA
	Low-level output current			(C)	24			32	mA
IOL	Low-level output current; current duty cycle \leq	50%; f ≥ 1 kHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	48			64	ША
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	4	/	10			10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate	200			200			μs/V	
TA	Operating free-air temperature	-55		125	-40		85	°C	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES067F - JUNE 1996 - REVISED JANUARY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

D		теото	ONDITIONS	SN54	ALVTH1	6373	SN74	ALVTH1	6373	UNIT				
P/	ARAMETER	IESIC	ONDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT				
Vik		V _{CC} = 2.3 V,	lj = -18 mA			-1.2			-1.2	V				
		V_{CC} = 2.3 V to 2.7 V,	l _{OH} = –100 μA	V _{CC} -0	.2		V _{CC} -0	.2						
Vон			I _{OH} = -6 mA	1.8						V				
		V _{CC} = 2.3 V	I _{OH} = -8 mA				1.8							
		V _{CC} = 2.3 V to 2.7 V,	l _{OL} = 100 μA			0.2			0.2	0.2				
			I _{OL} = 6 mA			0.4								
Vol			I _{OL} = 8 mA						0.4	V				
		$V_{CC} = 2.3 V$	I _{OL} = 18 mA			0.5								
			I _{OL} = 24 mA					0.5						
Control inputs		V _{CC} = 2.7 V,	$V_I = V_{CC}$ or GND			±1			±1					
	Control inputs	V _{CC} = 0 or 2.7 V,	V _I = 5.5 V			\$ 10			10					
ΙĮ			VI = 5.5 V		1	10			10	μΑ				
	Data inputs	V _{CC} = 2.7 V	$V_I = V_{CC}$		R	1			1					
			$V_{I} = 0$		4	-5			-5					
loff	-	V _{CC} = 0,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$		2				±100	μΑ				
I _{BHL} ‡		V _{CC} = 2.3 V,	V _I = 0.7 V		115			115		μΑ				
I _{BHH} §		V _{CC} = 2.3 V,	V _I = 1.7 V	Q	-10			-10		μΑ				
BHLC		V _{CC} = 2.7 V,	$V_{I} = 0$ to V_{CC}	300			300			μΑ				
Івнно		V _{CC} = 2.7 V,	$V_{I} = 0$ to V_{CC}	-300			-300			μΑ				
IEX		V _{CC} = 2.3 V,	V _O = 5.5 V			125			125	μΑ				
IOZ(P	U/PD)☆	$V_{CC} \le 1.2 \text{ V}, \text{ V}_{O} = \frac{0.5}{\text{OE}}$ V _I = GND or V _{CC} , $\overline{\text{OE}}$	V to V _{CC} , = don't care			±100			±100	μA				
IOZH		V _{CC} = 2.7 V	V _O = 2.3 V, V _I = 0.7 V or 1.7 V			5			5	μA				
IOZL		V _{CC} = 2.7 V	$V_{O} = 0.5 V,$ $V_{I} = 0.7 V \text{ or } 1.7 V$			-5			-5	μA				
		Vec = 2.7.V	Outputs high		0.04	0.1		0.04	0.1					
ICC		$V_{CC} = 2.7 V,$ I _O = 0,	Outputs low	1	2.3	4.5		2.3	4.5	mA				
00		$V_{I} = V_{CC}$ or GND	Outputs disabled	1	0.04	0.1		0.04	0.1					
Ci		V _{CC} = 2.5 V,	V _I = 2.5 V or 0	1	3.5			3.5		pF				
Co		$V_{CC} = 2.5 V,$	$V_{0} = 2.5 \text{ V or } 0$		6		<u> </u>	6		pF				

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

§ The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. IBHH should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 \P An external driver must source at least IBHLO to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

I Current into an output in the high state when $V_O > V_{CC}$

*High-impedance state during power up or power down

SCES067F - JUNE 1996 - REVISED JANUARY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

P	ARAMETER	TEAT	CONDITIONS	SN54/	ALVTH1	6373	SN74	ALVTH1	6373	UNIT	
P/	ARAMETER	IESIC	CONDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNII	
Vik		V _{CC} = 3 V,	lj = -18 mA			-1.2			-1.2	V	
		V _{CC} = 3 V to 3.6 V,	I _{OH} = -100 μA	V _{CC} -0.	2		V _{CC} -0.	.2			
Vон			I _{OH} = -24 mA	2	2				V		
		VCC = 3 V	I _{OH} = -32 mA			2					
		V _{CC} = 3 V to 3.6 V,	I _{OL} = 100 μA			0.2			0.2		
			I _{OL} = 16 mA						0.4		
V _{OL}			I _{OL} = 24 mA			0.5				V	
		$V_{CC} = 3 V$	I _{OL} = 32 mA						0.5	V	
		I _{OL} = 48 mA			0.55						
			I _{OL} = 64 mA						0.55		
	Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC} \text{ or } GND$			<u>\$</u> ±1			±1		
	Control inputs	V _{CC} = 0 or 3.6 V,	V _I = 5.5 V		J 10				10		
lj –			VI = 5.5 V		RE	10			10	μΑ	
	Data inputs	V _{CC} = 3.6 V	$V_{I} = V_{CC}$		1	1			1		
			$V_{I} = 0$		2	-5			-5		
loff		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V		5				±100	μΑ	
I _{BHL} ‡	:	V _{CC} = 3 V,	VI = 0.8 V	75			75			μΑ	
I _{BHH} §	Ì	V _{CC} = 3 V,	V _I = 2 V	-75			-75			μΑ	
BHLC		V _{CC} = 3.6 V,	$V_I = 0$ to V_{CC}	500			500			μA	
Івнно	D [#]	V _{CC} = 3.6 V,	$V_{I} = 0$ to V_{CC}	-500			-500			μA	
I _{EX}		V _{CC} = 3 V,	V _O = 5.5 V			125			125	μΑ	
I _{OZ(P}	U/PD)☆	$V_{CC} \le 1.2 \text{ V}, V_O = \frac{0.5}{0.5}$ $V_I = \text{GND or } V_{CC}, \overline{\text{OE}}$	V to V _{CC} , = don't care			±100			±100	μA	
IOZH		V _{CC} = 3.6 V	V _O = 3 V, V _I = 0.8 V or 2 V			5			5	μA	
I _{OZL}		V _{CC} = 3.6 V	$V_{O} = 0.5 V,$ $V_{I} = 0.8 V \text{ or } 2 V$			-5			-5	μA	
		V _{CC} = 3.6 V,	Outputs high		0.07	0.1		0.07	0.1		
ICC		$I_{O} = 0,$	Outputs low		3.2	5.5		3.2	5	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.07	0.1		0.07	0.1		
∆ICC□]	$V_{CC} = 3 V$ to 3.6 V, Or Other inputs at V_{CC} or	e input at V _{CC} – 0.6 V, GND			0.4			0.4	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0		3.5			3.5		pF	
Co		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		6			6		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{II} max.

S The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

I Current into an output in the high state when $V_O > V_{CC}$

*High-impedance state during power up or power down

□ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCES067F - JUNE 1996 - REVISED JANUARY 1999

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

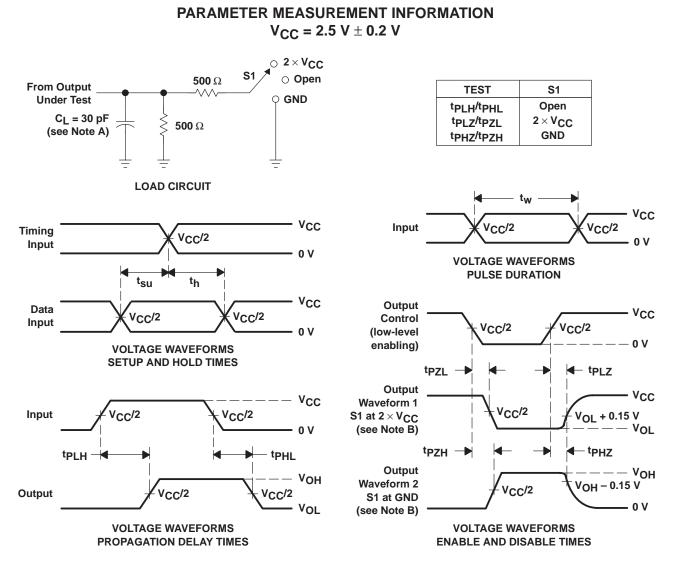
			SN54ALVTH16373	SN74ALVTH16373	UNIT
			MIN MAX	MIN MAX	
tw	Pulse duration, LE high	1.5 🖉	1.5	ns	
		Data high 1		1	
t _{su}	Setup time, data before LE \downarrow	Data low	1.6	1.5	ns
t.	Hold time, data after LE \downarrow	Data high	Q1	0.9	
^t h	Hold time, data after LE \downarrow	1.6	1.5	ns	

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

			SN54ALVTH16373	SN74ALVTH16373	UNIT
			MIN MAX	MIN MAX	
tw	Pulse duration, LE high	1.5 🖉	1.5	ns	
		Data high	1.5	1.4	
t _{su}	Setup time, data before LE \downarrow	Data low	e l	0.9	ns
t.	Hold time, data after LE \downarrow	Data high	Q1	0.9	ns
t _h	Hold time, data alter LEV	Data low	1.5	1.4	115

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

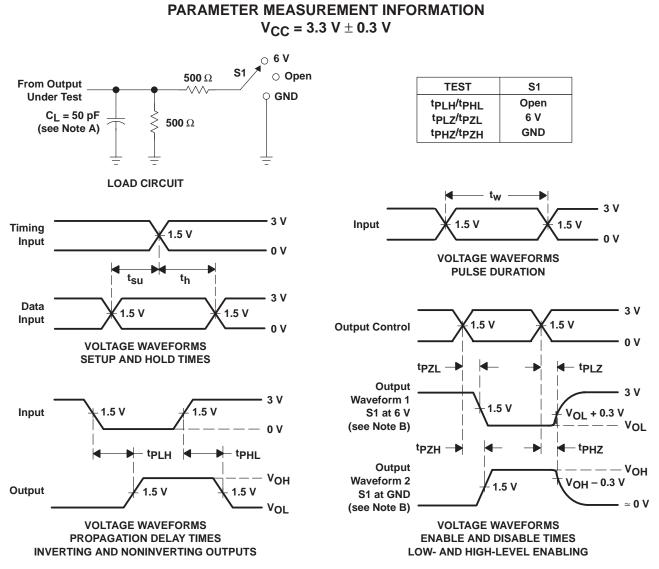
PARAMETER	FROM	то	SN54ALVTH16373	SN74ALVTH16373	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN MAX	MIN MAX	
^t PLH	D	Q	1 3.4	1 3.3	ns
^t PHL	D	Q	1 4.3	1 4.2	115
^t PLH	LE	Q	1.4 🐊 3.9	1.5 3.8	ns
^t PHL	LL	Q	1.4 4.6	1.5 4.5	115
^t PZH	OE	Q	1.7 4.4	1.8 4.3	ns
^t PZL	UE	Q	1,4 4.1	1.5 4	115
^t PHZ	OE	Q	1.4 4.7	1.5 4.6	ns
^t PLZ	UE	y y	1 3.7	1 3.6	113


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVTH1	6373	SN74ALVT	H16373	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX		
^t PLH	D	Q	1	3.2	1	3.1	20	
^t PHL	U	Q	1	3.4	1	3.3	ns	
^t PLH	LE	Q	1	3.4	1	3.3	ns	
^t PHL	LL	Q	1 2	3.6	1	3.5	115	
^t PZH	OE	Q	1.3	4.1	1.4	4	20	
^t PZL	ÛE	Q	70	3.5	1	3.4	ns	
^t PHZ	OE	0	Q~1.4	5	1.5	4.9	ns	
^t PLZ	UE	Q	1.4	4.6	1.5	4.5	115	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCES067F - JUNE 1996 - REVISED JANUARY 1999



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCES067F - JUNE 1996 - REVISED JANUARY 1999

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω, t_f \leq 2.5 ns. t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74ALVTH16373VRG4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	VT373	Samples
SN74ALVTH16373DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVTH16373	Samples
SN74ALVTH16373DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVTH16373	Samples
SN74ALVTH16373GR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVTH16373	Samples
SN74ALVTH16373VR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	VT373	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

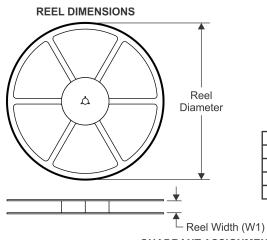
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

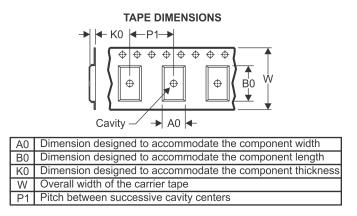
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

24-Aug-2018

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

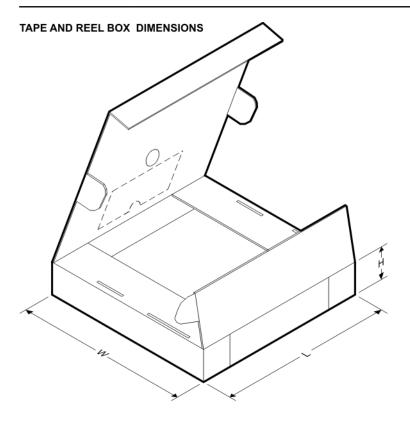

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

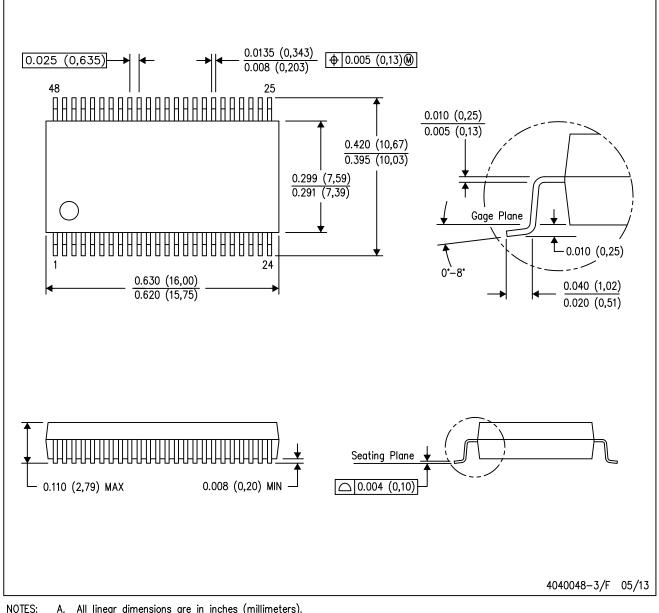

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVTH16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74ALVTH16373GR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74ALVTH16373VR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017



*All dimensions are nominal

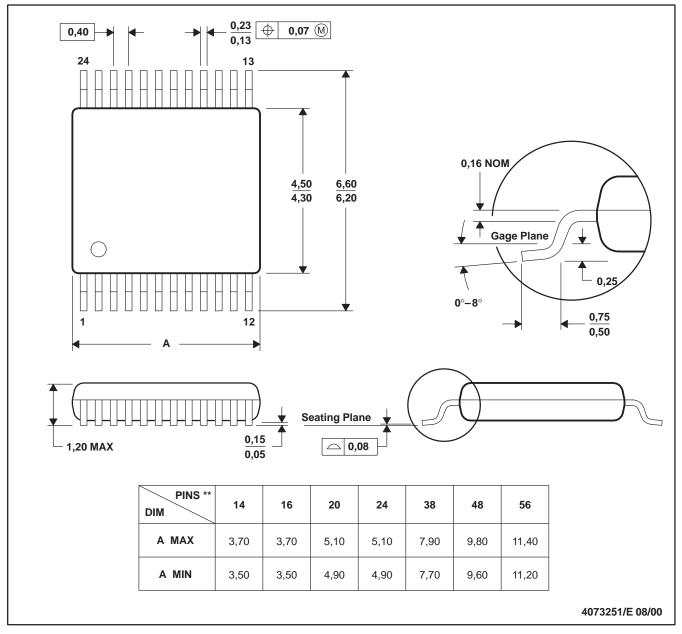
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVTH16373DLR	SSOP	DL	48	1000	367.0	367.0	55.0
SN74ALVTH16373GR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74ALVTH16373VR	TVSOP	DGV	48	2000	367.0	367.0	38.0

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

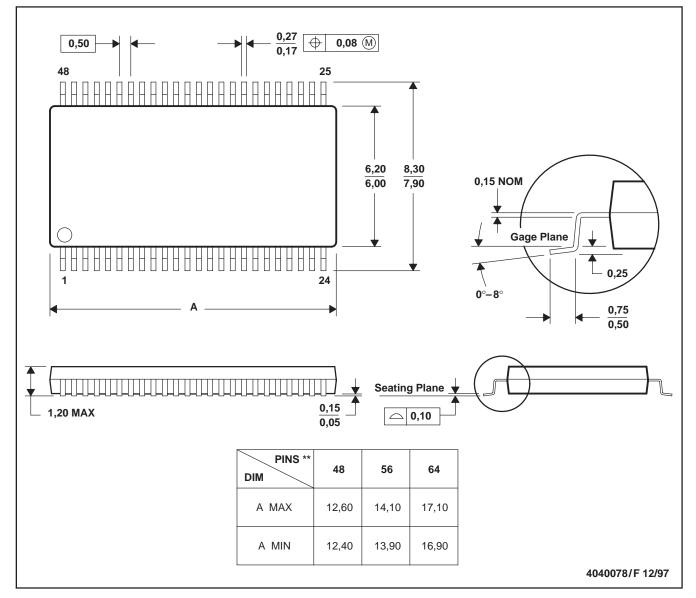
24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated