THIS SPEC IS OBSOLETE

Spec No: 002-08401

Spec Title: MB39C811 ULTRA LOW POWER BUCK PMIC SOLAR/VIBRATIONS ENERGY HARVESTING

Replaced by: NONE

Description

The MB39C811 is the high efficient buck (Power Management) DC/DC converter IC which adopts the all-wave bridge rectifier using the low-dissipation and the comparator system. It achieves the energy harvest solution for the energy source of the high output impedance such as the piezoelectric transducer.
It is possible to select from eight preset output voltages and supply up to 100 mA of the output current.

Features

■ Quiescent current (No load, Output in regulation): $1.5 \mu \mathrm{~A}$
■ Quiescent current (VIN = 2.5 V UVLO): 550 nA

- Integrated Low Loss Full-Wave Bridge Rectifier

■ VIN input voltage range: 2.6 V to 23 V
■ Preset output voltage: $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.1 \mathrm{~V}$, 4.5 V, 5.0 V

Applications

■ Light energy harvesting

- Piezoelectric energy harvesting
- Electro-Mechanical energy harvesting

- Output current: Up to 100 mA
- Protection functions
- Shunt for input protection: VIN $\geq 21 \mathrm{~V}$, Up to 100 mA Pull-down
■ Over current limit
- I/O power-good detection signal output
- Wireless HVAC sensor
- Stand-alone nano-power buck regulator

Online Design Simulation Easy DesignSim

This product supports the web-based design simulation tool. It can easily select external components and can display useful information. Please access from the following URL.
http://cypress.transim.com/login.aspx

MB39C811

Contents

Description 1
Features 1
Applications 1

1. Pin Assignments 3
2. Pin Descriptions 4
3. Block Diagram 5
4. Absolute Maximum Ratings 6
5. Recommended Operating Conditions 7
6. Electrical Characteristics 8
6.1 DC Characteristics. 8
6.2 Characteristics of Built-in Bridge Rectification Circuit 9
6.3 AC Characteristics (Input/Output Power-Good) 9
7. Function 10
7.1 Operational Summary 10
7.2 Start-Up/Shut-Down Sequences 11
7.3 Function Descriptions 11
8. Typical Application Circuits 14
9. Application Notes 16
10. Typical Characteristics 20
11. Layout for Printed Circuit Board 26
12. Usage Precaution 27
13. RoHS Compliance Information 27
14. Ordering Information 27
15. Package Dimensions 28
16. Major Changes 29
Document History 31
Sales, Solutions, and Legal Information 32

1. Pin Assignments

Figure 1. Pin Assignments

2. Pin Descriptions

Table 1. Pin Descriptions.

Pin No.	Pin Name	I/O	
1 to 4	N.C.	-	Description
5	VIN	-	DC powner supply input pin
6	LX	O	DC/DC output pin
7	PGND	-	PGND pin
8	N.C.	-	Non connection pin (Leavethis pin open)
9	GND	-	GND pin
10,11	N.C.	-	Non connection pins (Leavethese pins open)
12	AC1_1	I	Bridge Rectifier1 AC input pin 1
13	DCOUT1	O	Bridge Rectifier1 DC output pin
14	AC1_2	I	Bridge Rectifier1 AC input pin 2
15	DCGND1	-	GND pin
16	DCGND2	-	GND pin
17	AC2_2	I	Bridge Rectifier2 AC input pin 2
18	DCOUT2	O	Bridge Rectifier2 DC output pin
19	AC2_1	I	Bridge Rectifier2 AC input pin 1
20	N.C.	-	Non connection pin (Leavethis pin open)
21	GND	-	GND pin
22	S2	I	Output voltage select pin 2
23	S1	I	Output voltage select pin 1
24	S0	I	Output voltage select pin 0
25	GND	-	GND pin
26	OPGOOD	O	Output power-good output pin
27	IPGOOD	O	Input power-good output pin
28	VOUT	I	Output voltage feedback pin
29	VB	O	Internal circuit power supply pin
30	GND	-	GND pin
31 to 40	N.C.	-	Non connection pins (Leavethese pins open)

3. Block Diagram

Figure 2. Block Diagram

4. Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating		Unit
			Min	Max	
VIN pin input voltage	VVINMAX	VIN pin	-0.3	+24	V
VIN pin input slew rate	SRMAX	VIN pin (VIN $\geq 7 \mathrm{~V}$)	-	0.25	V/ms
VIN pin input current	IINMAX	VIN pin	-	100	mA
AC pin input voltage	VACMAX	AC1_1 pin, AC1_2 pin, AC2_1 pin, AC2_2 pin	-0.3	+24	V
AC pin input current	IPVMAX	AC1_1 pin, AC1_2 pin, AC2_1 pin, AC2_2 pin	-	50	mA
LX pin input voltage	VLXMAX	LX pin	-0.3	+24	V
Input voltage	VVINPUTMAX	S0 pin, S1 pin, S2 pin	-0.3	$\begin{aligned} & \text { VVB }+0.3 \\ & (\leq+7.0) \end{aligned}$	V
		VOUT pin	-0.3	+7.0	V
Power dissipation	PD	$\mathrm{Ta} \leq+25^{\circ} \mathrm{C}$	-	2500	mW
Storage temperature	TSTG	-	-55	+125	${ }^{\circ} \mathrm{C}$
ESD voltage 1	VESDH	Human Body Model (100pF, 5k Ω)	-900	+2000	V
ESD voltage 2	VESDM	Machine Model (200pF, 0Ω)	-150	+150	V
ESD voltage3	VCDM	Charged Device Model	-1000	+1000	V

Figure 3. Power Dissipation - Operating Ambient Temperature

WARNING:

- Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings.Do not exceed any of these ratings.

5. Recommended Operating Conditions

Table 3. Recommended operating conditions

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
VIN pin input voltage	VVIN	VIN pin	2.6	-	23	V
AC pin input voltage	VPV	AC1_1 pin, AC1_2 pin, AC2_1 pin, AC2_2 pin	-	-	23	V
Input voltage	VSI	S0 pin, S1 pin, S2 pin	0	-	VVB	V
	VFB	VOUT pin	0	-	5.5	V
Operating ambient temperature	Ta	-	-40	-	+85	${ }^{\circ} \mathrm{C}$

WARNING:

- The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
- Any use of semiconductor devices will be under their recommended operating condition.
- Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
- No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

6. Electrical Characteristics

6.1 DC Characteristics

Table 4. DC Characteristics
$\left(\mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{VVIN}=7.0 \mathrm{~V}, \mathrm{~L} 1=22 \mu \mathrm{H}, \mathrm{C} 2=47 \mu \mathrm{~F}\right)$

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Quiescent current	IVIN	VVIN $=2.5 \mathrm{~V}$ (UVLO), $\mathrm{Ta}=+25^{\circ} \mathrm{C}$	-	550	775	nA
		$\mathrm{VVIN}=4.5 \mathrm{~V}$ (sleep mode), $\mathrm{Ta}=+25^{\circ} \mathrm{C}$	-	1.5	2.25	$\mu \mathrm{A}$
		VVIN $=18 \mathrm{~V}$ (sleep mode), $\mathrm{Ta}=+25^{\circ} \mathrm{C}$	-	1.9	2.85	$\mu \mathrm{A}$
Preset output voltage	VVOUT	$\mathrm{S} 2=\mathrm{L}, \mathrm{S} 1=\mathrm{L}, \mathrm{S} 0=\mathrm{L}, \mathrm{IOUT}=1 \mathrm{~mA}$	1.457	1.5	1.544	V
		$S 2=L, S 1=L, S 0=H, I O U T=1 \mathrm{~mA}$	1.748	1.8	1.852	V
		$\mathrm{S} 2=\mathrm{L}, \mathrm{S} 1=\mathrm{H}, \mathrm{S} 0=\mathrm{L}, \mathrm{IOUT}=1 \mathrm{~mA}$	2.428	2.5	2.573	V
		$\mathrm{S} 2=\mathrm{L}, \mathrm{S} 1=\mathrm{H}, \mathrm{S} 0=\mathrm{H}, \mathrm{IOUT}=1 \mathrm{~mA}$	3.214	3.3	3.386	V
		$S 2=H, S 1=L, S 0=L, I O U T=1 \mathrm{~mA}$	3.506	3.6	3.694	V
		$S 2=H, S 1=L, S 0=H, I O U T=1 \mathrm{~mA}$	3.993	4.1	4.207	V
		$\mathrm{S} 2=\mathrm{H}, \mathrm{S} 1=\mathrm{H}, \mathrm{S} 0=\mathrm{L}, \mathrm{IOUT}=1 \mathrm{~mA}$	4.383	4.5	4.617	V
		$\mathrm{S} 2=\mathrm{H}, \mathrm{S} 1=\mathrm{H}, \mathrm{S} 0=\mathrm{H}, \mathrm{IOUT}=1 \mathrm{~mA}$	4.870	5.0	5.130	V
Peak switching current	IPEAK		200	250	400	mA
Maximum Output current	IOUTMAX	$\mathrm{Ta}=+25^{\circ} \mathrm{C}$	100*	-	-	mA
UVLO release voltage (Input power-good detectionvoltage)	VUVLOH	$\mathrm{S} 2=\mathrm{L}, \mathrm{S} 1=\mathrm{L}, \mathrm{S} 0=\mathrm{L}$	3.8	4.0	4.2	V
		S2 $=L, S 1=L, S 0=H$				
		S2 $=\mathrm{L}, \mathrm{S} 1=\mathrm{H}, \mathrm{S} 0=L$				
		$S 2=L, S 1=H, S 0=H$	4.94	5.2	5.46	V
		$S 2=H, S 1=L, S 0=L$				
		$\mathrm{S} 2=\mathrm{H}, \mathrm{S} 1=\mathrm{L}, \mathrm{S} 0=\mathrm{H}$	6.84	7.2	7.56	V
		S2 $=\mathrm{H}, \mathrm{S} 1=\mathrm{H}, \mathrm{S} 0=L$				
		S2 = H, S1 = H, S0 = H				
UVLO detection voltage (Input power-good resetvoltage)	VUVLOL	S2 = L, S1 = L, S0 = L	2.6	2.8	3.0	V
		S2 = L, S1 = L, S0 = H				
		$S 2=L, S 1=H, S 0=L$				
		S2 $=\mathrm{L}, \mathrm{S} 1=\mathrm{H}, \mathrm{S} 0=\mathrm{H}$				
		S2 $=\mathrm{H}, \mathrm{S} 1=\mathrm{L}, \mathrm{S} 0=\mathrm{L}$	3.8	4.0	4.2	v
		$S 2=H, S 1=L, S 0=H$	5.7	6.0	6.3	V
		S2 $=\mathrm{H}, \mathrm{S} 1=\mathrm{H}, \mathrm{S} 0=L$				
		S2 = H, S1 = H, S0 = H				
VIN pin shunt voltage	VSHUNT	$\mathrm{IVIN}=1 \mathrm{~mA}$	19	21	23	V
VIN pin shunt current	ISHUNT	-	100	-	-	mA
Output power-good detectionvoltage (Rising)	VOPGH	To preset voltage ratio VVOUT $\geq 3.3 \mathrm{~V}^{[2]}$	90	94	98	
Output power-good resetvoltage (Falling)	VOPGL	To preset voltage ratio	65.5	70	74.5	\%
Power supply output voltage forinternal circuit	VVB	$\mathrm{VVIN}=6 \mathrm{~V}$ to 20 V	-	$5.0^{[1]}$	-	V

[1]: This parameter is not be specified. This should be used as a reference to support designing the circuits.
[2]: Please contact the department in charge if use this output power-good function under the conditions of VVOUT 2.5 V .

6.2 Characteristics of Built-in Bridge Rectification Circuit

Table 5. Characteristics of Built-in Bridge Rectification Circuit
(Ta $=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Forward bias voltage	VF	$\mathrm{IF}=10 \mu \mathrm{~A}$	150	280	450	mV
Forward direction current	IF	-	-	-	50	mA
Reverse bias leak current	IR	$V R=18 \mathrm{~V}$	-	-	20	nA
Break down voltage	VBREAK	$\mathrm{IR}=1 \mu \mathrm{~A}$	VSHUNT	25	-	V

6.3 AC Characteristics (Input/Output Power-Good)

Table 6. AC Characteristics
($\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VOUT}=3.3 \mathrm{~V}$)

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Input power-good detection delay time (Rising)	tIPGH	SRVIN $=0.1 \mathrm{~V} / \mathrm{ms}$	-	1	-	ms
Input power-good reset delay time (Falling)	tIPGL	SRVIN $=0.1 \mathrm{~V} / \mathrm{ms}$	-	1	-	ms
Input power-good undefined time	tIPGX	OPGOOD rising	-	1	3	ms
Output power-good detection delay time (Rising)	tOPGH	$\begin{aligned} & \text { IOUT }=0 \mathrm{~mA}, \\ & \mathrm{~L} 1=22 \mu \mathrm{H}, \\ & \mathrm{C} 2=47 \mu \mathrm{~F}, \end{aligned}$		1	-	ms
Output power-good reset delay time (Falling)	tOPGL	$\begin{aligned} & \text { IOUT }=1 \mathrm{~mA}, \\ & \text { C2 }=47 \mu \mathrm{~F} \end{aligned}$		1	-	ms

Figure 4. AC Characteristics

7. Function

7.1 Operational Summary

Bridge Rectifier

The A/C voltage which is input to the AC1_1 and AC1_2 pins or the AC2_1 and AC2_2 pins is all-wave rectified at the bridge rectifier of the low-dissipation diode. The bridge rectifier output is output from the DCOUT1 pin and the DCOUT2 pin. By connecting those outputs to the VIN pin, the electric charge is accumulated to the capacitor and it is used as the energy condenser of the buck converter.

Power Supply for Internal Circuit
When the VIN pin voltage is 3.5 V or lower, the power supply is supplied from the VIN pin to the internal circuit directly. If the VIN pin is over 3.5 V , the internal regulator is activated and the power supply is supplied from the internal regulator to the internal circuit. Therefore, the stable output voltage is maintained in the wide input voltage range 2.6 V to 23 V .

DC/DC Start-Up/Shut-Down

When the VIN pin voltage is over the release voltage VUVLOH for the under voltage lockout protection circuit (UVLO), the converter circuit is enabled and the electric charge is supplied from the input capacitor to the output capacitor. When the VIN pin voltage is below the UVLO detection voltage VUVLOL, the converter is disabled. The 1.2 V hysteresis between the release voltage and the detection voltage for UVLO prevents the converter from noise or frequent ON/OFF which is caused by the VIN pin voltage-drop during start-up.

Sleep/Auto Active Control

When the feedback voltage VFB for the converter reaches the determinate voltage, the sleep state to stop the switching operation starts and that can reduce the consumption power from the internal circuit. When the VOUT voltage is below the threshold value, the VOUT voltage is maintained to the rated value by making the converter active again.

MB39C811

7.2 Start-Up/Shut-Down Sequences

Figure 5. Timing Chart

7.3 Function Descriptions

Output Voltage Setting and Under Voltage Lockout Protection (UVLO) Function

It is possible to select the output voltage from eight kinds of presets using the S2, S1 and S0 pins.
Also, the under voltage lockout protection circuit is provided to prevent IC's malfunction by the transient state or the instant drop during the VIN pin voltage activation, system destroy and deterioration, and it is set as follows according to the preset voltage. When the VIN pin exceeds the release voltage for the UVLO circuit, the system is recovered.

MB39C811

Table 7. Output Voltage Setting and Under Voltage Lockout Protection (UVLO) Function

S2	S1	S0	VOUT[V]	Under Voltage Lockout Protection (UVLO) -Typ-	
				Detection Voltage (Falling) VUVLOL [V]	Release Voltage (Rising) VUVLOH [V]
L	L	L	1.5	2.8	4.0
L	L	H	1.8		
L	H	L	2.5		
L	H	H	3.3	4.0	5.2
H	L	L	3.6		
H	L	H	4.1	6.0	7.2
H	H	L	4.5		
H	H	H	5.0		

Input/Output Power-good Signal Output

When the VIN pin input voltage is equal to the release voltage VUVLOH for UVLO or more, the output for the IPGOOD pin is set to the "H" level as the input power-good. When the VIN pin input voltage is equal to the detection voltage VUVLOL for UVLO or less, the output for the IPGOOD pin is reset to the "L" level. The IPGOOD output is enabled only when the following output power-good signal output OPGOOD is "H" level.

The output power-good signal OPGOOD is set to the "H" level when the feedback voltage VFB for the VOUT pin is equal to the detection voltage VOPGH or more. When the feedback voltage VFB is equal to the reset voltage VOPGL or less, the output for the OPGOOD pin is reset to the " L " level.

Table 8. Input Power-Good Signal Output (IPGOOD)

OPGOOD	UVLO	IPGOOD
L	Don't care	L
H	L	L
H	H	H

Table 9. Output Power-Good Signal Output (OPGOOD)

VFB	OPGOOD
\leq VOPGL	L
\geq VOPGH	H
$(V V O U T \geq 3.3 V)^{[1]}$	

[1]:Please contact the department in charge if use this output power-good function under the conditions of $\mathrm{V} V O U T \leq 2.5 \mathrm{~V}$.

Figure 6. Input/Output Power-Good Signal Output

Input Over Voltage Protection

If the voltage exceeding VSHUNT (Typ : 21V) is input to the VIN pin, the input level is clamped enabling the over voltage protection circuit. The flowing current is ISHUNT (Min 100mA) during clamp.

Over Current Protection

If the output current for the LX pin reaches the over current detection level IPEAK, the circuit is protected by controlling the peak value for the inductor current setting the main side FET to the OFF state.

8. Typical Application Circuits

Figure 7. Application Circuit For Photovoltaic Energy Harvester

Figure 8. Application Circuit for Vibration Energy Harvester

Figure 9. Voltage Doubler Rectification Circuit for Vibration Harvester

Operation of the Double Voltage Rectifier Circuit Rectifying an AC Input Voltage

When the AC1_1 input voltage is positive, the capacitor C4 charges up through the diode DD1, and when the AC1_1 input voltage is negative, the capacitor C5 charges up through the diode DD2. Each capacitor takes on a charge of the positive peak of the AC input. The output voltage at the VIN pin is the series total of C4+C5.

Table 10. Parts list

Part Number	Value	Description
C1	$10 \mu \mathrm{~F}^{[1]}$	Capacitor
C 2	$47 \mu \mathrm{~F}^{[1]}$	Capacitor
C3	$4.7 \mu \mathrm{~F}$	Capacitor
C4	$10 \mu \mathrm{~F}^{[1]}$	Capacitor
C5	$10 \mu \mathrm{~F}^{[1]}$	Capacitor
L1	$10 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$	Inductor

[1]: Adjust the values according to the source supply ability and the load power.

9. Application Notes

Inductor

The MB39C811 is optimized to work with an inductor in the range of $10 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$. Also, since the peak switching current is up to 400 mA , select an inductor with a DC current rating greater than 400 mA .

Table 11. Manufactures of Recommended Inductors

Part Number	Value	Manufacture
LPS5030-223ML	$22 \mu \mathrm{H}$	Coilcraft, Inc.
VLF403215MT-220M	$22 \mu \mathrm{H}$	TDK Corporation

Harvester (Photovoltaic Power Generator)

In case of photovoltaic energy harvesting, such as solar or light energy harvesting, use a solar cell with high open-circuit voltage which must be higher than the UVLO release voltage. Electric power obtained from light or solar is increased in proportion to the ambient illuminance.

There are silicone-based solar cells and organic-based solar cells about photovoltaic power generators.Silicone-based solar cells are single crystal silicon solar cell, polycrystalline silicon solar cell, and amorphous silicon solar cell. Organic-based solar cells are dye-sensitized solar cell (DSC), and organic thin film solar cell. Crystal silicon and polycrystalline silicon solar cells have high energy conversion efficiency. Amorphous silicon solar cells are lightweight, flexible, and produced at low cost. Dye-sensitized solar cells are composed by sensitizing dye and electrolytes, and are low-cost solar cell. Organic thin film solar cells are lightweight, flexible, and easily manufactured.

Table 12. Manufactures of Photovoltaic Harvesters

Part Number/Series Name	Type	Manufacture
BCS4630B9	Film amorphous silicon solar cells	TDK Corporation
Amorton	Amorphous silicon solar cells	Panasonic Corporation

Harvester (Vibration Power Generator,Piezoelectric Generator)

Vibration power generators produce AC power by vibration. For AC to DC rectification, the MB39C811 integrates two bridge rectifiers. Electric power obtained from a vibration power generator depends on frequency of vibration and usage of the generator. Although, vibration generators produce high voltage, the shunt circuit protects from higher voltage than 21V.

There are electromagnetic induction generators and piezoelectric generators about vibration harvesters. The electromagnetic induction generator is consists of coil and magnet. The piezoelectric generators are made from plastics or ceramics. Plastic-based piezoelectric generators made from polyvinylidene fluoride are lightweight, flexible. Ceramic-based piezoelectric generators are made from barium titanate or leas zirconate titanate ceramics.

Table 13. Manufactures of Vibration Harvesters

Part Number	Type	Manufacture
EH12, EH13, EH15	Electromagnetic induction	Star Micronics Co., Ltd.

Sizing of Input and Output Capacitors

Energy from harvester should be stored on the Cin and Cout to operate the application block. If the size of these capacitors were too big, it would take too much time to charge energy into these capacitors, and the system cannot be operated frequently. On the other hand, if these capacitors were too small, enough energy cannot be stored on these capacitors for the application block. The sizing of the Cin and Cout is important.

Common capacitors are layered ceramic capacitor, electrolytic capacitor, electric double layered capacitor, and so on. Electrostatic capacitance of layered ceramic capacitors is relatively small. However, layered ceramic capacitors are small and have high voltage resistance characteristic. Electrolytic capacitors have high electrostatic capacitance from $\mu \mathrm{F}$ order to mF order. The size of capacitor becomes large in proportion to the size of capacitance. Electric double layered capacitors have high electrostatic capacitance around 0.5 F to 1 F , but have low voltage resistance characteristics around 3 V to 5 V . Be very careful with a voltage resistance characteristic. Also, leak current, equivalent series resistance (ESR), and temperature characteristic are criteria for selecting,

Table 14. Manufactures of Capacitors

Part Number/Series Name	Type, Capacitance	Manufacture
EDLC351420-501-2F-50	EDLC, 500 mF	
EDLC082520-500-1F-81	EDLC, 50 mF	
EDLC041720-050-2F-52	EDLC, 5 mF	
Gold capacitor	EDLC	Panasonic Corporation

First of all, apply the following equation and calculate energy consumption for an application from voltage, current, and time during an operation.
$\mathrm{E}_{\text {Appli. }}[\mathrm{J}]=\mathrm{V}_{\text {Appli. }} \times \mathrm{I}_{\text {Appli }} \times \mathrm{t}_{\text {Appli. }}$
The energy stored on a capacitor is calculated by the following equation.
$\mathrm{E}_{\mathrm{c}}[\mathrm{I}]=\frac{1}{2} \mathrm{CV}^{2}$
Since the energy in a capacitor is proportional to the square of the voltage, it is energetically advantageous for the buck DC/DC converter to make the Cin larger.

An example of an application using the power gating by the OPGOOD signal is shown in the Figure 10. The Cin and the Cout are sized so as to satisfy the following equation. The η, the efficiency of the MB39C811, is determined from the current of application and the graph shown in Figure 12, Efficiency vs IOUT.

$$
\mathrm{E}_{\text {Appli. }} \leq \mathrm{dE}_{\text {Cin }} \times \eta+\mathrm{dE}_{\text {Cout }}
$$

$\mathrm{dE} \mathrm{C}_{\mathrm{cin}}$ and $\mathrm{dE} \mathrm{E}_{\text {cout }}$ are the available energies for the application.
$\mathrm{dE}_{\mathrm{Cin}}[\mathrm{J}]=\frac{1}{2} \mathrm{Cin}\left(\mathrm{VUVLOH}^{2}-\mathrm{VUVLOL}^{2}\right)$
$\mathrm{dE}_{\text {Cout }}[J]=\frac{1}{2} \operatorname{Cout}\left(\mathrm{VVOUT}^{2}-\operatorname{VOPGL}^{2}\right)$

Figure 10. Application Example Using the Power Gating by the OPGOOD Signal

Before calculating the initial charging time ($\mathrm{T}_{\text {Initial }}[\mathrm{s}]$), calculate the total energy ($\mathrm{E}_{\mathrm{Cin}}$ and $\mathrm{E}_{\text {cout }}$) stored on both Cin and Cout.
$\mathrm{E}_{\text {Cout }}[\mathrm{I}]=\frac{1}{2} \mathrm{Cin} \times \mathrm{VUVLOH}^{2}$
$\mathrm{E}_{\text {Cout }}[\mathrm{I}]=\frac{1}{2}$ Cout $\times \mathrm{VVOUT}^{2}$
A PHarvester[W] is a power generation capability of a harvester. An initial charging time ($\mathrm{T}_{\text {Initial }}[\mathrm{s}]$) is calculated by the following equation.
$\mathrm{T}_{\text {Initial }}=\frac{\mathrm{E}_{\text {Cin }}}{\mathrm{P}_{\text {Harvester }}}+\frac{\mathrm{E}_{\text {Cout }}}{\mathrm{P}_{\text {Harvester }} \times \eta}$
A repeat charging time ($T_{\text {Repeat }}[\mathrm{s}]$) is calculated by the following equation. The $T_{\text {Repeat }}[\mathrm{s}]$ become shorter than the $T_{\text {Initial }}[\mathrm{s}]$.
$\mathrm{T}_{\text {Repeat }}=\frac{\mathrm{dE}_{\text {Cin }}}{\mathrm{P}_{\text {Harvester }}}+\frac{\mathrm{dE}_{\text {Cout }}}{\mathrm{P}_{\text {Harvester }} \times \eta}$
Additionally, waiting for a period of time after the OPGOOD signal goes high can store more energy on the capacitor Cin Figure 11.
$\mathrm{dE}_{\text {Cout }}[\mathrm{J}]=\frac{1}{2} \mathrm{Cin}\left(\mathrm{V}_{\text {OpenCircuitVoltage }}^{2}-\mathrm{VUVLOL}^{2}\right)$

Figure 11. Waiting for a Period of Time After the OPGOOD Signal Goes High

For more information about the energy calculation, refer to the application note: Energy Calculation for Energy Harvesting.

10. Typical Characteristics

Figure 12. Typical Characteristics of DC/DC Converter

Figure 13. Typical Characteristics of Bridge Rectifier

Figure 14. DC/DC Converter Sudden Load Change

MB39C811

Figure 15. Switching Waveforms of DC/DC Converter

11. Layout for Printed Circuit Board

Note the Points Listed Below in Layout Design

■ Place the switching parts ${ }^{[1]}$ on top layer, and avoid connecting each other through through-holes.
■ Make the through-holes connecting the ground plane close to the GND pins of the switching parts ${ }^{[1]}$
■ Be very careful about the current loop consisting of the input capacitor CVIN, the VIN pin of IC, and the PGND pin. Place and connect these parts as close as possible to make the current loop small.

- The output capacitor CVOUT and the inductor L are placed adjacent to each other.

■ Place the bypass capacitor CVB close to VB pin, and make the through-holes connecting the ground plane close to the GND pin of the bypass capacitor CVB.
■ Draw the feedback wiring pattern from the VOUT pin to the output capacitor pin. The wiring connected to the VOUT pin is very sensitive to noise so that the wiring should keep away from the switching parts ${ }^{[1]}$. Especially, be very careful about the leaked magnetic flux from the inductor L, even the back side of the inductor L.
[1]: Switching parts: IC (MB39C811), Input capacitor (CVIN), Inductor (L), Output capacitor (CVOUT). Refer to Figure 2.

Figure 16. Example of a Layout Design

12. Usage Precaution

Do Not Configure the IC Over the Maximum Ratings

If the IC is used over the maximum ratings, the LSI may be permanently damaged.
It is preferable for the device to be normally operated within the recommended usage conditions. Usage outside of these conditions can have a bad effect on the reliability of the LSI.

Use the Devices within Recommended Operating Conditions

The recommended operating conditions are the recommended values that guarantee the normal operations of LSI
The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.

Printed Circuit Board Ground Lines should be set up with Consideration for Common Impedance

Take Appropriate Measures against Static Electricity

- Containers for semiconductor materials should have anti-static protection or be made of conductive material.

■ After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
■ Work platforms, tools, and instruments should be properly grounded.
■ Working personnel should be grounded with resistance of $250 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ in series between body and ground.

Do not apply Negative Voltages

The use of negative voltages below -0.3 V may cause the parasitic transistor to be activated on LSI lines, which can cause malfunctions.

13. RoHS Compliance Information

This product has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

14. Ordering Information

Table 15. Ordering Information

Part Number	Package
MB39C811QN	40-pin plastic QFN (RLI040)

15. Package Dimensions

16. Major Changes

Spansion Publication Number: MB39C811_DS405-00013....

Page	Section	Change Results
17	11. Typical Application Circuits	Wiring correction in "Figure 11-1 Application circuit for photovoltaic energy harvester" Deleted the wire connections between DCGND1 pin and the bridge rectifier, then added the internal GND.
17	11. Typical Application Circuits	Wiring correction in "Figure 11-2 Application circuit for vibration energy harvester" Deleted the wire connections between DCGND2 pin and the bridge rectifier, then added the internal GND.
18	11. Typical Application Circuit	Wiring correction in "Figure 11-3 Voltage doubler rectification circuit for vibration harvester" Deleted the wire connections between DCGND1 pin and the bridge rectifier, then added the internal GND.
19, 20	12. Application Notes	Added the "Table 12-1 Manufactures of recommended inductors" Added the "Table 12-2 Manufactures of photovoltaic harvesters" Added the "Table 12-3 Manufactures of vibration harvesters" Added the "Table 12-4 Manufactures of capacitors"
23 to 28	13. Typical Characteristics	Inserted the data of $22 \mu \mathrm{H}$ and $10 \mu \mathrm{H}$ together into "Figure 13-1 Typical characteristics of DC/DC conveter". Inserted the data of $22 \mu \mathrm{H}$ and $10 \mu \mathrm{H}$ together into "Figure 13-4 Switching waveforms of DC/DC converter".
23, 24	13. Typical Characteristics	Replaced the line regulation datas of $22 \mu \mathrm{H}$ in "Figure 13-1 Typical characteristics of DC/DC conveter" Replaced the load regulation datas of $22 \mu \mathrm{H}$ in "Figure 13-1" Added the line and load regulation data of $10 \mu \mathrm{H}$ in "Figure 13-1".
31	16. Ordering Information	Deleted "Table 16-2 EVB Ordering information"

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB39C811 Ultra Low Power Buck PMIC Solar/Vibrations Energy Harvesting Document Number: 002-08401

Revision	ECN	Orig. of Change	Submission Date	Description of Change
$* *$	-	TAOA	$12 / 05 / 2014$	Migrated to Cypress and assigned document number 002-08401. No change to document contents or format.
$*$ A	5124887	TAOA	$02 / 22 / 2016$	Updated to Cypress template
*B	5738429	HIXT	$05 / 17 / 2017$	Updated Pin Assignments: Change the package name from QFN_40PIN to RLI040 Added RoHS Compliance Information Updated Ordering Information: Change the package name from LCC-40P-M63 to RLI040 Deleted "Marking" Deleted "Product Labels" Deleted "Recommended Mounting Conditions"
${ }^{*} \mathrm{C}$	6369000	YOST	$10 / 29 / 2018$	Updated Package Dimensions: Updated to Cypress format
Obsoleted.				

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products		PSoC ${ }^{\circledR}$ Solutions	
Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers	cypress.com/arm	PSoC 1\| PSoC 3	PS
Automotive	cypress.com/automotive		
Clocks \& Buffers	cypress.com/clocks	Community \| Projects	
Interface	cypress.com/interface	\| Components	
Internet of Things	cypress.com/iot	Technical Support	
Memory	cypress.com/memory	cypress.com/support	
Microcontrollers	cypress.com/mcu		
PSoC	cypress.com/psoc		
Power Management ICs	cypress.com/pmic		
Touch Sensing	cypress.com/touch		
USB Controllers	cypress com/usb		
Wireless Connectivity	cypress.com/wireless		

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Abstract

© Cypress Semiconductor Corporation, 2014-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

